FREE ACTIONS OF FINITE GROUPS ON 3-DIMENSIONAL NILMANIFOLDS WITH HOMOTOPICALLY TRIVIAL TRANSLATIONS

Daehwan Koo*, Eunmi Park**, and Joonkook Shin***

Abstract

We show that if a finite group G acts freely with homotopically trivial translations on a 3 -dimensional nilmanifold \mathcal{N}_{p} with the first homology $\mathbb{Z}^{2} \oplus \mathbb{Z}_{p}$, then either G is cyclic or there exist finite nonabelian groups acting freely on \mathcal{N}_{p} which yield orbit manifolds homeomorphic to \mathcal{N} / π_{3} or \mathcal{N} / π_{4}.

1. Introduction

Let \widetilde{X} be a connected, simply connected space with a properly discontinuous action of a discrete group Γ so that it acts as a covering transformations. Let G be a group acting on the manifold $M=\Gamma \backslash \widetilde{X}$. Let \widetilde{G} be the group of liftings of G to the universal covering so that $\widetilde{G} \subset \operatorname{Homeo}(\widetilde{X})$. This fits the short exact sequence

$$
1 \longrightarrow \Gamma \longrightarrow \widetilde{G} \longrightarrow G \longrightarrow 1 .
$$

Let \mathcal{N} be the 3 -dimensional Heisenberg group; i.e. \mathcal{N} consists of all 3×3 real upper triangular matrices with diagonal entries 1 . Thus \mathcal{N} is a simply connected, 2 -step nilpotent Lie group, and it fits an exact sequence

$$
1 \rightarrow \mathbb{R} \rightarrow \mathcal{N} \rightarrow \mathbb{R}^{2} \rightarrow 1
$$

where $\mathbb{R}=\mathcal{Z}(\mathcal{N})$, the center of \mathcal{N}. Hence \mathcal{N} has the structure of a line bundle over \mathbb{R}^{2}. We take a left invariant metric coming from the

[^0]orthonormal basis
\[

\left\{\left[$$
\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}
$$\right],\left[$$
\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}
$$\right],\left[$$
\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}
$$\right]\right\}
\]

for the Lie algebra of \mathcal{N}. This is, what is called, the Nil-geometry and its isometry group is $\operatorname{Isom}(\mathcal{N})=\mathcal{N} \rtimes O(2)$ [13]. All isometries of \mathcal{N} preserve orientation and the bundle structure.

We say that a closed 3-dimensional manifold M has a Nil-geometry if there is a subgroup π of $\operatorname{Isom}(\mathcal{N})$ so that π acts properly discontinuously and freely with quotient $M=\mathcal{N} / \pi$. The simplest such a manifold is the quotient of \mathcal{N} by the lattice consisting of integral matrices. For each integer $p>0$, let

$$
\Gamma_{p}=\left\{\left.\left[\begin{array}{ccc}
1 & l & \frac{n}{p} \\
0 & 1 & m \\
0 & 0 & 1
\end{array}\right] \right\rvert\, l, m, n \in \mathbb{Z}\right\}
$$

Then Γ_{1} is the discrete subgroup of \mathcal{N} consisting of all matrices with integer entries and Γ_{p} is a lattice of \mathcal{N} containing Γ_{1} with index p. Clearly

$$
\mathrm{H}_{1}\left(\mathcal{N} / \Gamma_{p} ; \mathbb{Z}\right)=\Gamma_{p} /\left[\Gamma_{p}, \Gamma_{p}\right]=\mathbb{Z}^{2} \oplus \mathbb{Z}_{p}
$$

Note that these Γ_{p} 's produce infinitely many distinct nilmanifolds

$$
\mathcal{N}_{p}=\mathcal{N} / \Gamma_{p}
$$

covered by \mathcal{N}_{1}. We shall call

$$
\mathcal{N}_{1}=\mathcal{N} / \Gamma_{1}
$$

the standard nilmanifold.
The classifying finite group actions on a 3-dimensional nilmanifold can be understood by the works of Bieberbach, L. Auslander and Waldhausen $[6,7,14]$. Free actions of cyclic, abelian and finite groups on the 3 -torus were studied in [8], [11] and [5], respectively. If a finite group G acts freely on the standard nilmanifold \mathcal{N}_{1}, then either G is cyclic, or there does not exist any finite group acting freely on the standard nilmanifold \mathcal{N}_{1} which yields an infra-nilmanifold homeomorphic to \mathcal{N} / π_{3} or $\mathcal{N} / \pi_{4}([3])$. Free actions of finite abelian groups on the 3-dimensional nilmanifold \mathcal{N}_{p} with the first homology $\mathbb{Z}^{2} \oplus \mathbb{Z}_{p}$ were classified in [1]. Recently, the results of [1] were generalized without the abelian condition([2]).

We are interested in finding all free actions by finite groups G on the nilmanifold \mathcal{N}_{p}, under the condition that no translations of \mathcal{N} are
allowed, except for the central translations, which we shall call a homotopically trivial translation. That means we need to study \widetilde{G} in

$$
1 \longrightarrow \Gamma_{p} \longrightarrow \widetilde{G} \longrightarrow G \longrightarrow 1
$$

If the G is finite and the action is free, then \mathcal{N}_{p} / G is again a manifold whose fundamental group is \widetilde{G}. In fact, $\mathcal{N}_{p} / G=\mathcal{N} / \widetilde{G}$ is homeomorphic to an infra-nilmanifold. In other words, there is an imbedding of \widetilde{G} into the affine group $\operatorname{Aff}(\mathcal{N})=\mathcal{N} \rtimes \operatorname{Aut}(\mathcal{N})$. Such a group is called an almost Bieberbach group. Since all almost Bieberbach groups for \mathcal{N} are classified already, all we need to do is, for each 3-dimensional almost Bieberbach group π, finding a normal subgroup N of π which is isomorphic to Γ_{p}. Then we describe the action of the finite quotient $G=\pi / N$ on the nilmanifold $\mathcal{N}_{p}=\mathcal{N} / \Gamma_{p}$. This G-action on \mathcal{N}_{p} will be free.

Suppose there are two normal subgroups N_{1}, N_{2} of π. The two actions of $\pi / N_{1}, \pi / N_{2}$ are equivalent if and only if there exists a homeomorphism f of \mathcal{N} which conjugates the pair $\left(N_{1}, \pi\right)$ into $\left(N_{2}, \pi\right)$. Of course, such a conjugation is achieved by an affine map $f \in \operatorname{Aff}(\mathcal{N})$.

The following is the list for 15 kinds of the 3-dimensional almost Bieberbach groups imbedded in $\operatorname{Aff}(\mathcal{N})=\mathcal{N} \rtimes\left(\mathbb{R}^{2} \rtimes \operatorname{GL}(2, \mathbb{R})\right)([2$, p.1414]). We shall use
$t_{1}=\left(\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], I\right), \quad t_{2}=\left(\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right], I\right), \quad t_{3}=\left(\left[\begin{array}{ccc}1 & 0 & -\frac{1}{K} \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], I\right)$,
respectively, where I is the identity in $\operatorname{Aut}(\mathcal{N})=\mathbb{R}^{2} \rtimes \mathrm{GL}(2, \mathbb{R})$. In each presentation, n is any positive integer and t_{3} is central except π_{3} and π_{4}. Note that t_{1} and t_{2} are fixed, but K in t_{3} varies for each $\pi_{i, j}$. For example, $K=n$ for $\pi_{1} ; K=2 n$ for π_{2}, etc.
$\pi_{1}=\left\langle t_{1}, t_{2}, t_{3} \mid\left[t_{2}, t_{1}\right]=t_{3}^{n}\right\rangle$,
$\pi_{2}=\left\langle t_{1}, t_{2}, t_{3}, \alpha \mid\left[t_{2}, t_{1}\right]=t_{3}^{2 n}, \alpha^{2}=t_{3}, \alpha t_{1} \alpha^{-1}=t_{1}^{-1}, \alpha t_{2} \alpha^{-1}=t_{2}^{-1}\right\rangle$, $\pi_{3}=\left\langle t_{1}, t_{2}, t_{3}, \alpha\right|\left[t_{2}, t_{1}\right]=t_{3}^{2 n},\left[t_{3}, t_{1}\right]=\left[t_{3}, t_{2}\right]=1, \alpha t_{3} \alpha^{-1}=t_{3}^{-1}$, $\left.\alpha t_{1} \alpha^{-1}=t_{1}, \alpha t_{2}=t_{2}^{-1} \alpha t_{3}^{-n}, \alpha^{2}=t_{1}\right\rangle$, $\pi_{4}=\left\langle t_{1}, t_{2}, t_{3}, \alpha, \beta\right|\left[t_{2}, t_{1}\right]=t_{3}^{4 n},\left[t_{3}, t_{1}\right]=\left[t_{3}, t_{2}\right]=\left[\alpha, t_{3}\right]=1$,

$$
\beta t_{3} \beta^{-1}=t_{3}^{-1}, \alpha t_{1}=t_{1}^{-1} \alpha t_{3}^{2 n}, \alpha t_{2}=t_{2}^{-1} \alpha t_{3}^{-2 n},
$$ $\alpha^{2}=t_{3}, \beta^{2}=t_{1}, \beta t_{1} \beta^{-1}=t_{1}, \beta t_{2}=t_{2}^{-1} \beta t_{3}^{-2 n}$, $\left.\alpha \beta=t_{1}^{-1} t_{2}^{-1} \beta \alpha t_{3}^{-(2 n+1)}\right\rangle$,

$\pi_{5,1}=\left\langle t_{1}, t_{2}, t_{3}, \alpha \mid\left[t_{2}, t_{1}\right]=t_{3}^{4 n-2}, \alpha t_{1} \alpha^{-1}=t_{2}, \alpha t_{2} \alpha^{-1}=t_{1}^{-1}, \alpha^{4}=t_{3}\right\rangle$,
$\pi_{5,2}=\left\langle t_{1}, t_{2}, t_{3}, \alpha \mid\left[t_{2}, t_{1}\right]=t_{3}^{4 n}, \alpha t_{1} \alpha^{-1}=t_{2}, \alpha t_{2} \alpha^{-1}=t_{1}^{-1}, \alpha^{4}=t_{3}^{3}\right\rangle$,

$$
\begin{aligned}
\pi_{5,3} & =\left\langle t_{1}, t_{2}, t_{3}, \alpha \mid\left[t_{2}, t_{1}\right]=t_{3}^{4 n}, \alpha t_{1} \alpha^{-1}=t_{2}, \alpha t_{2} \alpha^{-1}=t_{1}^{-1}, \alpha^{4}=t_{3}\right\rangle \\
\pi_{6,1} & =\left\langle t_{1}, t_{2}, t_{3}, \alpha \mid\left[t_{2}, t_{1}\right]=t_{3}^{3 n}, \alpha t_{1} \alpha^{-1}=t_{2}, \alpha t_{2} \alpha^{-1}=t_{1}^{-1} t_{2}^{-1}, \alpha^{3}=t_{3}\right\rangle, \\
\pi_{6,2} & =\left\langle t_{1}, t_{2}, t_{3}, \alpha \mid\left[t_{2}, t_{1}\right]=t_{3}^{3 n}, \alpha t_{1} \alpha^{-1}=t_{2}, \alpha t_{2} \alpha^{-1}=t_{1}^{-1} t_{2}^{-1}, \alpha^{3}=t_{3}^{2}\right\rangle \\
\pi_{6,3} & =\left\langle t_{1}, t_{2}, t_{3}, \alpha \mid\left[t_{2}, t_{1}\right]=t_{3}^{3 n-2}, \alpha t_{1} \alpha^{-1}=t_{2}, \alpha t_{2} \alpha^{-1}=t_{1}^{-1} t_{2}^{-1}, \alpha^{3}=t_{3}^{2}\right\rangle, \\
\pi_{6,4} & =\left\langle t_{1}, t_{2}, t_{3}, \alpha \mid\left[t_{2}, t_{1}\right]=t_{3}^{3 n-1}, \alpha t_{1} \alpha^{-1}=t_{2}, \alpha t_{2} \alpha^{-1}=t_{1}^{-1} t_{2}^{-1}, \alpha^{3}=t_{3}\right\rangle, \\
\pi_{7,1} & =\left\langle t_{1}, t_{2}, t_{3}, \alpha \mid\left[t_{2}, t_{1}\right]=t_{3}^{6 n}, \alpha t_{1} \alpha^{-1}=t_{1} t_{2}, \alpha t_{2} \alpha^{-1}=t_{1}^{-1}, \alpha^{6}=t_{3}\right\rangle \\
\pi_{7,2} & =\left\langle t_{1}, t_{2}, t_{3}, \alpha \mid\left[t_{2}, t_{1}\right]=t_{3}^{6 n-2}, \alpha t_{1} \alpha^{-1}=t_{1} t_{2}, \alpha t_{2} \alpha^{-1}=t_{1}^{-1}, \alpha^{6}=t_{3}\right\rangle, \\
\pi_{7,3} & =\left\langle t_{1}, t_{2}, t_{3}, \alpha \mid\left[t_{2}, t_{1}\right]=t_{3}^{6 n}, \alpha t_{1} \alpha^{1}=t_{1} t_{2}, \alpha t_{2} \alpha^{-1}=t_{1}^{-1}, \alpha^{6}=t_{3}^{5}\right\rangle \\
\pi_{7,4} & =\left\langle t_{1}, t_{2}, t_{3}, \alpha \mid\left[t_{2}, t_{1}\right]=t_{3}^{6 n-4}, \alpha t_{1} \alpha^{-1}=t_{1} t_{2}, \alpha t_{2} \alpha^{-1}=t_{1}^{-1}, \alpha^{6}=t_{3}^{5}\right\rangle .
\end{aligned}
$$

In this paper, we showed that if a finite group G acting freely on \mathcal{N}_{p} with homotopically trivial translations, then either G is cyclic, or there exist finite nonabelian groups acting freely on \mathcal{N}_{p} which yield orbit manifolds homeomorphic to \mathcal{N} / π_{3} or \mathcal{N} / π_{4}. Note that our results cannot be obtained directly from [2], and differ in the following two respects. Firstly it is very hard to find a necessary and sufficient condition for being a normal nilpotent subgroup isomorphic to Γ_{p} of an almost Bieberbach group, because of many unknown variables. But a necessary and sufficient condition for being a normal subgroup can be obtained using a conjugation by the second Bieberbach theorem in the case of homotopically trivial translations. Second, since the finite groups acting freely on \mathcal{N}_{p} in [2] are represented by generators, it is difficult to know the groups exactly. But in this paper, we show that there exist finite nonabelian group actions only in two classes π_{3}, π_{4}, and those are the dihedral groups $D_{k}, D_{2 k}$, dicyclic groups $D i c_{\frac{k}{2}}, D i c_{k}$, or G_{k} in Theorem 3.1.

Let G be a finite group acting freely on the nilmanifold \mathcal{N}_{p}. Then clearly, $M=\mathcal{N}_{p} / G$ is a topological manifold, and $\pi=\pi_{1}(M) \subset \operatorname{Homeo}(\mathcal{N})$ is isomorphic to an almost Bieberbach group. Let π^{\prime} be an embedding of π into $\operatorname{Aff}(\mathcal{N})$. Such an embedding always exists. Since any isomorphism between lattices extends uniquely to an automorphism of \mathcal{N}, we may assume the subgroup Γ_{p} goes to itself by the embedding $\pi \rightarrow \pi^{\prime} \subset \operatorname{Aff}(\mathcal{N})$. From now on, we shall abuse the same notation Γ_{p} in $\operatorname{Aff}(\mathcal{N})$. Then the quotient group $G^{\prime}=\pi^{\prime} / \Gamma_{p}$ acts freely on the nilmanifold $\mathcal{N}_{p}=\mathcal{N} / \Gamma_{p}$. Moreover, $M^{\prime}=\mathcal{N}_{p} / G^{\prime}$ is an infra-nilmanifold. Thus, a finite free topological action $\left(G, \mathcal{N}_{p}\right)$ gives rise to an isometric action $\left(G^{\prime}, \mathcal{N}_{p}\right)$ on the nilmanifold \mathcal{N}_{p}. Clearly, \mathcal{N}_{p} / G and $\mathcal{N}_{p} / G^{\prime}$ are sufficiently large, see [7, Proposition 2]. By works of Waldhausen and Heil [6, 14], M is homeomorphic to M^{\prime}.

Definition 1.1. Let groups G_{i} act on manifolds M_{i}, for $i=1,2$. The action $\left(G_{1}, M_{1}\right)$ is topologically conjugate to $\left(G_{2}, M_{2}\right)$ if there exists an isomorphism $\theta: G_{1} \rightarrow G_{2}$ and a homeomorphism $h: M_{1} \rightarrow M_{2}$ such that

$$
h(g \cdot x)=\theta(g) \cdot h(x)
$$

for all $x \in M_{1}$ and all $g \in G_{1}$. When $G_{1}=G_{2}$ and $M_{1}=M_{2}$, topologically conjugate is the same as weakly equivariant.

For \mathcal{N}_{p} / G and $\mathcal{N}_{p} / G^{\prime}$ being homeomorphic implies that the two actions $\left(G, \mathcal{N}_{p}\right)$ and ($G^{\prime}, \mathcal{N}_{p}$) are topologically conjugate. Consequently, a finite free action $\left(G, \mathcal{N}_{p}\right)$ is topologically conjugate to an isometric action $\left(G^{\prime}, \mathcal{N}_{p}\right)$. Such a pair $\left(G^{\prime}, \mathcal{N}_{p}\right)$ is not unique. However, by the result obtained by Lee and Raymond [10], all the others are topologically conjugate.

Definition 1.2. Let $\pi \subset \operatorname{Aff}(\mathcal{N})=\mathcal{N} \rtimes \operatorname{Aut}(\mathcal{N})$ be an almost Bieberbach group, and let N_{1}, N_{2} be subgroups of π. We say that $\left(N_{1}, \pi\right)$ is affinely conjugate to $\left(N_{2}, \pi\right)$, denoted by $N_{1} \sim N_{2}$, if there exists an element $(t, T) \in \operatorname{Aff}(\mathcal{N})$ such that $(t, T) \pi(t, T)^{-1}=\pi$ and $(t, T) N_{1}(t, T)^{-1}=N_{2}$.

Our classification problem of free finite group actions $\left(G, \mathcal{N}_{p}\right)$ with

$$
\pi_{1}\left(\mathcal{N}_{p} / G\right) \cong \pi
$$

can be solved by finding all normal nilpotent subgroups N of π each of which is isomorphic to Γ_{p}, and classify (N, π) up to affine conjugacy. This procedure is a purely group-theoretic problem and can be handled by affine conjugacy.

2. Criteria for affine conjugacy

In this section, we develop a technique for finding and classifying all possible finite group actions on the 3 -dimensional nilmanifold. Let us define $\zeta(x)=\left(\left[\begin{array}{ccc}1 & 0 & -x \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], I\right)$. Then $\Gamma_{p}=\left\langle t_{1}, t_{2}, \zeta(1 / p)\right\rangle$ is a lattice of \mathcal{N} such that $\left[t_{2}, t_{1}\right]=\zeta(1 / p)^{p}=\zeta(1)$.

In this paper, we shall deal with the free action of a finite group G acting on \mathcal{N}_{p} with homotopically trivial translations. Our situation is as follows. Let π be an almost Bieberbach group, and N^{\prime} be its nil-radical
(maximal normal nilpotent subgroup). Let N be a normal nilpotent subgroup of π. Suppose N^{\prime} / N is generated by a central element of the nilpotent Lie group. Then we have a following diagram:

Note that $N \otimes \mathcal{Z}=N^{\prime} \otimes \mathcal{Z}$, where \mathcal{Z} is the center of the nilpotent Lie group \mathcal{N}. In other words, N and N^{\prime} differ only in the central direction, which implies that the translation part of the action of G on the nilmanifold \mathcal{N} / N is \mathbb{Z}_{k}. We will classify all such pairs (π, N) 's. For an almost Bieberbach group π, we want to find all normal subgroups N which satisfy
(a) N is isomorphic to the standard lattice Γ_{p},
(b) $N^{\prime} /\left(N^{\prime} \cap \mathcal{Z}(\mathcal{N})\right)=N /(N \cap \mathcal{Z}(\mathcal{N}))$ in $\mathcal{N} / \mathcal{Z}(\mathcal{N})$.

The condition (b) comes from homotopically trivial translations. It is well known that, for any lattice Γ of $\mathcal{N}, \Gamma \cap(\mathcal{Z}(\mathcal{N}))$ is a lattice of $\mathcal{Z}(\mathcal{N})$. Thus such an Γ fits the short exact sequence

$$
1 \longrightarrow \mathbb{Z}=\mathcal{Z}(\Gamma) \longrightarrow \Gamma \longrightarrow \mathbb{Z}^{2} \longrightarrow 1
$$

Clearly \mathbb{Z}^{2} is generated by the images of $\left\{t_{1}, t_{2}\right\}$ and \mathbb{Z} is generated by $\zeta(1 / K)$. Therefore there exists a generating set of Γ consisting of

$$
\Gamma=\left\{t_{1} t_{3}^{u}, t_{2} t_{3}^{v},\left[t_{2}, t_{1}\right]^{1 / p}=\zeta(1 / p)\right\} .
$$

Note that there exists a conjugation which maps Γ_{p} onto Γ by the second Bieberbach theorem. In fact, let

$$
J=t_{1}^{-\frac{v}{K}} t_{2}^{\frac{u}{K}}
$$

and let μ_{J} denote the conjugation by J. Then clearly

$$
\begin{aligned}
& \mu_{J}\left(t_{1}\right)=t_{1} t_{3}^{u} \\
& \mu_{J}\left(t_{2}\right)=t_{2} t_{3}^{v}
\end{aligned}
$$

We denote this image by $N(u, v)$. That is,

$$
N(u, v)=\left\langle t_{1} t_{3}{ }^{u}, t_{2} t_{3}{ }^{v}, \zeta(1 / p)\right\rangle
$$

for $u, v \in \mathbb{Z}$. Therefore, $N(u, v)$ is the most general subgroup of \mathcal{N} that satisfies (a) and (b) above.

Conditions on $N(u, v)$:
The condition $\zeta(1 / p) \in \pi$ is necessary for $N(u, v)$ to be a subgroup of π. Since $\zeta(1 / K)$ is one of the generators of π,
(1) p must divide K, say, $K=k p$.

Now μ_{J-1} will map $N(u, v)$ onto Γ_{p}. That is,

$$
\begin{aligned}
\mu_{J^{-1}}\left(t_{1} t_{3}{ }^{u}\right) & =t_{1}, \\
\mu_{J^{-1}}\left(t_{2} t_{3}{ }^{v}\right) & =t_{2}, \\
\mu_{J-1}\left(t_{3}\right) & =t_{3} .
\end{aligned}
$$

We also need $N(u, v)$ to be normal in π. Let $\alpha \in \pi$ be an element of a non-trivial holonomy. From now on, we shall use the notation $\widehat{\alpha}=$ $\mu_{J-1}(\alpha)$ and $\widehat{\pi}=\mu_{J^{-1}}(\pi)$. Then we have $\mu_{\alpha}\left(t_{1} t_{3}{ }^{u}\right), \mu_{\alpha}\left(t_{2} t_{3}{ }^{v}\right) \in N(u, v)$. This is equivalent to

$$
\mu_{\widehat{\alpha}}\left(t_{1}\right), \mu_{\widehat{\alpha}}\left(t_{2}\right) \in \mu_{J-1}(N(u, v))=\Gamma_{p} .
$$

When we write them as products of t_{i} 's, we can get

$$
\begin{aligned}
& \mu_{\widehat{\alpha}}\left(t_{1}\right)=t_{1}^{n_{1}} t_{2}^{n_{2}}\left(t_{3}^{k}\right)^{n_{3}}, \\
& \mu_{\widehat{\alpha}}\left(t_{2}\right)=t_{1}{ }^{m_{1}} t_{2}^{m_{2}}\left(t_{3}^{k}\right)^{m_{3}} .
\end{aligned}
$$

Since $n_{i}, m_{i}(i=1,2)$ are integers,
(2) Both n_{3} and m_{3} are integers.

Note that

$$
N(u+k a, v+k b)=\left\langle\left(t_{1} t_{3}{ }^{u}\right)\left(t_{3}{ }^{k}\right)^{a},\left(t_{2} t_{3}{ }^{v}\right)\left(t_{3}{ }^{k}\right)^{b}, \zeta(1 / p)\right\rangle=N(u, v),
$$

where u, v take integer values $0,1,2, \cdots, k-1$.
From the above two conditions (1) and (2), we can determine the form of a normal subgroup $N(u, v)$. Next we analyze when the pairs $\{u, v\}$ yield distinct $\widehat{\alpha}$'s. In order to denote $\widehat{\alpha}$ clearly, we rather write it as the following form

$$
\widehat{\alpha}=T \cdot \alpha=\left(t_{1}^{\ell_{1}} t_{2}^{\ell_{2}} t_{3}^{\ell_{3}}\right) \cdot \alpha
$$

and look into $T \in \mathcal{N}$.
Finally we try to determine the finite group $G=\widehat{\pi} / \Gamma_{p}$. It is an extension of a cyclic group \mathbb{Z}_{k} by the holonomy group Φ of π, where \mathbb{Z}_{k} is the quotient $\frac{\mathcal{Z}(\mathcal{N}) \cap \widehat{\pi}}{\mathcal{Z}(\mathcal{N}) \cap \Gamma_{p}}$. Note that G fits the following extension

$$
1 \longrightarrow \mathbb{Z}_{k} \longrightarrow G \longrightarrow \Phi \longrightarrow 1 .
$$

For each generator of the holonomy group Φ, we analyze the action. Let $\alpha=(a, A) \in \mathcal{N} \rtimes \operatorname{Aut}(\mathcal{N})$, and A have order d (holonomy order of α). Then we can write

$$
\alpha^{d}=t_{1}{ }^{d_{1}} t_{2}{ }^{d_{2}} t_{3}{ }^{d_{3}} .
$$

In particular, we will show that if there exists an element α satisfying $d_{3} \neq 0$, then G is cyclic of order $d\left(\frac{K}{p}\right)=d k$ which is generated by the image of $\widehat{\alpha}$ or $\widehat{\alpha}^{-1} t_{3}$. (see Theorem 3.1)

3. Free actions on \mathcal{N}_{p} with orbit space \mathcal{N} / π

For each almost Bieberbach group π, we list all possible $N(u, v)$ and corresponding $\widehat{\alpha}$. In all cases, p must divide $K(=k p)$. Recall that $t_{3}=\left[t_{2}, t_{1}\right]^{\frac{1}{K}}$ is a generator of $\widehat{\pi}$, and $\left[t_{2}, t_{1}\right]^{\frac{1}{p}}=\zeta(1 / p) \in \Gamma_{p}$. Since

$$
\left[t_{2}, t_{1}\right]^{\frac{1}{p}}=\left(\left[t_{2}, t_{1}\right]^{\frac{1}{K}}\right)^{\frac{K}{p}}=\left(t_{3}\right)^{\frac{K}{p}}=t_{3}^{k}
$$

we have

$$
\Gamma_{p}=\left\langle t_{1}, t_{2}, t_{3}^{k}\right\rangle
$$

with $\left[t_{2}, t_{1}\right]=\left(t_{3}^{k}\right)^{p}$. We shall denote these standard generators for Γ_{p} by s_{i} such as

$$
s_{1}=t_{1}, s_{2}=t_{2}, s_{3}=t_{3}^{k}
$$

so that $\left[s_{2}, s_{1}\right]=s_{3}{ }^{p}$.
Let $N(u, v)=\left\langle t_{1} t_{3}{ }^{u}, t_{2} t_{3}{ }^{v}, t_{3}{ }^{k}\right\rangle \cong \Gamma_{p}$ be a normal subgroup of π. Then the conjugation by J^{-1} maps

$$
\begin{aligned}
& \mu_{J^{-1}}\left(t_{1} t_{3}^{u}\right)=t_{1} \\
& \mu_{J^{-1}}\left(t_{2} t_{3}{ }^{v}\right)=s_{2} \\
&=s_{2} \\
& \mu_{J^{-1}}\left(t_{3}\right)=t_{3}=s_{3}^{\frac{1}{k}} .
\end{aligned}
$$

Therefore μ_{J-1} maps $N(u, v)$ onto the standard Γ_{p}, and π to $\widehat{\pi}$. Thus $\left\langle t_{1} t_{3}{ }^{u}, t_{2} t_{3}{ }^{v}, t_{3}{ }^{k}\right\rangle$ is normal in π if and only if $\Gamma_{p}=\left\langle s_{1}, s_{2}, s_{3}\right\rangle$ is normal in $\widehat{\pi}$. Using this fact, we can classify all free actions on \mathcal{N}_{p} with orbit space \mathcal{N} / π. This was done by the program Mathematica[15] and hand-checked.

THEOREM 3.1. The groups that act on \mathcal{N}_{p} freely with no translations except for homotopy-trivialities are described as follows:

Table 1

\begin{tabular}{|c|c|c|c|c|}
\hline \(G\) \& Generator of \(G\) \& \(\mathcal{N}_{p} / G\) \& Conditions on \(u, v\) \& \\
\hline \(\mathbb{Z}_{k}\) \& \(t_{3}=s_{3}{ }^{\frac{p}{K}}\) \& \(\pi_{1}\) \& \(u=0, v=0\) \& \(n=k p\) \\
\hline \(\mathbb{Z}_{2 k}\) \& \[
\begin{aligned}
\& \widehat{\alpha}=\alpha \\
\& \widehat{\alpha}=s_{1}^{\frac{1}{p}} \cdot \alpha \\
\& \widehat{\alpha}=\left(s_{1}^{\frac{1}{p}} s_{2}^{-\frac{1}{p}} s_{3}^{-\frac{1}{2 p}}\right) \cdot \alpha
\end{aligned}
\] \& \(\pi_{2}\) \& \[
\begin{aligned}
\& u=0, v=0 \\
\& u=0, v=\frac{k}{2} \\
\& u=\frac{k}{2}, v=\frac{k}{2}
\end{aligned}
\] \& \[
\begin{aligned}
\& 2 n=k p \\
\& k \in 2 \mathbb{N}, p>1,2 n=k p \\
\& k \in 2 \mathbb{N}, p>1,2 n=k p
\end{aligned}
\] \\
\hline \begin{tabular}{l}
\[
D_{k}
\] \\
\(\operatorname{Dic}_{\frac{k}{2}}\)
\end{tabular} \& \[
\begin{aligned}
\& t_{3}, \widehat{\alpha}=\alpha \\
\& t_{3}, \widehat{\alpha}=\left(s_{2}-\frac{1}{p} s_{3}{ }^{\frac{1}{4}}\right) \cdot \alpha
\end{aligned}
\] \& \(\pi_{3}\) \& \[
\begin{aligned}
\& u=0, v=0 \\
\& u=\frac{k}{2}, v=0
\end{aligned}
\] \& \[
\begin{aligned}
\& p \in 2 \mathbb{N}, 2 n=k p \\
\& k \in 2 \mathbb{N}, p \in 2 \mathbb{N}, 2 n=k p
\end{aligned}
\] \\
\hline \begin{tabular}{l}
\(D_{2 k}\) \\
\(G_{k}\) \\
\(D i c_{k}\)
\end{tabular} \& \[
\left.\begin{array}{l}
\widehat{\alpha}=\alpha, \widehat{\beta}=\beta \\
\widehat{\alpha}=\left(s_{1}^{\frac{1}{p}} s_{3}^{-\frac{1}{4}}\right) \cdot \alpha, \widehat{\beta}=\beta \\
\widehat{\alpha}=\left(s_{1}^{\frac{1}{p}} s_{2}^{-\frac{1}{p}} s_{3}-\frac{1}{2 p}-\frac{1}{2}\right.
\end{array}\right) \cdot \alpha, ~ \begin{aligned}
\& \widehat{\beta}=\left(s_{2}^{-\frac{1}{p}} s^{\frac{1}{4}}\right) \cdot \beta
\end{aligned}
\] \& \(\pi_{4}\) \& \[
\begin{aligned}
\& u=0, v=0 \\
\& u=0, v=\frac{k}{2} \\
\& u=\frac{k}{2}, v=\frac{k}{2}
\end{aligned}
\] \& \[
\begin{aligned}
\& p \in 2 \mathbb{N}, 4 n=k p \\
\& k, p \in 2 \mathbb{N}, 4 n=k p \\
\& k, p \in 2 \mathbb{N}, 4 n=k p
\end{aligned}
\] \\
\hline \(\mathbb{Z}_{4 k}\) \& \[
\begin{aligned}
\& \widehat{\alpha}=\alpha \\
\& \widehat{\alpha}=\left(s_{2}{ }^{-\frac{1}{p}} s_{3}^{\frac{1}{4 p}}\right) \cdot \alpha \\
\& \widehat{\alpha}^{-1} t_{3}=s_{3} \frac{p}{K} \cdot \alpha^{-1} \\
\& \widehat{\alpha}^{-1} t_{3}=\left(s_{1} \frac{1}{p} s^{\frac{p}{K}-\frac{1}{4 p}}\right) \cdot \alpha^{-1} \\
\& \widehat{\alpha}=\alpha \\
\& \widehat{\alpha}=\left(s_{2}{ }^{-\frac{1}{p}} s_{3} \frac{1}{4 p}\right) \cdot \alpha
\end{aligned}
\] \& \(\pi_{5,1}\)

$\pi_{5,2}$

$\pi_{5,3}$ \& \[
$$
\begin{aligned}
& u=0, v=0 \\
& u=\frac{k}{2}, v=\frac{k}{2} \\
& u=0, v=0 \\
& u=\frac{k}{2}, v=\frac{k}{2} \\
& u=0, v=0 \\
& u=\frac{k}{2}, v=\frac{k}{2}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4 n-2=k p \\
& k \in 2 \mathbb{N}, 4 n-2=k p \\
& 4 n=k p \\
& k \in 2 \mathbb{N}, p>1,4 n=k p \\
& 4 n=k p \\
& k \in 2 \mathbb{N}, p>1,4 n=k p
\end{aligned}
$$
\]

\hline $\mathbb{Z}_{3 k}$ \& $$
\begin{aligned}
& \widehat{\alpha}=\alpha \\
& \widehat{\alpha}=\left(s_{2}^{-\frac{1}{p}} s_{3}-\frac{1}{6}+\frac{1}{6 p}\right) \cdot \alpha \\
& \widehat{\alpha}=\left(s_{2}{ }^{-\frac{2}{p}} s_{3}-\frac{1}{3}+\frac{2}{3 p}\right) \cdot \alpha \\
& \widehat{\alpha}^{-1} t_{3}=s_{3} \frac{p}{K} \cdot \alpha^{-1} \\
& \widehat{\alpha}^{-1} t_{3}=\left(s_{1} \frac{1}{p} s_{3}^{\frac{p}{K}+\frac{1}{6}-\frac{1}{6 p}}\right) \cdot \alpha^{-1} \\
& \widehat{\alpha}^{-1} t_{3}=\left(s_{1} \frac{2}{p} s_{3}^{\frac{p}{K}+\frac{1}{3}-\frac{2}{3 p}}\right) \cdot \alpha^{-1} \\
& \widehat{\alpha}^{-1} t_{3}=s_{3} \frac{p}{K} \cdot \alpha^{-1} \\
& \widehat{\alpha}=\alpha
\end{aligned}
$$ \& $\pi_{6,1}$

$\pi_{6,2}$

$\pi_{6,3}$

$\pi_{6,4}$ \& \[
$$
\begin{aligned}
& u=0, v=0 \\
& u=\frac{k}{3}, v=\frac{k}{3} \\
& u=\frac{2 k}{3}, v=\frac{2 k}{3} \\
& u=0, v=0 \\
& u=\frac{k}{3}, v=\frac{k}{3} \\
& u=\frac{2 k}{3}, v=\frac{2 k}{3} \\
& u=0, v=0 \\
& u=0, v=0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3 n=k p \\
& k \in 3 \mathbb{N}, p \geq 2,3 n=k p \\
& k \in 3 \mathbb{N}, p \geq 3,3 n=k p \\
& 3 n=k p \\
& k \in 3 \mathbb{N}, p \geq 2,3 n=k p \\
& k \in 3 \mathbb{N}, p \geq 3,3 n=k p \\
& 3 n-2=k p \\
& 3 n-1=k p
\end{aligned}
$$
\]

\hline $\mathbb{Z}_{6 k}$ \& \[
$$
\begin{aligned}
& \widehat{\alpha}=\alpha \\
& \widehat{\alpha}=\alpha \\
& \widehat{\alpha}^{-1} t_{3}=s_{3} \frac{p}{K} \cdot \alpha^{-1} \\
& \widehat{\alpha}^{-1} t_{3}=s_{3} \frac{p}{K} \cdot \alpha^{-1}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \pi_{7,1} \\
& \pi_{7,2} \\
& \pi_{7,3} \\
& \pi_{7,4}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& u=0, v=0 \\
& u=0, v=0 \\
& u=0, v=0 \\
& u=0, v=0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 6 n=k p \\
& 6 n-2=k p \\
& 6 n=k p \\
& 6 n-4=k p
\end{aligned}
$$
\]

\hline
\end{tabular}

where $D_{1}=\mathbb{Z}_{2}, D_{2}=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, Dic $_{1}=\mathbb{Z}_{4}, G_{2}=\mathbb{Z}_{2} \times \mathbb{Z}_{4}$.

Proof. (Type 3.) We know that

$$
\begin{gathered}
\widehat{\pi_{3}}=\left\langle t_{1}, t_{2}, t_{3}, \widehat{\alpha}\right|\left[t_{2}, t_{1}\right]=t_{3}^{2 n},\left[t_{3}, t_{1}\right]=\left[t_{3}, t_{2}\right]=1, \widehat{\alpha} t_{3} \widehat{\alpha}^{-1}=t_{3}^{-1} \\
\left.\widehat{\alpha} t_{1} \widehat{\alpha}^{-1}=t_{1} t_{3}^{-2 u}, \widehat{\alpha} t_{2}=t_{2}^{-1} \widehat{\alpha} t_{3}^{-n}, \widehat{\alpha}^{2}=t_{1} t_{3}^{-u}\right\rangle \\
\alpha=\left(\left[\begin{array}{lll}
1 & \frac{1}{2} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\right)\right) .
\end{gathered}
$$

The family $\left(\pi_{3}\right)$ is parametrized by $K=2 n ; K$ is divisible by p. Let $K=k p$. Conjugations by $\widehat{\alpha}$ yield

$$
\begin{aligned}
& \mu_{\widehat{\alpha}}\left(s_{1}\right)=s_{1}{ }^{1} s_{2}^{0} s_{3}^{-\frac{2 p u}{K}} \\
& \mu_{\widehat{\alpha}}\left(s_{2}\right)=s_{1}^{0} s_{2}^{-1} s_{3}^{\frac{p}{2}} \\
& \mu_{\widehat{\alpha}}\left(s_{3}\right)=s_{1}^{0} s_{2}^{0} s_{3}^{-1}
\end{aligned}
$$

The normal condition of Γ_{p} in $\widehat{\pi_{3}}$ requires that all the indices (superscripts) in the above be integers so that $-\frac{2 u}{k}, \frac{p}{2} \in \mathbb{Z}$. Therefore we assume p is even. Since $0 \leq u<k$, we have $u=0$ or $\frac{k}{2}$. Thus we have the following two types of normal nilpotent subgroups:

$$
N(0, v)=\left\langle t_{1}, t_{2} t_{3}{ }^{v}, t_{3}{ }^{k}\right\rangle, \quad N(k / 2, v)=\left\langle t_{1} t_{3}{ }^{\frac{k}{2}}, t_{2} t_{3}{ }^{v}, t_{3}{ }^{k}\right\rangle .
$$

By using

$$
\mu=\left(\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left(\left[\begin{array}{c}
\frac{v}{2 n} \\
0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\right) \in N_{\operatorname{Aff}(\mathcal{N})}\left(\pi_{3}\right)
$$

we can show that $N(0, v) \sim N(0,0)$ and $N(k / 2, v) \sim N(k / 2,0)$. Note that

$$
\left.\begin{array}{rl}
\widehat{\alpha}=\mu_{J^{-1}}(\alpha) & =\left(s_{1}{ }^{0} s_{2}^{-\frac{2 u}{K}} s_{3} \frac{p u}{2 K}\right.
\end{array}\right) \cdot \alpha, ~\left\{\widehat{\alpha}^{2}=s_{1} s_{2}{ }^{0} s_{3} \frac{p u}{K}=s_{1} s_{3}{ }^{-\frac{u}{k}} .\right.
$$

Hence we only need to deal with the following two cases:
(1) When $u=0, v=0$:

Since $G=\widehat{\pi_{3}} / \Gamma_{p}=\left\langle t_{1}, t_{2}, t_{3}, \widehat{\alpha}\right\rangle /\left\langle s_{1}, s_{2}, s_{3}\right\rangle, \widehat{\alpha}^{2}=s_{1}$ and $\widehat{\alpha} t_{3} \widehat{\alpha}^{-1}=t_{3}^{-1}$, the finite group $G=\widehat{\pi_{3}} / \Gamma_{p}$ is represented by

$$
G=\left\langle\overline{t_{3}}, \bar{\alpha} \mid \bar{t}_{3}^{k}=1, \bar{\alpha}^{2}=1, \bar{\alpha} \bar{t}_{3} \bar{\alpha}^{-1}=\bar{t}_{3}^{-1}, p \in 2 \mathbb{N}, k \in \mathbb{N}, k p=2 n\right\rangle
$$

which is isomorphic to the dihedral group D_{k} of order $2 k$. Note that G is abelian $\Leftrightarrow k=1, p=2 n$ or $k=2, p=n \Leftrightarrow G$ is $D_{1}=\mathbb{Z}_{2}$ or $D_{2}=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
(2) When $u=\frac{k}{2}, v=0$:

Recall that $G=\widehat{\pi_{3}} / \Gamma_{p}=\left\langle t_{1}, t_{2}, t_{3}, \widehat{\alpha}\right\rangle /\left\langle s_{1}, s_{2}, s_{3}\right\rangle$. In this case, since $\widehat{\alpha}^{2}=t_{1} t_{3}-\frac{k}{2}=s_{1} s_{3}{ }^{-\frac{1}{2}}$, we have $\bar{\alpha}^{2}=\overline{t_{3}}{ }^{\frac{k}{2}}$. So, we can induce that $G=\widehat{\pi_{3}} / \Gamma_{p}=\left\langle\overline{t_{3}}, \bar{\alpha}\right\rangle$ and G is represented by

$$
G=\left\langle\overline{t_{3}}, \bar{\alpha} \mid \bar{t}_{3}^{k}=1, \bar{\alpha}^{2}={\overline{t_{3}}}^{\frac{k}{2}}, \bar{\alpha} \bar{t}_{3} \bar{\alpha}^{-1}={\overline{t_{3}}}^{-1}, p \in 2 \mathbb{N}, k \in 2 \mathbb{N}, k p=2 n\right\rangle
$$

This group is isomorphic to the dicyclic group $\operatorname{Dic}_{\frac{k}{2}}$ of order $2 k$. Note that

$$
G=\widehat{\pi_{3}} / \Gamma_{p} \text { is abelian } \Leftrightarrow k=2 \Leftrightarrow G=\left\langle\frac{2}{\bar{\alpha}}\right\rangle=\text { Dic }_{1}=\mathbb{Z}_{4},
$$

where $\bar{\alpha}$ acts on $\mathcal{N}_{p}=\mathcal{N} / \Gamma_{p}$ by

$$
\widehat{\alpha}=\left(s_{1}{ }^{0} s_{2}^{-\frac{2 u}{K}} s_{3} \frac{p u}{2 K}\right) \cdot \alpha .
$$

Therefore we have the following five affinely non-conjugate actions:

$$
D_{1}=\mathbb{Z}_{2}, \quad D_{2}=\mathbb{Z}_{2} \times \mathbb{Z}_{2}, \quad D_{k}(k \geq 3), \quad D_{1} c_{1}=\mathbb{Z}_{4}, \quad \operatorname{Dic}_{\frac{k}{2}}(k \in 2 \mathbb{N}+2)
$$

To summarize the above statements, the following table gives a complete list of all free actions of finite groups G on \mathcal{N}_{p} which yield an orbit manifold homeomorphic to \mathcal{N} / π_{3}.

$\frac{G}{\mathbb{Z}_{2}}$	$\frac{\text { Conditions on u,v }}{u=0, v=0}$		$\frac{\text { Conditions on } K=k p}{k=1,2 n=p}$	$\frac{\text { Generator of } G}{\widehat{\alpha}=\alpha}$
$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$	$u=0, v=0$		$k=2, n=p \in 2 \mathbb{N}$	$t_{3}, \widehat{\alpha}=\alpha$
D_{k}	$u=0, v=0$		$k \geq 3, p \in 2 \mathbb{N}, 2 n=k p$	$t_{3}, \widehat{\alpha}=\alpha$
\mathbb{Z}_{4}	$u=1, v=0$	$k=2, p=n \in 2 \mathbb{N}$	$\widehat{\alpha}=\left(s_{2}{ }^{-\frac{1}{p}} S_{3} \frac{1}{4}\right) \cdot \alpha$	
Dic $_{\frac{k}{2}}$	$u=\frac{k}{2}, v=0$	$k \in 2 \mathbb{N}+2, p \in 2 \mathbb{N}, 2 n=k p$	$t_{3}, \widehat{\alpha}=\left(s_{2}{ }^{-\frac{1}{p}} S_{3} 3^{\frac{1}{4}}\right) \cdot \alpha$	

(Type 4.) It is not hard to see that

$$
\begin{gathered}
\widehat{\pi_{4}}=\left\langle t_{1}, t_{2}, t_{3}, \widehat{\alpha}, \widehat{\beta}\right|\left[t_{2}, t_{1}\right]=t_{3}^{4 n},\left[t_{3}, t_{1}\right]=\left[t_{3}, t_{2}\right]=\left[\widehat{\alpha}, t_{3}\right]=1, \widehat{\beta} t_{3} \widehat{\beta}^{-1}=t_{3}^{-1}, \\
\widehat{\alpha} t_{1}=t_{1}^{-1} \widehat{\alpha} t_{3}{ }^{2 n+2 u}, \widehat{\alpha} t_{2}=t_{2}^{-1} \widehat{\alpha} t_{3}^{-2 n+2 v}, \widehat{\alpha}^{2}=t_{3}, \widehat{\beta}^{2}=t_{1} t_{3}{ }^{-u}, \\
\left.\widehat{\beta} t_{1} \beta^{-1}=t_{1} t_{3}{ }^{-2 u}, \widehat{\beta} t_{2}=t_{2}^{-1} \widehat{\beta} t_{3}^{-2 n}, \widehat{\alpha} \widehat{\beta}=t_{1}^{-1} t_{2}^{-1} \widehat{\beta} \widehat{\alpha} t_{3}-(2 n+1) t_{3}^{-(u+v)}\right\rangle, \\
\alpha=\left(\left[\begin{array}{ccc}
1 & 0 & -\frac{1}{8 n} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left(\left[\begin{array}{c}
-\frac{1}{2} \\
-\frac{1}{2}
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\right)\right), \\
\beta=\left(\left[\begin{array}{ccc}
1 & \frac{1}{2} & \frac{1}{8} \\
0 & 1 & \frac{1}{2} \\
0 & 0 & 1
\end{array}\right],\left(\left[\begin{array}{c}
0 \\
-\frac{1}{2}
\end{array}\right],\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\right)\right) .
\end{gathered}
$$

The family $\left(\pi_{4}\right)$ is parametrized by $K=4 n ; K$ is divisible by p. Let $K=k p$. Conjugations by $\widehat{\alpha}, \widehat{\beta}$ yield

$$
\begin{array}{ll}
\mu_{\widehat{\alpha}}\left(s_{1}\right)=s_{1}^{-1} s_{2}{ }^{0} s_{3} \frac{p(K+4 u)}{2 K}, & \mu_{\widehat{\beta}}\left(s_{1}\right)=s_{1}^{1} s_{2}^{0} s_{3}^{-\frac{2 p u}{K}}, \\
\mu_{\widehat{\alpha}}\left(s_{2}\right)=s_{1}{ }^{0} s_{2}{ }^{-1} s_{3} \frac{p(-K+4 v)}{2 K}, & \mu_{\widehat{\beta}}\left(s_{2}\right)=s_{1}{ }^{0} s_{2}^{-1} s_{3}^{\frac{p}{2}}, \\
\mu_{\widehat{\alpha}}\left(s_{3}\right)=s_{1}{ }^{0} s_{2}^{0} s_{3}{ }^{1}, & \mu_{\widehat{\beta}}\left(s_{3}\right)=s_{1}{ }^{0} s_{2}^{0} s_{3}^{-1} .
\end{array}
$$

Since Γ_{p} is normal in $\widehat{\pi_{4}}$, we must have $\frac{2 u}{k}, \frac{2 v}{k}, \frac{p}{2} \in \mathbb{Z}$. Therefore, we assume p is even. Since $0 \leq u, v<k$, we have $u, v=0$ or $\frac{k}{2}$. Thus we have the following four types of normal nilpotent subgroups :

$$
\begin{aligned}
N_{1}=N(0,0) & =\left\langle t_{1}, t_{2}, t_{3}{ }^{k}\right\rangle, & N_{2}=N(0, k / 2) & =\left\langle t_{1}, t_{2} t_{3}{ }^{\frac{k}{2}}, t_{3}{ }^{k}\right\rangle, \\
N_{3}=N(k / 2,0) & =\left\langle t_{1} t_{3}{ }^{\frac{k}{2}}, t_{2}, t_{3}{ }^{k}\right\rangle, & N_{4}=N(k / 2, k / 2) & =\left\langle t_{1} t_{3}{ }^{\frac{k}{2}}, t_{2} t_{3}{ }^{\frac{k}{2}}, t_{3}{ }^{k}\right\rangle .
\end{aligned}
$$

It needs some calculations to obtain that the normalizer $N_{\text {Aff(} \mathcal{N})}\left(\pi_{4}\right)$ is of the form

$$
\mu=\left(\left[\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right],\left(\left[\begin{array}{l}
u \\
v
\end{array}\right],\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)\right)
$$

where $2 x, 2 y \in \mathbb{Z}, z \in \mathbb{R}$, and $\left(\left[\begin{array}{l}u \\ v\end{array}\right],\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)$ is one of the following eight values
$\left(\left[\begin{array}{ll}0 \\ 0\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\right),\left(\left[\begin{array}{c}-\frac{1}{2} \\ -\frac{1}{2}\end{array}\right],\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]\right),\left(\left[\begin{array}{c}0 \\ -\frac{1}{2}\end{array}\right],\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\right),\left(\left[\begin{array}{c}-\frac{1}{2} \\ 0\end{array}\right],\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]\right)$,
$\left(\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\right),\left(\left[\begin{array}{l}-\frac{1}{2} \\ -\frac{1}{2}\end{array}\right],\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]\right),\left(\left[\begin{array}{c}0 \\ -\frac{1}{2}\end{array}\right],\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]\right),\left(\left[\begin{array}{c}-\frac{1}{2} \\ 0\end{array}\right],\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\right)$.
By using

$$
\mu=\left(\left[\begin{array}{ccc}
1 & 0 & \frac{1}{4 K} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\right)\right) \in N_{\operatorname{Aff}(\mathcal{N})}\left(\pi_{4}\right),
$$

we can show that $N(0, k / 2) \sim N(k / 2,0)$.
Next, assume that N_{1} is affinely conjugate to N_{2}. Then there exists an element

$$
\mu_{1}=\left(\left[\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right],\left(\left[\begin{array}{l}
u \\
v
\end{array}\right],\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)\right) \in N_{\operatorname{Aff}(\mathcal{N})}\left(\pi_{4}\right)
$$

which can conjugate N_{1} onto N_{2}. From this we must have $x=-u \pm \frac{1}{2 p}$. However, since $u=0,-\frac{1}{2}$ and $p \in 2 \mathbb{N}, 2 x=-2 u \pm \frac{1}{p}$ is not an integer. This is a contradiction. Thus N_{1} is not affinely conjugate to N_{2}. Similarly, we can show that $N_{1} \nsim N_{4}$ and $N_{2} \nsim N_{4}$.

Note that

$$
\begin{aligned}
& \widehat{\alpha}=\left(s_{1} \frac{2 v}{K} s_{2}^{-\frac{2 u}{K}} s_{3}-\frac{p(4 u v+K(u+v))}{2 K^{2}}\right) \cdot \alpha, \\
& \widehat{\alpha}^{2}=s_{1}{ }^{0} s_{2}{ }^{0} s_{3}{ }^{\frac{p}{K}}=s_{3}{ }^{\frac{1}{k}}=t_{3}, \\
& \widehat{\beta}=\left(s_{1}{ }^{0} s_{2}{ }^{-\frac{2 u}{K}} s_{3}{ }^{\frac{p u}{2 K}}\right) \cdot \beta, \\
& \widehat{\beta}^{2}=s_{1}{ }^{1} s_{2}{ }^{0} s_{3}-\frac{p u}{K}=s_{1} s_{3}-\frac{u}{k} .
\end{aligned}
$$

Hence, we only need to deal with the following three cases:
(1) When $u=0, v=0$:

Since $\widehat{\alpha}^{2}=t_{3}=s_{3}{ }^{\frac{1}{k}}, \widehat{\beta}^{2}=s_{1}, \widehat{\alpha} t_{3} \widehat{\alpha}^{-1}=t_{3}$, and $\widehat{\alpha} \widehat{\beta}=t_{1}{ }^{-1} t_{2}{ }^{-1} \widehat{\beta} \widehat{\alpha} t_{3}{ }^{-(2 n+1)}$, we have $\widehat{\alpha} \widehat{\beta}=t_{1}{ }^{-1} t_{2}{ }^{-1} t_{3}{ }^{(2 n+1)} \widehat{\beta} \widehat{\alpha}$. So, by using $k p=4 n$ and $p \in 2 \mathbb{N}$, we can obtain that

$$
\bar{\alpha} \bar{\beta}=\overline{t_{3}} \bar{\beta} \bar{\alpha} \quad \Leftrightarrow \quad \bar{\beta} \bar{\alpha} \bar{\beta}^{-1}=\bar{\alpha}^{-1} .
$$

Therefore the finite group $G=\widehat{\pi_{4}} / \Gamma_{p}=\left\langle t_{1}, t_{2}, t_{3}, \widehat{\alpha}, \widehat{\beta}\right\rangle /\left\langle s_{1}, s_{2}, s_{3}\right\rangle$ is represented by

$$
G=\left\langle\bar{\alpha}, \bar{\beta} \mid \bar{\alpha}^{2 k}=1, \bar{\beta}^{2}=1, \bar{\beta} \bar{\alpha} \bar{\beta}^{-1}=\bar{\alpha}^{-1}, p \in 2 \mathbb{N}, k \in \mathbb{N}, k p=4 n\right\rangle
$$

which is isomorphic to the dihedral group $D_{2 k}$ of order $4 k$. Note that

$$
G \text { is abelian } \Leftrightarrow k=1, p=4 n \Leftrightarrow G \text { is } D_{2}=\mathbb{Z}_{2} \times \mathbb{Z}_{2} .
$$

(2) When $u=0, v=\frac{k}{2}$:

In this case, since $\widehat{\alpha}^{2}=t_{3}=s_{3}{ }^{\frac{1}{k}}, \widehat{\beta}^{2}=s_{1}, \widehat{\alpha} t_{3} \widehat{\alpha}^{-1}=t_{3}, k p=4 n$, and $p \in 2 \mathbb{N}$, using the following relations,

$$
\widehat{\alpha} \widehat{\beta}=t_{1}^{-1} t_{2}^{-1} \widehat{\beta} \widehat{\alpha} t_{3}^{-(2 n+1)} t_{3}{ }^{-\frac{k}{2}}=t_{1}^{-1} t_{2}^{-1} t_{3}^{(2 n+1)} t_{3}{ }^{\frac{k}{2}} \widehat{\beta} \widehat{\alpha}=t_{1}^{-1} t_{2}^{-1} t_{3}{ }^{2 n} \widehat{\alpha}^{2} \widehat{\alpha}^{k} \widehat{\beta} \widehat{\alpha},
$$

we can induce that $\bar{\alpha} \bar{\beta}=\bar{\alpha}^{k+2} \bar{\beta} \bar{\alpha} \Leftrightarrow \bar{\alpha}=\bar{\alpha}^{k+2} \bar{\beta} \bar{\alpha} \bar{\beta} \Leftrightarrow \bar{\beta} \bar{\alpha} \bar{\beta}=\bar{\alpha}^{-k-1}=\bar{\alpha}^{k-1}$.
Therefore the finite group $G=\widehat{\pi_{4}} / \Gamma_{p}=\left\langle t_{1}, t_{2}, t_{3}, \widehat{\alpha}, \widehat{\beta}\right\rangle /\left\langle s_{1}, s_{2}, s_{3}\right\rangle$ is represented by

$$
G_{k}:=\widehat{\pi_{4}} / \Gamma_{p}=\left\langle\bar{\alpha}, \bar{\beta} \mid \bar{\alpha}^{2 k}=1, \bar{\beta}^{2}=1, \bar{\beta} \bar{\alpha} \bar{\beta}=\bar{\alpha}^{k-1}, p, k \in 2 \mathbb{N}\right\rangle .
$$

In particular, if $k=2^{m-2}$, then G_{k} is isomorphic to the semidihedral group $S D_{2^{m}}$ of order 2^{m}. Note that G_{k} is abelian $\Leftrightarrow k=2 \Leftrightarrow G_{2}=\mathbb{Z}_{2} \times \mathbb{Z}_{4}$.
(3) When $u=\frac{k}{2}, v=\frac{k}{2}$:

Since $\widehat{\alpha}^{2}=t_{3}=s_{3}{ }^{\frac{1}{k}}, \widehat{\beta}^{2}=t_{1} t_{3}{ }^{-\frac{k}{2}}, \widehat{\alpha} t_{3} \widehat{\alpha}^{-1}=t_{3}, k p=4 n$, and $p \in 2 \mathbb{N}$, from the following relations,

$$
\widehat{\alpha} \widehat{\beta}=t_{1}^{-1} t_{2}^{-1} \widehat{\beta} \widehat{\alpha} t_{3}^{-(2 n+1)} t_{3}{ }^{-k}=t_{1}^{-1} t_{2}^{-1} t_{3}^{2 n} t_{3}^{k} \widehat{\beta} \widehat{\alpha} t_{3}^{-1}=t_{1}^{-1} t_{2}^{-1} t_{3}^{2 n} t_{3}{ }^{k} \widehat{\beta} \widehat{\alpha}^{-1}
$$

we obtain that $\bar{\alpha} \bar{\beta}=\bar{\beta} \bar{\alpha}^{-1} \Leftrightarrow \bar{\alpha} \bar{\beta} \bar{\alpha}=\bar{\beta} \Leftrightarrow \bar{\beta} \bar{\alpha} \bar{\beta}^{-1}=\bar{\alpha}^{-1}$.
Therefore the finite group $G=\widehat{\pi_{4}} / \Gamma_{p}=\left\langle t_{1}, t_{2}, t_{3}, \widehat{\alpha}, \widehat{\beta}\right\rangle /\left\langle s_{1}, s_{2}, s_{3}\right\rangle$ is represented by

$$
G=\widehat{\pi_{4}} / \Gamma_{p}=\left\langle\bar{\alpha}, \bar{\beta} \mid \bar{\alpha}^{2 k}=1, \bar{\beta}^{2}=\bar{\alpha}^{k}, \bar{\beta} \bar{\alpha} \bar{\beta}^{-1}=\bar{\alpha}^{-1}, p, k \in 2 \mathbb{N}, k p=4 n\right\rangle .
$$

This group is isomorphic to the dicyclic group $D i c_{k}$ of order $4 k$. Since $k \in 2 \mathbb{N}$, $G=D i c_{k}$ is nonabelian. The generators $\bar{\alpha}$ and $\bar{\beta}$ act on $\mathcal{N}_{p}=\mathcal{N} / \Gamma_{p}$ by

$$
\widehat{\alpha}=\left(s_{1}^{\frac{2 v}{K}} s_{2}{ }^{-\frac{2 u}{K}} s_{3}-\frac{p(4 u v+K(u+v))}{2 K^{2}}\right) \cdot \alpha, \quad \widehat{\beta}=\left(s_{1}{ }^{0} s_{2}^{-\frac{2 u}{K}} s^{\frac{p u}{2 K}}\right) \cdot \beta .
$$

(Type 5.) Note that

$$
\begin{gathered}
\widehat{\pi_{5,2}}=\left\langle t_{1}, t_{2}, t_{3}, \widehat{\alpha}\right|\left[t_{2}, t_{1}\right]=t_{3}^{4 n}, \widehat{\alpha}^{4}=t_{3}^{3}, \widehat{\alpha} t_{1} \widehat{\alpha}^{-1}=t_{2} t_{3}^{u-v}, \\
\left.\widehat{\alpha} t_{2} \widehat{\alpha}^{-1}=t_{1}^{-1} t_{3}^{u+v}\right\rangle, \\
\alpha=\left(\left[\begin{array}{ccc}
1 & 0 & -\frac{3}{16 n} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\right)\right) .
\end{gathered}
$$

The family $\left(\pi_{5,2}\right)$ is parametrized by $K=4 n ; K$ is divisible by p. Let $K=k p$. Conjugations by $\widehat{\alpha}$ yield

$$
\begin{aligned}
& \mu_{\widehat{\alpha}}\left(s_{1}\right)=s_{1}{ }^{0} s_{2}{ }^{1} s_{3} \frac{p(u-v)}{K} \\
& \mu_{\widehat{\alpha}}\left(s_{2}\right)=s_{1}{ }^{-1} s_{2}{ }^{0} s_{3} \frac{p(u+v)}{K} \\
& \mu_{\widehat{\alpha}}\left(s_{3}\right)=s_{1}{ }^{0} s_{2}{ }^{0} s_{3}{ }^{1} .
\end{aligned}
$$

By the normality of Γ_{p} in $\widehat{\pi_{5,2}}$, we must have $\frac{p(u-v)}{K}, \frac{p(u+v)}{K} \in \mathbb{Z}$. Since $0 \leq u, v<k$, we have $u(=v)=0$ or $\frac{k}{2}$. Thus we have the following two normal nilpotent subgroups:

$$
N_{1}=N(0,0)=\left\langle t_{1}, t_{2}, t_{3}{ }^{k}\right\rangle, \quad N_{4}=N(k / 2, k / 2)=\left\langle t_{1} t_{3}{ }^{\frac{k}{2}}, t_{2} t_{3}{ }^{\frac{k}{2}}, t_{3}{ }^{k}\right\rangle
$$

It is not hard to seee that the normalizer $N_{\operatorname{Aff}(\mathcal{N})}\left(\pi_{5, i}\right)$ is of the form

$$
\mu=\left(\left[\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right],\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)\right)
$$

where $x+y, x-y \in \mathbb{Z}, z \in \mathbb{R}$, and x^{2} must be a multiple of $\frac{1}{K}$, and

$$
\begin{aligned}
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=} & {\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right],\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], } \\
& {\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right] . }
\end{aligned}
$$

If $p=1$, then it is easy to show that $N_{1} \sim N_{4}$ by using

$$
\mu=\left(\left[\begin{array}{ccc}
1 & -\frac{1}{2} & 0 \\
0 & 1 & \frac{1}{2} \\
0 & 0 & 1
\end{array}\right],\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\right) \in N_{\mathrm{Aff}(\mathcal{N})}\left(\pi_{5,2}\right)
$$

Let $p>1$. If there exists an element

$$
\mu=\left(\left[\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right],\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)\right) \in N_{\operatorname{Aff}(\mathcal{N})}\left(\pi_{5,2}\right)
$$

which can conjugate N_{1} onto N_{4}, then we obtain that $x= \pm \frac{1}{2 p}$ and $y= \pm \frac{1}{2 p}$. So, $x+y \notin \mathbb{Z}$ or $x-y \notin \mathbb{Z}$. This is a contraction. Therefore N_{1} is not affinely conjugate to N_{4}.

Note that

$$
\begin{aligned}
\widehat{\alpha} & =\left(s_{1} \frac{v-u}{K}\right. \\
s_{2}-\frac{u+v}{K} & \left.s_{3}^{\frac{p u^{2}}{K^{2}}}\right) \cdot \alpha, \\
\widehat{\alpha}^{4} & =s_{1}{ }^{0} s_{2}{ }^{0} s_{3}{ }^{\frac{3 p}{K}}=s_{3}{ }^{\frac{3}{k}} .
\end{aligned}
$$

Also, since $\widehat{\alpha}=\left(\widehat{\alpha}^{-1} t_{3}\right)^{3}$ and $t_{3}=\left(\widehat{\alpha}^{-1} t_{3}\right)^{4}$, for any u, v, we have $\left(\widehat{\alpha}^{-1} t_{3}\right)^{4 k}=$ $s_{3} \in \Gamma_{p}$. Hence,

$$
G=\widehat{\pi_{5,2}} / \Gamma_{p}=\mathbb{Z}_{4 k}=\left\langle\bar{\alpha}^{-1} \overline{t_{3}} \mid\left(\bar{\alpha}^{-1} \overline{t_{3}}\right)^{4 k}=1\right\rangle
$$

where $\bar{\alpha}^{-1} \overline{t_{3}}$ acts on $\mathcal{N}_{p}=\mathcal{N} / \Gamma_{p}$ by

$$
\widehat{\alpha}^{-1} t_{3}=\left(s_{1}^{\frac{u+v}{K}} s_{2}^{\frac{v-u}{K}} s_{3} \frac{p}{K}-\frac{p u^{2}}{K^{2}}\right) \cdot \alpha^{-1},
$$

for $(u, v)=(0,0),(k / 2, k / 2)$.
(Type 6.) Some calculations show that $\widehat{\pi_{6,1}}=\left\langle t_{1}, t_{2}, t_{3}, \widehat{\alpha} \mid\left[t_{2}, t_{1}\right]=t_{3}^{3 n}, \widehat{\alpha}^{3}=t_{3}, \widehat{\alpha} t_{1} \widehat{\alpha}^{-1}=t_{2} t_{3}{ }^{u-v}, \widehat{\alpha} t_{2} \widehat{\alpha}^{-1}=t_{1}^{-1} t_{2}^{-1} t_{3}{ }^{u+2 v}\right\rangle$,

$$
\alpha=\left(\left[\begin{array}{ccc}
1 & 0 & -\frac{1}{9 n} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left(\left[\begin{array}{c}
0 \\
\frac{1}{2}
\end{array}\right],\left[\begin{array}{cc}
0 & -1 \\
1 & -1
\end{array}\right]\right)\right) .
$$

The family $\left(\pi_{6,1}\right)$ is parametrized by $K=3 n ; K$ is divisible by p. Let $K=k p$. Conjugations by $\widehat{\alpha}$ yield

$$
\begin{aligned}
& \mu_{\widehat{\alpha}}\left(s_{1}\right)=s_{1}^{0} s_{2}^{1} s_{3} \frac{p(u-v)}{K}, \\
& \mu_{\widehat{\alpha}}\left(s_{2}\right)=s_{1}^{-1} s_{2}^{-1} s_{3}^{\frac{p(u+2 v)}{K}}, \\
& \mu_{\widehat{\alpha}}\left(s_{3}\right)=s_{1}^{0} s_{2}^{0} s_{3}{ }^{1} .
\end{aligned}
$$

By the normality of Γ_{p} in $\widehat{\pi_{6,1}}$, we have $\frac{p(u-v)}{K}, \frac{p(u+2 v)}{K} \in \mathbb{Z}$. Since $0 \leq u, v<k$, we can conclude that $u(=v)=0, \frac{k}{3}$, or $\frac{2 k}{3}$. Thus we have the following three types of normal nilpotent subgroups :

$$
\begin{aligned}
& N_{1}=N(0,0)=\left\langle t_{1}, t_{2}, t_{3}^{k}\right\rangle \\
& N_{2}=N(k / 3, k / 3)=\left\langle t_{1} t_{3} \frac{k}{3}, t_{2} t_{3}{ }^{\frac{k}{3}}, t_{3}{ }^{k}\right\rangle, \\
& N_{3}=N(2 k / 3,2 k / 3)=\left\langle t_{1} t_{3}{ }^{\frac{2 k}{3}}, t_{2} t_{3}{ }^{\frac{2 k}{3}}, t_{3}^{k}\right\rangle
\end{aligned}
$$

By calculation, we obtain that the normalizer $N_{\text {Aff(} \mathcal{N})}\left(\pi_{6, i}\right)$ is of the form

$$
\mu=\left(\left[\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right],\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)\right)
$$

where $z \in \mathbb{R}$, and if $a d-b c=1$, then $x+y \in \mathbb{Z},-x+2 y \in \mathbb{Z}$, and

$$
\begin{aligned}
\left(\left[\begin{array}{l}
u \\
v
\end{array}\right],\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)= & \left(\left[\begin{array}{c}
-\frac{1}{3} \\
\frac{1}{3}
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\right),\left(\left[\begin{array}{c}
-\frac{1}{2} \\
0
\end{array}\right],\left[\begin{array}{ll}
-1 & 1 \\
-1 & 0
\end{array}\right]\right),\left(\left[\begin{array}{c}
-\frac{1}{3} \\
-\frac{1}{6}
\end{array}\right],\left[\begin{array}{cc}
0 & 1 \\
-1 & 1
\end{array}\right]\right), \\
& \left(\left[\begin{array}{c}
0 \\
\frac{1}{2}
\end{array}\right],\left[\begin{array}{cc}
0 & -1 \\
1 & -1
\end{array}\right]\right),\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]\right),\left(\left[\begin{array}{c}
\frac{1}{6} \\
\frac{1}{3}
\end{array}\right],\left[\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right]\right)
\end{aligned}
$$

and if $a d-b c=-1$, then $x+y \in \mathbb{Z}, 2 x-y \in \mathbb{Z}$, and

$$
\begin{aligned}
\left(\left[\begin{array}{l}
u \\
v
\end{array}\right],\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)= & \left(\left[\begin{array}{c}
-\frac{1}{3} \\
\frac{1}{3}
\end{array}\right],\left[\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right]\right),\left(\left[\begin{array}{c}
-\frac{1}{2} \\
0
\end{array}\right],\left[\begin{array}{cc}
-1 & 1 \\
0 & 1
\end{array}\right]\right),\left(\left[\begin{array}{l}
-\frac{1}{3} \\
-\frac{1}{6}
\end{array}\right],\left[\begin{array}{ll}
-1 & 0 \\
-1 & 1
\end{array}\right]\right), \\
& \left(\left[\begin{array}{c}
0 \\
\frac{1}{2}
\end{array}\right],\left[\begin{array}{cc}
1 & 0 \\
1 & -1
\end{array}\right]\right),\left(\left[\begin{array}{c}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right]\right),\left(\left[\begin{array}{l}
\frac{1}{6} \\
\frac{1}{3}
\end{array}\right],\left[\begin{array}{ll}
1 & -1 \\
0 & -1
\end{array}\right]\right) .
\end{aligned}
$$

By using $\mu=\left(\left[\begin{array}{ccc}1 & -\frac{1}{3} & 0 \\ 0 & 1 & \frac{1}{3} \\ 0 & 0 & 1\end{array}\right],\left(\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\right)\right) \in N_{\operatorname{Aff}(\mathcal{N})}\left(\pi_{6, i}\right)$, we can show that if $p=1$, then $N_{1} \sim N_{2} \sim N_{3}$ and if $p=2$, then $N_{1} \sim N_{3}$. Let $p \geq 2$. In this case, we will show that N_{1} is not affinely conjugate to N_{2}. Assume that if there exists

$$
\mu=\left(\left[\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right],\left(\left[\begin{array}{l}
u \\
v
\end{array}\right],\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)\right) \in N_{\operatorname{Aff}(\mathcal{N})}\left(\pi_{6, i}\right)
$$

which can conjugate N_{1} onto N_{2}, then μ is one of the following two types:
(1) when $a d-b c=1$,

$$
\left(\left[\begin{array}{ccc}
1 & -\frac{1}{3 p} & z \\
0 & 1 & \frac{1}{3 p} \\
0 & 0 & 1
\end{array}\right],\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]\right)\right),\left(\left[\begin{array}{ccc}
1 & \frac{-1+p}{3 p} & z \\
0 & 1 & \frac{1-p}{3 p} \\
0 & 0 & 1
\end{array}\right],\left(\left[\begin{array}{c}
-\frac{1}{3} \\
\frac{1}{3}
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\right)\right) .
$$

(2) when $a d-b c=-1$,

$$
\left(\left[\begin{array}{ccc}
1 & \frac{-1+p}{3 p} & z \\
0 & 1 & \frac{1-p}{3 p} \\
0 & 0 & 1
\end{array}\right],\left(\left[\begin{array}{c}
-\frac{1}{3} \\
\frac{1}{3}
\end{array}\right],\left[\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right]\right)\right),\left(\left[\begin{array}{ccc}
1 & -\frac{1}{3 p} & z \\
0 & 1 & \frac{1}{3 p} \\
0 & 0 & 1
\end{array}\right],\left(\left[\begin{array}{c}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right]\right)\right) .
$$

However, since $p \geq 2$, if $a d-b c=1$, then $-x+2 y=\frac{1}{p}, \frac{1}{p}-1 \notin \mathbb{Z}$, and if $a d-b c=-1$, then $2 x-y=-\frac{1}{p}+1,-\frac{1}{p} \notin \mathbb{Z}$. This is a contradiction. Therefore there does not exist $\mu \in N_{\text {Aff(} \mathcal{N})}\left(\pi_{6, i}\right)$ which conjugates N_{1} onto N_{2}.

Similarly we can prove that if $p \geq 3$, then N_{1} is not affinely conjugate to N_{3}, and if $p \geq 2$, then N_{2} is not affinely conjugate to N_{3}. So, we can obtain that

$$
\begin{aligned}
& p=1 \Longrightarrow N_{1} \sim N_{2} \sim N_{3}, \\
& p=2 \Longrightarrow N_{1} \sim N_{3}, N_{1} \nsim N_{2}, \\
& p \geq 3 \Longrightarrow N_{1} \nsim N_{2}, N_{1} \nsim N_{3}, N_{2} \nsim N_{3} .
\end{aligned}
$$

Note that

$$
\begin{aligned}
\widehat{\alpha} & =\left(s_{1} \frac{v-u}{K}\right. \\
s_{2} & \left.-\frac{2 u+v}{K} s_{3} \frac{p\left(-K u+3 u^{2}\right)}{2 K^{2}}\right) \cdot \alpha, \\
\widehat{\alpha}^{3} & =s_{1}{ }^{0} s_{2}{ }^{0} s_{3} \frac{p}{K}=s_{3}{ }^{\frac{1}{k}}
\end{aligned}
$$

For any $u, v \in \mathbb{Z}$, we have $\left(\widehat{\alpha}^{3}\right)^{k}=s_{3} \in \Gamma_{p}$. Therefore we can get

$$
G=\widehat{\pi_{6,1}} / \Gamma_{p}=\mathbb{Z}_{3 k}=\left\langle\bar{\alpha} \mid \bar{\alpha}^{3 k}=1\right\rangle
$$

where $\bar{\alpha}$ acts on $\mathcal{N}_{p}=\mathcal{N} / \Gamma_{p}$ by

$$
\widehat{\alpha}=\left(s_{1} \frac{v-u}{K} s_{2} \frac{2 u+v}{K} s_{3} \frac{p\left(-K u+3 u^{2}\right)}{2 K^{2}}\right) \cdot \alpha
$$

for $(u, v)=(0,0),(k / 3, k / 3),(2 k / 3,2 k / 3)$.
Next we deal with the case of

$$
\begin{gathered}
\widehat{\pi_{6,3}}=\left\langle t_{1}, t_{2}, t_{3}, \widehat{\alpha}\right|\left[t_{2}, t_{1}\right]=t_{3}^{3 n-2}, \widehat{\alpha}^{3}=t_{3}^{2}, \widehat{\alpha} t_{1} \widehat{\alpha}^{-1}=t_{2} t_{3}{ }^{u-v} \\
\left.\widehat{\alpha} t_{2} \widehat{\alpha}^{-1}=t_{1}^{-1} t_{2}^{-1} t_{3}{ }^{u+2 v}\right\rangle \\
\alpha=\left(\left[\begin{array}{ccc}
1 & 0 & -\frac{2}{9 n-6} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left(\left[\begin{array}{c}
0 \\
\frac{1}{2}
\end{array}\right],\left[\begin{array}{cc}
0 & -1 \\
1 & -1
\end{array}\right]\right)\right) .
\end{gathered}
$$

The family $\left(\pi_{6,3}\right)$ is parametrized by $K=3 n-2 ; K$ is divisible by p. Let $K=k p$. Conjugations by $\widehat{\alpha}$ yield

$$
\begin{aligned}
& \mu_{\widehat{\alpha}}\left(s_{1}\right)=s_{1}{ }^{0} s_{2}{ }^{1} s_{3} \frac{p(u-v)}{K}, \\
& \mu_{\widehat{\alpha}}\left(s_{2}\right)=s_{1}{ }^{-1} s_{2}{ }^{-1} s_{3} \frac{p(u+2 v)}{K} \\
& \mu_{\widehat{\alpha}}\left(s_{3}\right)=s_{1}{ }^{0} s_{2}{ }^{0} s_{3}{ }^{1} .
\end{aligned}
$$

Since Γ_{p} is normal in $\widehat{\pi_{6,3}}$, we must have $\frac{p(u-v)}{K}, \frac{p(u+2 v)}{K} \in \mathbb{Z}$. Since $0 \leq$ $u, v<k$, we can conclude that $u(=v)=0, \frac{k}{3}$, or $\frac{2 k}{3}$. In this case, since $K=k p=3 n-2, \frac{k}{3}=\frac{3 n-2}{3 p}$ and $\frac{2 k}{3}=\frac{2(3 n-2)}{3 p}$ cannot be integers. Thus we have only one normal nilpotent subgroup

$$
N(0,0)=\left\langle t_{1}, t_{2}, t_{3}{ }^{k}\right\rangle
$$

Note that

$$
\begin{aligned}
\widehat{\alpha} & =\left(s_{1} \frac{v-u}{K} s_{2}-\frac{2 u+v}{K} s_{3} \frac{p\left(-K u+3 u^{2}\right)}{2 K^{2}}\right) \cdot \alpha \\
\widehat{\alpha}^{3} & =s_{1}{ }^{0} s_{2}{ }^{0} s_{3} \frac{2 p}{K}=s_{3}{ }^{\frac{2}{k}}
\end{aligned}
$$

Also, since $\widehat{\alpha}=\left(\widehat{\alpha}^{-1} t_{3}\right)^{2}$ and $t_{3}=\left(\widehat{\alpha}^{-1} t_{3}\right)^{3}$ for any u, v, we have $\left(\widehat{\alpha}^{-1} t_{3}\right)^{3 k}=s_{3} \in \Gamma_{p}$. Hence we obtain

$$
G=\widehat{\pi_{6,3}} / \Gamma_{p}=\mathbb{Z}_{3 k}=\left\langle\bar{\alpha}^{-1} \overline{t_{3}} \mid\left(\bar{\alpha}^{-1} \overline{t_{3}}\right)^{3 k}=1\right\rangle
$$

where $\bar{\alpha}^{-1} \overline{t_{3}}$ acts on $\mathcal{N}_{p}=\mathcal{N} / \Gamma_{p}$ by

$$
\widehat{\alpha}^{-1} t_{3}=s_{3} \frac{p}{K} \cdot \alpha^{-1} .
$$

The other cases can be done similarly.

According to the Theorem 3.1, if $p=1$, then we can obtain the following result which is the same as the Theorem 3.3 of [3].

Corollary 3.2. Suppose G is a finite group acting freely on the standard nilmanifold \mathcal{N}_{1} with no translations except for homotopy-trivialities. Then G is cyclic, and it is one of the following.

Table 2

G	Generator of G	\mathcal{N}_{1} / G	Conditions on u, v	Conditions on $K=k p$
\mathbb{Z}_{k}	$t_{3}=s_{3} \frac{1}{K}$	π_{1}	$u=0, v=0$	$n=k=K$
$\mathbb{Z}_{2 k}$	$\widehat{\alpha}=\alpha$	π_{2}	$u=0, v=0$	$2 n=k=K$
$\mathbb{Z}_{4 k}$	$\widehat{\alpha}=\alpha$	$\pi_{5,1}$	$u=0, v=0$	$4 n-2=k=K$
	$\widehat{\alpha}=\left(s_{2}{ }^{-1} s_{3} 3^{\frac{1}{4}}\right) \cdot \alpha$		$u=\frac{k}{2}, v=\frac{k}{2}$	$4 n-2=k=K$
	$\widehat{\alpha}^{-1} t_{3}=s_{3} 3^{\frac{1}{K}} \cdot \alpha^{-1}$	$\pi_{5,2}$	$u=0, v=0$	$4 n=k=K$
	$\widehat{\alpha}=\alpha$	$\pi_{5,3}$	$u=0, v=0$	$4 n=k=K$
$\mathbb{Z}_{3 k}$	$\widehat{\alpha}=\alpha$	$\pi_{6,1}$	$u=0, v=0$	$3 n=k=K$
	$\widehat{\alpha}^{-1} t_{3}=s_{3} \frac{1}{K} \cdot \alpha^{-1}$	$\pi_{6,2}$	$u=0, v=0$	$3 n=k=K$
	$\widehat{\alpha}^{-1} t_{3}=s_{3} \frac{1}{K} \cdot \alpha^{-1}$	$\pi_{6,3}$	$u=0, v=0$	$3 n-2=k=K$
	$\widehat{\alpha}=\alpha$	$\pi_{6,4}$	$u=0, v=0$	$3 n-1=k=K$
$\mathbb{Z}_{6 k}$	$\widehat{\alpha}=\alpha$	$\pi_{7,1}$	$u=0, v=0$	$6 n=k=K$
	$\widehat{\alpha}=\alpha$	$\pi_{7,2}$	$u=0, v=0$	$6 n-2=k=K$
	$\widehat{\alpha}^{-1} t_{3}=s_{3} \frac{1}{K} \cdot \alpha^{-1}$	$\pi_{7,3}$	$u=0, v=0$	$6 n=k=K$
	$\widehat{\alpha}^{-1} t_{3}=s_{3} \frac{1}{K} \cdot \alpha^{-1}$	$\pi_{7,4}$	$u=0, v=0$	$6 n-4=k=K$

In $[1,3]$, any finite group acting freely on the nilmanifold \mathcal{N}_{p} is abelian. However, as we can see in the following example, if a finite group acts freely on \mathcal{N}_{p} with homotopically trivial translations, there
exist nonabelian groups which yield orbit manifolds homeomorphic to \mathcal{N} / π_{3} or \mathcal{N} / π_{4}.

Example 3.3. Let G be a finite group of order 16 acting freely on $\mathcal{N}_{p}(p \in 2 \mathbb{N})$ with homotopically trivial translations. Then G is one of the following four groups:
\mathbb{Z}_{16}, dihedral group D_{8}, dicyclic group Dic c_{4}, semidihedral group $S D_{16}=G_{4}$.

In each case, non-affinely conjugate actions are as follows:

- \mathbb{Z}_{16} : one in π_{1}, three in π_{2}, two in $\pi_{5, i}(i=2,3)$.
- $D_{8}:$ one in $\pi_{3}(k=8)$, one in $\pi_{4}(k=4)$.
- Dic4: one in $\pi_{3}(k=8)$, one in $\pi_{4}(k=4)$.
- $S D_{16}$: one in π_{4}.

Acknowledgement. This study was financially supported by Research Fund of Chungnam National University.

References

[1] D. Choi and J. K. Shin, Free actions of finite abelian groups on 3-dimensional nilmanifolds, J. Korean Math. Soc., 42 (2005), no. 4, 795-826.
[2] D. H. Koo, M. S. Oh, and J. K. Shin, Classification of free actions of finite groups on 3-dimensional nilmanifolds, J. Korean Math. Soc., 54 (2017), no. 5, 1411-1440.
[3] H. Y. Chu and J. K. Shin, Free actions of finite groups on the 3-dimensional nilmanifold, Topology Appl., 144 (2004), 255-270.
[4] K. Dekimpe, P. Igodt, S. Kim, and K. B. Lee, Affine structures for closed 3dimensional manifolds with nil-geometry, Quarterly J. Math. Oxford, 46 (1995), no. 2, 141-167.
[5] K. Y. Ha, J. H. Jo, S. W. Kim, and J. B. Lee, Classification of free actions of finite groups on the 3-torus, Topology Appl., 121 (2002), no. 3, 469-507.
[6] W. Heil, On P^{2}-irreducible 3-manifolds, Bull. Amer. Math. Soc., 75 (1969), 772-775.
[7] W. Heil, Almost sufficiently large Seifert fiber spaces, Michigan Math. J., 20 (1973), 217-223.
[8] J. Hempel, Free cyclic actions of $S^{1} \times S^{1} \times S^{1}$, Proc. Amer. Math. Soc., 48 (1975), no. 1, 221-227.
[9] K. B. Lee, There are only finitely many infra-nilmanifolds under each manifold, Quarterly J. Math. Oxford, 39 (1988), no. 2, 61-66.
[10] K. B. Lee and F. Raymond, Rigidity of almost crystallographic groups, Contemporary Math., 44 (1985), 73-78.
[11] K. B. Lee, J. K. Shin, and Y. Shoji, Free actions of finite abelian groups on the 3-Torus, Topology Appl., 53 (1993), 153-175.
[12] P. Orlik, Seifert Manifolds, Lecture Notes in Math., 291, Springer-Verlag, Berlin, 1972.
[13] P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc., 15 (1983), 401-489.
[14] F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math., 87 (1968), no. 2, 56-88.
[15] S. Wolfram, Mathematica, Wolfram Research, 1993.
*
Daejeon Science High School for the Gifted
Daejeon, 34142, Korea
E-mail: dhkoo2011@gmail.com
**
Daejeon Foreign Language High School
Daejeon, 35280, Korea
E-mail: pem0104@naver.com

Department of Mathematics Education
Chungnam National University,
Daejeon, 34134, Korea
E-mail: jkshin@cnu.ac.kr

[^0]: Received January 08, 2020; Accepted January 29, 2020.
 2010 Mathematics Subject Classification: Primary 57S25; Secondary 57M05, 57S17.

 Key words and phrases: affine conjugacy, almost Bieberbach group, group action, Heisenberg group, homotopically trivial translation.
 *** The corresponding author.

