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FREE ACTIONS OF FINITE GROUPS ON

3-DIMENSIONAL NILMANIFOLDS WITH

HOMOTOPICALLY TRIVIAL TRANSLATIONS

Daehwan Koo*, Eunmi Park**, and Joonkook Shin***

Abstract. We show that if a finite group G acts freely with ho-
motopically trivial translations on a 3-dimensional nilmanifold Np

with the first homology Z2 ⊕ Zp, then either G is cyclic or there
exist finite nonabelian groups acting freely on Np which yield orbit
manifolds homeomorphic to N/π3 or N/π4.

1. Introduction

Let X̃ be a connected, simply connected space with a properly dis-
continuous action of a discrete group Γ so that it acts as a covering

transformations. Let G be a group acting on the manifold M = Γ\X̃.

Let G̃ be the group of liftings of G to the universal covering so that

G̃ ⊂ Homeo(X̃). This fits the short exact sequence

1 −→ Γ −→ G̃ −→ G −→ 1.

Let N be the 3–dimensional Heisenberg group; i.e. N consists of all
3 × 3 real upper triangular matrices with diagonal entries 1. Thus N
is a simply connected, 2-step nilpotent Lie group, and it fits an exact
sequence

1→ R→ N → R2 → 1

where R = Z(N ), the center of N . Hence N has the structure of a
line bundle over R2. We take a left invariant metric coming from the
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orthonormal basis
 0 0 1

0 0 0
0 0 0

 ,
 0 1 0

0 0 0
0 0 0

 ,
 0 0 0

0 0 1
0 0 0


for the Lie algebra of N . This is, what is called, the Nil-geometry and
its isometry group is Isom(N ) = N o O(2) [13]. All isometries of N
preserve orientation and the bundle structure.

We say that a closed 3-dimensional manifold M has a Nil-geometry if
there is a subgroup π of Isom(N ) so that π acts properly discontinuously
and freely with quotient M = N

/
π. The simplest such a manifold is

the quotient of N by the lattice consisting of integral matrices. For each
integer p > 0, let

Γp =


1 l n

p

0 1 m
0 0 1

 ∣∣∣∣∣ l,m, n ∈ Z
 .

Then Γ1 is the discrete subgroup of N consisting of all matrices with
integer entries and Γp is a lattice of N containing Γ1 with index p.
Clearly

H1(N/Γp;Z) = Γp/[Γp,Γp] = Z2 ⊕ Zp.
Note that these Γp’s produce infinitely many distinct nilmanifolds

Np = N/Γp
covered by N1. We shall call

N1 = N/Γ1

the standard nilmanifold.
The classifying finite group actions on a 3-dimensional nilmanifold

can be understood by the works of Bieberbach, L. Auslander and Wald-
hausen [6, 7, 14]. Free actions of cyclic, abelian and finite groups on
the 3-torus were studied in [8], [11] and [5], respectively. If a finite
group G acts freely on the standard nilmanifold N1, then either G is
cyclic, or there does not exist any finite group acting freely on the stan-
dard nilmanifold N1 which yields an infra-nilmanifold homeomorphic
to N/π3 or N/π4([3]). Free actions of finite abelian groups on the
3-dimensional nilmanifold Np with the first homology Z2⊕Zp were clas-
sified in [1]. Recently, the results of [1] were generalized without the
abelian condition([2]).

We are interested in finding all free actions by finite groups G on
the nilmanifold Np, under the condition that no translations of N are
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allowed, except for the central translations, which we shall call a homo-

topically trivial translation. That means we need to study G̃ in

1 −→ Γp −→ G̃ −→ G −→ 1.

If the G is finite and the action is free, then Np/G is again a manifold

whose fundamental group is G̃. In fact, Np/G = N/G̃ is homeomorphic

to an infra-nilmanifold. In other words, there is an imbedding of G̃ into
the affine group Aff(N ) = N oAut(N ). Such a group is called an almost
Bieberbach group. Since all almost Bieberbach groups forN are classified
already, all we need to do is, for each 3-dimensional almost Bieberbach
group π, finding a normal subgroup N of π which is isomorphic to Γp.
Then we describe the action of the finite quotient G = π/N on the
nilmanifold Np = N/Γp. This G-action on Np will be free.

Suppose there are two normal subgroups N1, N2 of π. The two actions
of π/N1, π/N2 are equivalent if and only if there exists a homeomorphism
f of N which conjugates the pair (N1, π) into (N2, π). Of course, such
a conjugation is achieved by an affine map f ∈ Aff(N ).

The following is the list for 15 kinds of the 3-dimensional almost
Bieberbach groups imbedded in Aff(N ) = N o (R2 o GL(2,R)) ([2,
p.1414]). We shall use

t1 =

1 1 0
0 1 0
0 0 1

 , I
 , t2 =

1 0 0
0 1 1
0 0 1

 , I
 , t3 =

1 0 − 1
K

0 1 0
0 0 1

 , I
 ,

respectively, where I is the identity in Aut(N ) = R2 o GL(2,R). In
each presentation, n is any positive integer and t3 is central except π3

and π4. Note that t1 and t2 are fixed, but K in t3 varies for each πi,j .
For example, K = n for π1; K = 2n for π2, etc.
π1 = 〈 t1, t2, t3 | [t2, t1] = tn3 〉,
π2 = 〈 t1, t2, t3, α | [t2, t1] = t2n3 , α2 = t3, αt1α

−1 = t−1
1 , αt2α

−1 = t−1
2 〉,

π3 = 〈 t1, t2, t3, α | [t2, t1] = t2n3 , [t3, t1] = [t3, t2] = 1, αt3α
−1 = t−1

3 ,

αt1α
−1 = t1, αt2 = t−1

2 αt−n3 , α2 = t1 〉,
π4 = 〈 t1, t2, t3, α, β | [t2, t1] = t4n3 , [t3, t1] = [t3, t2] = [α, t3] = 1,

βt3β
−1 = t−1

3 , αt1 = t−1
1 αt2n3 , αt2 = t−1

2 αt−2n
3 ,

α2 = t3, β
2 = t1, βt1β

−1 = t1, βt2 = t−1
2 βt−2n

3 ,

αβ = t−1
1 t−1

2 βαt
−(2n+1)
3 〉,

π5,1 = 〈 t1, t2, t3, α| [t2, t1] = t4n−2
3 , αt1α

−1 = t2, αt2α
−1 = t−1

1 , α4 = t3 〉,

π5,2 = 〈 t1, t2, t3, α| [t2, t1] = t4n3 , αt1α
−1 = t2, αt2α

−1 = t−1
1 , α4 = t33 〉,
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π5,3 = 〈 t1, t2, t3, α| [t2, t1] = t4n3 , αt1α
−1 = t2, αt2α

−1 = t−1
1 , α4 = t3 〉,

π6,1 = 〈 t1, t2, t3, α| [t2, t1] = t3n3 , αt1α
−1 = t2, αt2α

−1 = t−1
1 t−1

2 , α3 = t3 〉,
π6,2 = 〈 t1, t2, t3, α| [t2, t1] = t3n3 , αt1α

−1 = t2, αt2α
−1 = t−1

1 t−1
2 , α3 = t23 〉,

π6,3 = 〈 t1, t2, t3, α| [t2, t1] = t3n−2
3 , αt1α

−1 = t2, αt2α
−1 = t−1

1 t−1
2 , α3 = t23 〉,

π6,4 = 〈 t1, t2, t3, α| [t2, t1] = t3n−1
3 , αt1α

−1 = t2, αt2α
−1 = t−1

1 t−1
2 , α3 = t3 〉,

π7,1 = 〈 t1, t2, t3, α| [t2, t1] = t6n3 , αt1α
−1 = t1t2, αt2α

−1 = t−1
1 , α6 = t3 〉,

π7,2 = 〈 t1, t2, t3, α| [t2, t1] = t6n−2
3 , αt1α

−1 = t1t2, αt2α
−1 = t−1

1 , α6 = t3 〉,
π7,3 = 〈 t1, t2, t3, α| [t2, t1] = t6n3 , αt1α

−1 = t1t2, αt2α
−1 = t−1

1 , α6 = t53 〉,
π7,4 = 〈 t1, t2, t3, α| [t2, t1] = t6n−4

3 , αt1α
−1 = t1t2, αt2α

−1 = t−1
1 , α6 = t53 〉.

In this paper, we showed that if a finite group G acting freely on
Np with homotopically trivial translations, then either G is cyclic, or
there exist finite nonabelian groups acting freely on Np which yield or-
bit manifolds homeomorphic to N/π3 or N/π4. Note that our results
cannot be obtained directly from [2], and differ in the following two
respects. Firstly it is very hard to find a necessary and sufficient condi-
tion for being a normal nilpotent subgroup isomorphic to Γp of an almost
Bieberbach group, because of many unknown variables. But a necessary
and sufficient condition for being a normal subgroup can be obtained
using a conjugation by the second Bieberbach theorem in the case of ho-
motopically trivial translations. Second, since the finite groups acting
freely on Np in [2] are represented by generators, it is difficult to know
the groups exactly. But in this paper, we show that there exist finite
nonabelian group actions only in two classes π3, π4, and those are the
dihedral groups Dk, D2k, dicyclic groups Dic k

2
, Dick, or Gk in Theorem

3.1.
Let G be a finite group acting freely on the nilmanifold Np. Then

clearly, M = Np/G is a topological manifold, and π = π1(M) ⊂ Homeo(N )
is isomorphic to an almost Bieberbach group. Let π′ be an embedding of
π into Aff(N ). Such an embedding always exists. Since any isomorphism
between lattices extends uniquely to an automorphism of N , we may as-
sume the subgroup Γp goes to itself by the embedding π → π′ ⊂ Aff(N ).
From now on, we shall abuse the same notation Γp in Aff(N ). Then the
quotient group G′ = π′/Γp acts freely on the nilmanifold Np = N/Γp.
Moreover, M ′ = Np/G′ is an infra-nilmanifold. Thus, a finite free topo-
logical action (G,Np) gives rise to an isometric action (G′,Np) on the
nilmanifold Np. Clearly, Np/G and Np/G′ are sufficiently large, see [7,
Proposition 2]. By works of Waldhausen and Heil [6, 14], M is homeo-
morphic to M ′.
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Definition 1.1. Let groups Gi act on manifolds Mi, for i = 1, 2.
The action (G1,M1) is topologically conjugate to (G2,M2) if there exists
an isomorphism θ : G1 → G2 and a homeomorphism h : M1 → M2

such that
h(g · x) = θ(g) · h(x)

for all x ∈M1 and all g ∈ G1. When G1 = G2 and M1 = M2, topologi-
cally conjugate is the same as weakly equivariant.

For Np/G and Np/G′ being homeomorphic implies that the two ac-
tions (G,Np) and (G′,Np) are topologically conjugate. Consequently,
a finite free action (G,Np) is topologically conjugate to an isometric
action (G′,Np). Such a pair (G′,Np) is not unique. However, by the re-
sult obtained by Lee and Raymond [10], all the others are topologically
conjugate.

Definition 1.2. Let π ⊂ Aff(N ) = NoAut(N ) be an almost Bieber-
bach group, and let N1, N2 be subgroups of π. We say that (N1, π) is
affinely conjugate to (N2, π), denoted by N1 ∼ N2, if there ex-
ists an element (t, T ) ∈ Aff(N ) such that (t, T )π(t, T )−1 = π and
(t, T )N1(t, T )−1 = N2.

Our classification problem of free finite group actions (G,Np) with

π1(Np/G) ∼= π

can be solved by finding all normal nilpotent subgroups N of π each of
which is isomorphic to Γp, and classify (N, π) up to affine conjugacy.
This procedure is a purely group-theoretic problem and can be handled
by affine conjugacy.

2. Criteria for affine conjugacy

In this section, we develop a technique for finding and classifying all
possible finite group actions on the 3-dimensional nilmanifold. Let us

define ζ(x) =

1 0 −x
0 1 0
0 0 1

 , I
. Then Γp = 〈t1, t2, ζ(1/p)〉 is a lattice

of N such that [t2, t1] = ζ(1/p)p = ζ(1).
In this paper, we shall deal with the free action of a finite group G

acting on Np with homotopically trivial translations. Our situation is as
follows. Let π be an almost Bieberbach group, and N ′ be its nil-radical
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(maximal normal nilpotent subgroup). Let N be a normal nilpotent
subgroup of π. Suppose N ′/N is generated by a central element of the
nilpotent Lie group. Then we have a following diagram:

N
=−−−−→ Ny y

1 −−−−→ N ′ −−−−→ π −−−−→ Φ −−−−→ 1y y y=

1 −−−−→ Zk −−−−→ G −−−−→ Φ −−−−→ 1

Note that N ⊗ Z = N ′ ⊗ Z, where Z is the center of the nilpotent Lie
group N . In other words, N and N ′ differ only in the central direction,
which implies that the translation part of the action of G on the nil-
manifold N/N is Zk. We will classify all such pairs (π,N)’s. For an
almost Bieberbach group π, we want to find all normal subgroups N
which satisfy

(a) N is isomorphic to the standard lattice Γp,
(b) N ′/(N ′ ∩ Z(N )) = N/(N ∩ Z(N )) in N/Z(N ).

The condition (b) comes from homotopically trivial translations. It is
well known that, for any lattice Γ of N , Γ∩ (Z(N )) is a lattice of Z(N ).
Thus such an Γ fits the short exact sequence

1 −→ Z = Z(Γ) −→ Γ −→ Z2 −→ 1.

Clearly Z2 is generated by the images of {t1, t2} and Z is generated by
ζ(1/K). Therefore there exists a generating set of Γ consisting of

Γ = {t1t3u, t2t3v, [t2, t1]1/p = ζ(1/p)}.

Note that there exists a conjugation which maps Γp onto Γ by the second
Bieberbach theorem. In fact, let

J = t
− v

K
1 t

u
K
2 ,

and let µJ denote the conjugation by J . Then clearly

µJ(t1) = t1t3
u,

µJ(t2) = t2t3
v.

We denote this image by N(u, v). That is,

N(u, v) = 〈t1t3u, t2t3v, ζ(1/p)〉
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for u, v ∈ Z. Therefore, N(u, v) is the most general subgroup of N that
satisfies (a) and (b) above.

Conditions on N(u, v):
The condition ζ(1/p) ∈ π is necessary for N(u, v) to be a subgroup

of π. Since ζ(1/K) is one of the generators of π,

(1) p must divide K, say, K = kp.

Now µJ−1 will map N(u, v) onto Γp. That is,

µJ−1(t1t3
u) = t1,

µJ−1(t2t3
v) = t2,

µJ−1(t3) = t3.

We also need N(u, v) to be normal in π. Let α ∈ π be an element
of a non-trivial holonomy. From now on, we shall use the notation α̂ =
µJ−1(α) and π̂ = µJ−1(π). Then we have µα(t1t3

u), µα(t2t3
v) ∈ N(u, v).

This is equivalent to

µα̂(t1), µα̂(t2) ∈ µJ−1(N(u, v)) = Γp.

When we write them as products of ti’s, we can get

µα̂(t1) = t1
n1t2

n2(t3
k)
n3
,

µα̂(t2) = t1
m1t2

m2(t3
k)
m3
.

Since ni,mi(i = 1, 2) are integers,

(2) Both n3 and m3 are integers.

Note that

N(u+ ka, v + kb) = 〈(t1t3u)(t3
k)a, (t2t3

v)(t3
k)b, ζ(1/p)〉 = N(u, v),

where u, v take integer values 0, 1, 2, · · · , k − 1.

From the above two conditions (1) and (2), we can determine the
form of a normal subgroup N(u, v). Next we analyze when the pairs
{u, v} yield distinct α̂’s. In order to denote α̂ clearly, we rather write it
as the following form

α̂ = T · α =
(
t1
`1t2

`2t3
`3
)
· α

and look into T ∈ N .
Finally we try to determine the finite group G = π̂/Γp. It is an

extension of a cyclic group Zk by the holonomy group Φ of π, where Zk
is the quotient Z(N )∩ π̂

Z(N )∩Γp
. Note that G fits the following extension

1 −→ Zk −→ G −→ Φ −→ 1.
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For each generator of the holonomy group Φ, we analyze the action. Let
α = (a,A) ∈ N o Aut(N ), and A have order d (holonomy order of α).
Then we can write

αd = t1
d1t2

d2t3
d3 .

In particular, we will show that if there exists an element α satisfying
d3 6= 0, then G is cyclic of order d(Kp ) = dk which is generated by the

image of α̂ or α̂−1t3. (see Theorem 3.1)

3. Free actions on Np with orbit space N/π

For each almost Bieberbach group π, we list all possible N(u, v) and
corresponding α̂. In all cases, p must divide K(= kp). Recall that

t3 = [t2, t1]
1
K is a generator of π̂, and [t2, t1]

1
p = ζ(1/p) ∈ Γp. Since

[t2, t1]
1
p = ([t2, t1]

1
K )

K
p = (t3)

K
p = t3

k,

we have

Γp = 〈t1, t2, t3k〉

with [t2, t1] = (t3
k)p. We shall denote these standard generators for Γp

by si such as

s1 = t1, s2 = t2, s3 = t3
k

so that [s2, s1] = s3
p.

Let N(u, v) = 〈t1t3u, t2t3v, t3k〉 ∼= Γp be a normal subgroup of π.
Then the conjugation by J−1 maps

µJ−1(t1t3
u) = t1 = s1,

µJ−1(t2t3
v) = t2 = s2,

µJ−1(t3) = t3 = s3
1
k .

Therefore µJ−1 maps N(u, v) onto the standard Γp, and π to π̂. Thus

〈t1t3u, t2t3v, t3k〉 is normal in π if and only if Γp = 〈s1, s2, s3〉 is
normal in π̂. Using this fact, we can classify all free actions on Np with
orbit space N/π. This was done by the program Mathematica[15] and
hand-checked.
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Theorem 3.1. The groups that act on Np freely with no translations
except for homotopy-trivialities are described as follows:

Table 1

G Generator of G Np/G Conditions Conditions
on u, v on K = kp

Zk t3 = s3
p
K π1 u = 0, v = 0 n = kp

Z2k α̂ = α π2 u = 0, v = 0 2n = kp

α̂ = s1
1
p · α u = 0, v = k

2 k ∈ 2N, p > 1, 2n = kp

α̂ =
(
s1

1
p s2
− 1

p s3
− 1

2p
)
· α u = k

2 , v = k
2 k ∈ 2N, p > 1, 2n = kp

Dk t3, α̂ = α π3 u = 0, v = 0 p ∈ 2N, 2n = kp

Dic k
2

t3, α̂ =
(
s2
− 1

p s3
1
4

)
· α u = k

2 , v = 0 k ∈ 2N, p ∈ 2N, 2n = kp

D2k α̂ = α, β̂ = β π4 u = 0, v = 0 p ∈ 2N, 4n = kp

Gk α̂ =
(
s1

1
p s3
− 1

4

)
· α, β̂ = β u = 0, v = k

2 k, p ∈ 2N, 4n = kp

Dick α̂ =
(
s1

1
p s2
− 1

p s3
− 1

2p−
1
2
)
· α, u = k

2 , v = k
2 k, p ∈ 2N, 4n = kp

β̂ =
(
s2
− 1

p s3
1
4

)
· β

Z4k α̂ = α π5,1 u = 0, v = 0 4n− 2 = kp

α̂ =
(
s2
− 1

p s3
1
4p
)
· α u = k

2 , v = k
2 k ∈ 2N, 4n− 2 = kp

α̂−1t3 = s3
p
K · α−1 π5,2 u = 0, v = 0 4n = kp

α̂−1t3 =
(
s1

1
p s3

p
K−

1
4p
)
· α−1 u = k

2 , v = k
2 k ∈ 2N, p > 1, 4n = kp

α̂ = α π5,3 u = 0, v = 0 4n = kp

α̂ =
(
s2
− 1

p s3
1
4p
)
· α u = k

2 , v = k
2 k ∈ 2N, p > 1, 4n = kp

Z3k α̂ = α π6,1 u = 0, v = 0 3n = kp

α̂ =
(
s2
− 1

p s3
− 1

6 + 1
6p
)
· α u = k

3 , v = k
3 k ∈ 3N, p ≥ 2, 3n = kp

α̂ =
(
s2
− 2

p s3
− 1

3 + 2
3p
)
· α u = 2k

3 , v = 2k
3 k ∈ 3N, p ≥ 3, 3n = kp

α̂−1t3 = s3
p
K · α−1 π6,2 u = 0, v = 0 3n = kp

α̂−1t3 =
(
s1

1
p s3

p
K + 1

6−
1
6p
)
· α−1 u = k

3 , v = k
3 k ∈ 3N, p ≥ 2, 3n = kp

α̂−1t3 =
(
s1

2
p s3

p
K + 1

3−
2
3p
)
· α−1 u = 2k

3 , v = 2k
3 k ∈ 3N, p ≥ 3, 3n = kp

α̂−1t3 = s3
p
K · α−1 π6,3 u = 0, v = 0 3n− 2 = kp

α̂ = α π6,4 u = 0, v = 0 3n− 1 = kp

Z6k α̂ = α π7,1 u = 0, v = 0 6n = kp

α̂ = α π7,2 u = 0, v = 0 6n− 2 = kp

α̂−1t3 = s3
p
K · α−1 π7,3 u = 0, v = 0 6n = kp

α̂−1t3 = s3
p
K · α−1 π7,4 u = 0, v = 0 6n− 4 = kp

where D1 = Z2, D2 = Z2 × Z2, Dic1 = Z4, G2 = Z2 × Z4.
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Proof. (Type 3.) We know that

π̂3 = 〈 t1, t2, t3, α̂ | [t2, t1] = t2n3 , [t3, t1] = [t3, t2] = 1, α̂t3α̂
−1 = t3

−1,

α̂t1α̂
−1 = t1t3

−2u, α̂t2 = t−1
2 α̂t3

−n, α̂2 = t1t3
−u 〉,

α =

1 1
2 0

0 1 0
0 0 1

 , ([0
0

]
,

[
1 0
0 −1

]) .

The family (π3) is parametrized by K = 2n; K is divisible by p. Let K = kp.
Conjugations by α̂ yield

µα̂(s1) = s1
1s2

0s3
− 2pu

K ,

µα̂(s2) = s1
0s2
−1s3

p
2 ,

µα̂(s3) = s1
0s2

0s3
−1.

The normal condition of Γp in π̂3 requires that all the indices (superscripts)
in the above be integers so that − 2u

k ,
p
2 ∈ Z. Therefore we assume p is even.

Since 0 ≤ u < k, we have u = 0 or k
2 . Thus we have the following two types of

normal nilpotent subgroups :

N(0, v) = 〈 t1, t2t3v, t3k〉, N(k/2, v) = 〈 t1t3
k
2 , t2t3

v, t3
k〉.

By using

µ =

1 0 0
0 1 0
0 0 1

 , ([ v
2n
0

]
,

[
1 0
0 1

]) ∈ NAff(N )(π3),

we can show that N(0, v) ∼ N(0, 0) and N(k/2, v) ∼ N(k/2, 0). Note that

α̂ = µJ−1(α) =
(
s1

0s2
− 2u

K s3

pu
2K

)
· α,

α̂2 = s1
1s2

0s3
− pu

K = s1s3
−u

k .

Hence we only need to deal with the following two cases:

(1) When u = 0, v = 0 :

Since G = π̂3/Γp = 〈 t1, t2, t3, α̂〉/〈 s1, s2, s3〉, α̂2 = s1 and α̂t3α̂
−1 = t−1

3 ,
the finite group G = π̂3/Γp is represented by

G = 〈 t̄3, ᾱ | t̄3k = 1, ᾱ2 = 1, ᾱt̄3ᾱ
−1 = t̄3

−1
, p ∈ 2N, k ∈ N, kp = 2n〉,

which is isomorphic to the dihedral group Dk of order 2k. Note that

G is abelian ⇔ k = 1, p = 2n or k = 2, p = n ⇔ G is D1 = Z2 or D2 = Z2 × Z2.

(2) When u = k
2 , v = 0 :
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Recall that G = π̂3/Γp = 〈 t1, t2, t3, α̂〉/〈 s1, s2, s3〉. In this case, since

α̂2 = t1t3
− k

2 = s1s3
− 1

2 , we have ᾱ2 = t̄3
k
2 . So, we can induce that

G = π̂3/Γp = 〈 t̄3, ᾱ〉 and G is represented by

G = 〈 t̄3, ᾱ | t̄3k = 1, ᾱ2 = t̄3
k
2 , ᾱt̄3ᾱ

−1 = t̄3
−1
, p ∈ 2N, k ∈ 2N, kp = 2n〉.

This group is isomorphic to the dicyclic group Dic k
2

of order 2k. Note that

G = π̂3/Γp is abelian ⇔ k = 2 ⇔ G = 〈 ᾱ 〉 = Dic1 = Z4,

where ᾱ acts on Np = N/Γp by

α̂ =
(
s1

0s2
− 2u

K s3

pu
2K

)
· α.

Therefore we have the following five affinely non-conjugate actions:

D1 = Z2, D2 = Z2 × Z2, Dk(k ≥ 3), Dic1 = Z4, Dic k
2
(k ∈ 2N+ 2).

To summarize the above statements, the following table gives a complete
list of all free actions of finite groups G on Np which yield an orbit manifold
homeomorphic to N/π3.

G Conditions on u,v Conditions on K = kp Generator of G
Z2 u = 0, v = 0 k = 1, 2n = p α̂ = α

Z2 × Z2 u = 0, v = 0 k = 2, n = p ∈ 2N t3, α̂ = α

Dk u = 0, v = 0 k ≥ 3, p ∈ 2N, 2n = kp t3, α̂ = α

Z4 u = 1, v = 0 k = 2, p = n ∈ 2N α̂ =
(
s2
− 1

p s3
1
4

)
· α

Dic k
2

u = k
2 , v = 0 k ∈ 2N+ 2, p ∈ 2N, 2n = kp t3, α̂ =

(
s2
− 1

p s3
1
4

)
· α

(Type 4.) It is not hard to see that

π̂4 = 〈 t1, t2, t3, α̂, β̂ | [t2, t1] = t4n3 , [t3, t1] = [t3, t2] = [α̂, t3] = 1, β̂t3β̂
−1 = t−1

3 ,

α̂t1 = t−1
1 α̂t3

2n+2u, α̂t2 = t−1
2 α̂t3

−2n+2v, α̂2 = t3, β̂
2 = t1t3

−u,

β̂t1β
−1 = t1t3

−2u, β̂t2 = t−1
2 β̂t−2n

3 , α̂β̂ = t−1
1 t−1

2 β̂α̂t3
−(2n+1)t3

−(u+v) 〉,

α =

1 0 − 1
8n

0 1 0
0 0 1

 , ([− 1
2
− 1

2

]
,

[
−1 0
0 −1

]) ,

β =

1 1
2

1
8

0 1 1
2

0 0 1

 , ([ 0
− 1

2

]
,

[
1 0
0 −1

]) .
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The family (π4) is parametrized by K = 4n; K is divisible by p. Let K = kp.

Conjugations by α̂, β̂ yield

µα̂(s1) = s1
−1s2

0s3

p(K+4u)
2K , µβ̂(s1) = s1

1s2
0s3
− 2pu

K ,

µα̂(s2) = s1
0s2
−1s3

p(−K+4v)
2K , µβ̂(s2) = s1

0s2
−1s3

p
2 ,

µα̂(s3) = s1
0s2

0s3
1, µβ̂(s3) = s1

0s2
0s3
−1.

Since Γp is normal in π̂4, we must have 2u
k ,

2v
k ,

p
2 ∈ Z. Therefore, we

assume p is even. Since 0 ≤ u, v < k, we have u, v = 0 or k
2 . Thus we have the

following four types of normal nilpotent subgroups :

N1 = N(0, 0) = 〈 t1, t2, t3k〉, N2 = N(0, k/2) = 〈 t1, t2t3
k
2 , t3

k〉,

N3 = N(k/2, 0) = 〈 t1t3
k
2 , t2, t3

k〉, N4 = N(k/2, k/2) = 〈 t1t3
k
2 , t2t3

k
2 , t3

k〉.

It needs some calculations to obtain that the normalizer NAff(N )(π4) is of the
form

µ =

1 x z
0 1 y
0 0 1

 , ([u
v

]
,

[
a b
c d

]),
where 2x, 2y ∈ Z, z ∈ R, and

([
u
v

]
,

[
a b
c d

])
is one of the following eight

values([
0
0

]
,

[
1 0
0 1

])
,

([
− 1

2
− 1

2

]
,

[
−1 0
0 −1

])
,

([
0
− 1

2

]
,

[
1 0
0 −1

])
,

([
− 1

2
0

]
,

[
−1 0
0 1

])
,([

0
0

]
,

[
0 1
1 0

])
,

([
− 1

2
− 1

2

]
,

[
0 −1
−1 0

])
,

([
0
− 1

2

]
,

[
0 1
−1 0

])
,

([
− 1

2
0

]
,

[
0 −1
1 0

])
.

By using

µ =

1 0 1
4K

0 1 0
0 0 1

 , ([0
0

]
,

[
0 1
1 0

]) ∈ NAff(N )(π4),

we can show that N(0, k/2) ∼ N(k/2, 0).

Next, assume that N1 is affinely conjugate to N2. Then there exists an
element

µ1 =

1 x z
0 1 y
0 0 1

 , ([u
v

]
,

[
a b
c d

]) ∈ NAff(N )(π4)

which can conjugate N1 onto N2. From this we must have x = −u ± 1
2p .

However, since u = 0,− 1
2 and p ∈ 2N, 2x = −2u ± 1

p is not an integer. This

is a contradiction. Thus N1 is not affinely conjugate to N2. Similarly, we can
show that N1 � N4 and N2 � N4.
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Note that

α̂ =
(
s1

2v
K s2

− 2u
K s3

− p(4uv+K(u+v))

2K2
)
· α,

α̂2 = s1
0s2

0s3

p
K = s3

1
k = t3,

β̂ =
(
s1

0s2
− 2u

K s3

pu
2K

)
· β,

β̂2 = s1
1s2

0s3
− pu

K = s1s3
−u

k .

Hence, we only need to deal with the following three cases:

(1) When u = 0, v = 0 :

Since α̂2 = t3 = s3
1
k , β̂2 = s1, α̂t3α̂

−1 = t3, and α̂β̂ = t1
−1t2

−1β̂α̂t3
−(2n+1),

we have α̂β̂ = t1
−1t2

−1t3
(2n+1)β̂α̂. So, by using kp = 4n and p ∈ 2N, we can

obtain that

ᾱβ̄ = t̄3β̄ᾱ ⇔ β̄ᾱβ̄−1 = ᾱ−1.

Therefore the finite group G = π̂4/Γp = 〈 t1, t2, t3, α̂, β̂〉/〈 s1, s2, s3〉 is rep-
resented by

G = 〈 ᾱ, β̄ | ᾱ2k = 1, β̄2 = 1, β̄ᾱβ̄−1 = ᾱ−1, p ∈ 2N, k ∈ N, kp = 4n〉,
which is isomorphic to the dihedral group D2k of order 4k. Note that

G is abelian ⇔ k = 1, p = 4n ⇔ G is D2 = Z2 × Z2.

(2) When u = 0, v = k
2 :

In this case, since α̂2 = t3 = s3
1
k , β̂2 = s1, α̂t3α̂

−1 = t3, kp = 4n, and
p ∈ 2N, using the following relations,

α̂β̂ = t−1
1 t−1

2 β̂α̂t
−(2n+1)
3 t3

− k
2 = t−1

1 t−1
2 t3

(2n+1)t3
k
2 β̂α̂ = t−1

1 t−1
2 t3

2nα̂2α̂kβ̂α̂,

we can induce that ᾱβ̄ = ᾱk+2β̄ᾱ⇔ ᾱ = ᾱk+2β̄ᾱβ̄ ⇔ β̄ᾱβ̄ = ᾱ−k−1 = ᾱk−1.

Therefore the finite group G = π̂4/Γp = 〈 t1, t2, t3, α̂, β̂〉/〈 s1, s2, s3〉 is rep-
resented by

Gk := π̂4/Γp = 〈 ᾱ, β̄ | ᾱ2k = 1, β̄2 = 1, β̄ᾱβ̄ = ᾱk−1, p, k ∈ 2N〉.
In particular, if k = 2m−2, then Gk is isomorphic to the semidihedral group
SD2m of order 2m. Note that Gk is abelian ⇔ k = 2 ⇔ G2 = Z2 × Z4.

(3) When u = k
2 , v = k

2 :

Since α̂2 = t3 = s3
1
k , β̂2 = t1t3

− k
2 , α̂t3α̂

−1 = t3, kp = 4n, and p ∈ 2N, from
the following relations,

α̂β̂ = t−1
1 t−1

2 β̂α̂t
−(2n+1)
3 t3

−k = t−1
1 t−1

2 t3
2nt3

kβ̂α̂t3
−1 = t−1

1 t−1
2 t3

2nt3
kβ̂α̂−1,

we obtain that ᾱβ̄ = β̄ᾱ−1 ⇔ ᾱβ̄ᾱ = β̄ ⇔ β̄ᾱβ̄−1 = ᾱ−1.

Therefore the finite group G = π̂4/Γp = 〈 t1, t2, t3, α̂, β̂〉/〈 s1, s2, s3〉 is rep-
resented by

G = π̂4/Γp = 〈 ᾱ, β̄ | ᾱ2k = 1, β̄2 = ᾱk, β̄ᾱβ̄−1 = ᾱ−1, p, k ∈ 2N, kp = 4n〉.
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This group is isomorphic to the dicyclic group Dick of order 4k. Since k ∈ 2N,
G = Dick is nonabelian. The generators ᾱ and β̄ act on Np = N/Γp by

α̂ =
(
s1

2v
K s2

− 2u
K s3

− p(4uv+K(u+v))

2K2
)
· α, β̂ =

(
s1

0s2
− 2u

K s3

pu
2K

)
· β.

(Type 5.) Note that

π̂5,2 = 〈 t1, t2, t3, α̂ | [t2, t1] = t4n3 , α̂4 = t3
3, α̂t1α̂

−1 = t2t3
u−v,

α̂t2α̂
−1 = t−1

1 t3
u+v 〉,

α =

1 0 − 3
16n

0 1 0
0 0 1

 , ([0
0

]
,

[
0 −1
1 0

]) .

The family (π5,2) is parametrized by K = 4n; K is divisible by p. Let
K = kp. Conjugations by α̂ yield

µα̂(s1) = s1
0s2

1s3

p(u−v)
K ,

µα̂(s2) = s1
−1s2

0s3

p(u+v)
K ,

µα̂(s3) = s1
0s2

0s3
1.

By the normality of Γp in π̂5,2, we must have p(u−v)
K , p(u+v)

K ∈ Z. Since

0 ≤ u, v < k, we have u(= v) = 0 or k
2 . Thus we have the following two normal

nilpotent subgroups:

N1 = N(0, 0) = 〈 t1, t2, t3k〉, N4 = N(k/2, k/2) = 〈 t1t3
k
2 , t2t3

k
2 , t3

k〉.

It is not hard to seee that the normalizer NAff(N )(π5,i) is of the form

µ =

1 x z
0 1 y
0 0 1

 , ([0
0

]
,

[
a b
c d

]),
where x+ y, x− y ∈ Z, z ∈ R, and x2 must be a multiple of 1

K , and[
a b
c d

]
=

[
1 0
0 1

]
,

[
−1 0
0 −1

]
,

[
0 −1
1 0

]
,

[
0 1
−1 0

]
,[

1 0
0 −1

]
,

[
−1 0
0 1

]
,

[
0 −1
−1 0

]
,

[
0 1
1 0

]
.

If p = 1, then it is easy to show that N1 ∼ N4 by using

µ =

1 − 1
2 0

0 1 1
2

0 0 1

 , ([0
0

]
,

[
1 0
0 1

]) ∈ NAff(N )(π5,2).
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Let p > 1. If there exists an element

µ =

1 x z
0 1 y
0 0 1

 , ([0
0

]
,

[
a b
c d

]) ∈ NAff(N )(π5,2)

which can conjugate N1 onto N4, then we obtain that x = ± 1
2p and y = ± 1

2p .

So, x+ y /∈ Z or x− y /∈ Z. This is a contraction. Therefore N1 is not affinely
conjugate to N4.

Note that

α̂ =
(
s1

v−u
K s2

−u+v
K s3

pu2

K2
)
· α,

α̂4 = s1
0s2

0s3

3p
K = s3

3
k .

Also, since α̂ = (α̂−1t3)
3

and t3 = (α̂−1t3)
4
, for any u, v, we have (α̂−1t3)

4k
=

s3 ∈ Γp. Hence,

G = π̂5,2/Γp = Z4k = 〈ᾱ−1t̄3 | (ᾱ−1t̄3)
4k

= 1〉,

where ᾱ−1t̄3 acts on Np = N/Γp by

α̂−1t3 =
(
s1

u+v
K s2

v−u
K s3

p
K−

pu2

K2
)
· α−1,

for (u, v) = (0, 0), (k/2, k/2).

(Type 6.) Some calculations show that

π̂6,1 = 〈 t1, t2, t3, α̂ | [t2, t1] = t3n3 , α̂3 = t3, α̂t1α̂
−1 = t2t3

u−v, α̂t2α̂
−1 = t−1

1 t−1
2 t3

u+2v 〉,

α =

1 0 − 1
9n

0 1 0
0 0 1

 , ([0
1
2

]
,

[
0 −1
1 −1

]) .

The family (π6,1) is parametrized by K = 3n; K is divisible by p. Let
K = kp. Conjugations by α̂ yield

µα̂(s1) = s1
0s2

1s3

p(u−v)
K ,

µα̂(s2) = s1
−1s2

−1s3

p(u+2v)
K ,

µα̂(s3) = s1
0s2

0s3
1.

By the normality of Γp in π̂6,1, we have p(u−v)
K , p(u+2v)

K ∈ Z. Since 0 ≤ u, v < k,

we can conclude that u(= v) = 0, k
3 , or 2k

3 . Thus we have the following three
types of normal nilpotent subgroups :

N1 = N(0, 0) = 〈 t1, t2, t3k〉,

N2 = N(k/3, k/3) = 〈 t1t3
k
3 , t2t3

k
3 , t3

k〉,

N3 = N(2k/3, 2k/3) = 〈 t1t3
2k
3 , t2t3

2k
3 , t3

k〉.
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By calculation, we obtain that the normalizer NAff(N )(π6,i) is of the form

µ =

1 x z
0 1 y
0 0 1

 , ([0
0

]
,

[
a b
c d

]),
where z ∈ R, and if ad− bc = 1, then x+ y ∈ Z, −x+ 2y ∈ Z, and([
u
v

]
,

[
a b
c d

])
=

([
− 1

3
1
3

]
,

[
−1 0
0 −1

])
,

([
− 1

2
0

]
,

[
−1 1
−1 0

])
,

([
− 1

3
− 1

6

]
,

[
0 1
−1 1

])
,([

0
1
2

]
,

[
0 −1
1 −1

])
,

([
0
0

]
,

[
1 0
0 1

])
,

([
1
6
1
3

]
,

[
1 −1
1 0

])
;

and if ad− bc = −1, then x+ y ∈ Z, 2x− y ∈ Z, and([
u
v

]
,

[
a b
c d

])
=

([
− 1

3
1
3

]
,

[
0 1
1 0

])
,

([
− 1

2
0

]
,

[
−1 1
0 1

])
,

([
− 1

3
− 1

6

]
,

[
−1 0
−1 1

])
,([

0
1
2

]
,

[
1 0
1 −1

])
,

([
0
0

]
,

[
0 −1
−1 0

])
,

([
1
6
1
3

]
,

[
1 −1
0 −1

])
.

By using µ =

1 − 1
3 0

0 1 1
3

0 0 1

 , ([0
0

]
,

[
1 0
0 1

]) ∈ NAff(N )(π6,i), we can

show that if p = 1, then N1 ∼ N2 ∼ N3 and if p = 2, then N1 ∼ N3. Let p ≥ 2.
In this case, we will show that N1 is not affinely conjugate to N2. Assume that
if there exists

µ =

1 x z
0 1 y
0 0 1

 , ([u
v

]
,

[
a b
c d

]) ∈ NAff(N )(π6,i)

which can conjugate N1 onto N2, then µ is one of the following two types:

(1) when ad− bc = 1,1 − 1
3p z

0 1 1
3p

0 0 1

 ,([0
0

]
,

[
1 0
0 1

]) ,

1 −1+p
3p z

0 1 1−p
3p

0 0 1

 ,([− 1
3

1
3

]
,

[
−1 0
0 −1

]).

(2) when ad− bc = −1,1 −1+p
3p z

0 1 1−p
3p

0 0 1

 ,([− 1
3

1
3

]
,

[
0 1
1 0

]) ,

1 − 1
3p z

0 1 1
3p

0 0 1

 ,([0
0

]
,

[
0 −1
−1 0

]).

However, since p ≥ 2, if ad − bc = 1, then −x + 2y = 1
p ,

1
p − 1 /∈ Z, and

if ad − bc = −1, then 2x − y = − 1
p + 1,− 1

p /∈ Z. This is a contradiction.

Therefore there does not exist µ ∈ NAff(N )(π6,i) which conjugates N1 onto N2.



Free actions on 3-dimensional nilmanifolds with homotopically trivial translations 129

Similarly we can prove that if p ≥ 3, then N1 is not affinely conjugate to N3,
and if p ≥ 2, then N2 is not affinely conjugate to N3. So, we can obtain that

p = 1 =⇒ N1 ∼ N2 ∼ N3,

p = 2 =⇒ N1 ∼ N3, N1 � N2,

p ≥ 3 =⇒ N1 � N2, N1 � N3, N2 � N3.

Note that

α̂ =
(
s1

v−u
K s2

− 2u+v
K s3

p(−Ku+3u2)

2K2
)
· α,

α̂3 = s1
0s2

0s3

p
K = s3

1
k .

For any u, v ∈ Z, we have (α̂3)k = s3 ∈ Γp. Therefore we can get

G = π̂6,1/Γp = Z3k = 〈ᾱ | ᾱ3k = 1〉,
where ᾱ acts on Np = N/Γp by

α̂ =
(
s1

v−u
K s2

− 2u+v
K s3

p(−Ku+3u2)

2K2
)
· α,

for (u, v) = (0, 0), (k/3, k/3), (2k/3, 2k/3).

Next we deal with the case of

π̂6,3 = 〈 t1, t2, t3, α̂ | [t2, t1] = t3n−2
3 , α̂3 = t23, α̂t1α̂

−1 = t2t3
u−v,

α̂t2α̂
−1 = t−1

1 t−1
2 t3

u+2v 〉,

α =

1 0 − 2
9n−6

0 1 0
0 0 1

 , ([0
1
2

]
,

[
0 −1
1 −1

]) .

The family (π6,3) is parametrized by K = 3n − 2; K is divisible by p. Let
K = kp. Conjugations by α̂ yield

µα̂(s1) = s1
0s2

1s3

p(u−v)
K ,

µα̂(s2) = s1
−1s2

−1s3

p(u+2v)
K ,

µα̂(s3) = s1
0s2

0s3
1.

Since Γp is normal in π̂6,3, we must have p(u−v)
K , p(u+2v)

K ∈ Z. Since 0 ≤
u, v < k, we can conclude that u(= v) = 0, k

3 , or 2k
3 . In this case, since

K = kp = 3n − 2, k
3 = 3n−2

3p and 2k
3 = 2(3n−2)

3p cannot be integers. Thus we

have only one normal nilpotent subgroup

N(0, 0) = 〈 t1, t2, t3k〉.
Note that

α̂ =
(
s1

v−u
K s2

− 2u+v
K s3

p(−Ku+3u2)

2K2
)
· α,

α̂3 = s1
0s2

0s3

2p
K = s3

2
k .
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Also, since α̂ = (α̂−1t3)
2

and t3 = (α̂−1t3)
3

for any u, v, we have

(α̂−1t3)
3k

= s3 ∈ Γp. Hence we obtain

G = π̂6,3/Γp = Z3k = 〈ᾱ−1t̄3 | (ᾱ−1t̄3)
3k

= 1〉,

where ᾱ−1t̄3 acts on Np = N/Γp by

α̂−1t3 = s3

p
K · α−1.

The other cases can be done similarly.

According to the Theorem 3.1, if p = 1, then we can obtain the
following result which is the same as the Theorem 3.3 of [3].

Corollary 3.2. SupposeG is a finite group acting freely on the stan-
dard nilmanifoldN1 with no translations except for homotopy-trivialities.
Then G is cyclic, and it is one of the following.

Table 2

G Generator of G N1/G Conditions on u, v Conditions on K = kp

Zk t3 = s3
1
K π1 u = 0, v = 0 n = k = K

Z2k α̂ = α π2 u = 0, v = 0 2n = k = K

Z4k α̂ = α π5,1 u = 0, v = 0 4n− 2 = k = K

α̂ =
(
s2
−1s3

1
4

)
· α u = k

2 , v = k
2 4n− 2 = k = K

α̂−1t3 = s3
1
K · α−1 π5,2 u = 0, v = 0 4n = k = K

α̂ = α π5,3 u = 0, v = 0 4n = k = K

Z3k α̂ = α π6,1 u = 0, v = 0 3n = k = K

α̂−1t3 = s3
1
K · α−1 π6,2 u = 0, v = 0 3n = k = K

α̂−1t3 = s3
1
K · α−1 π6,3 u = 0, v = 0 3n− 2 = k = K

α̂ = α π6,4 u = 0, v = 0 3n− 1 = k = K

Z6k α̂ = α π7,1 u = 0, v = 0 6n = k = K

α̂ = α π7,2 u = 0, v = 0 6n− 2 = k = K

α̂−1t3 = s3
1
K · α−1 π7,3 u = 0, v = 0 6n = k = K

α̂−1t3 = s3
1
K · α−1 π7,4 u = 0, v = 0 6n− 4 = k = K

In [1, 3], any finite group acting freely on the nilmanifold Np is
abelian. However, as we can see in the following example, if a finite
group acts freely on Np with homotopically trivial translations, there
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exist nonabelian groups which yield orbit manifolds homeomorphic to
N/π3 or N/π4.

Example 3.3. Let G be a finite group of order 16 acting freely on
Np(p ∈ 2N) with homotopically trivial translations. Then G is one of
the following four groups:

Z16, dihedral group D8, dicyclic group Dic4,
semidihedral group SD16 = G4.

In each case, non-affinely conjugate actions are as follows:

• Z16: one in π1, three in π2, two in π5,i(i = 2, 3).
• D8: one in π3(k = 8), one in π4(k = 4).
• Dic4: one in π3(k = 8), one in π4(k = 4).
• SD16: one in π4.

Acknowledgement. This study was financially supported by Research
Fund of Chungnam National University.

References

[1] D. Choi and J. K. Shin, Free actions of finite abelian groups on 3-dimensional
nilmanifolds, J. Korean Math. Soc., 42 (2005), no. 4, 795–826.

[2] D. H. Koo, M. S. Oh, and J. K. Shin, Classification of free actions of finite
groups on 3-dimensional nilmanifolds, J. Korean Math. Soc., 54 (2017), no. 5,
1411–1440.

[3] H. Y. Chu and J. K. Shin, Free actions of finite groups on the 3-dimensional
nilmanifold, Topology Appl., 144 (2004), 255–270.

[4] K. Dekimpe, P. Igodt, S. Kim, and K. B. Lee, Affine structures for closed 3-
dimensional manifolds with nil-geometry, Quarterly J. Math. Oxford, 46 (1995),
no. 2, 141–167.

[5] K. Y. Ha, J. H. Jo, S. W. Kim, and J. B. Lee, Classification of free actions of
finite groups on the 3-torus, Topology Appl., 121 (2002), no. 3, 469–507.

[6] W. Heil, On P 2-irreducible 3-manifolds, Bull. Amer. Math. Soc., 75 (1969),
772–775.

[7] W. Heil, Almost sufficiently large Seifert fiber spaces, Michigan Math. J., 20
(1973), 217-223.

[8] J. Hempel, Free cyclic actions of S1 × S1 × S1, Proc. Amer. Math. Soc., 48
(1975), no. 1, 221–227.

[9] K. B. Lee, There are only finitely many infra-nilmanifolds under each manifold,
Quarterly J. Math. Oxford, 39 (1988), no. 2, 61–66.

[10] K. B. Lee and F. Raymond, Rigidity of almost crystallographic groups, Contem-
porary Math., 44 (1985), 73–78.

[11] K. B. Lee, J. K. Shin, and Y. Shoji, Free actions of finite abelian groups on the
3-Torus, Topology Appl., 53 (1993), 153–175.

http://koreascience.or.kr/article/JAKO200504840680440.page
http://www.ndsl.kr/ndsl/commons/util/ndslOriginalView.do?dbt=JAKO&cn=JAKO201725864427053&oCn=JAKO201725864427053&pageCode=PG04&journal=NJOU00034257
https://www.sciencedirect.com/science/article/pii/S0166864104001336
https://academic.oup.com/qjmath/article-abstract/46/2/141/1552702?redirectedFrom=PDF
https://www.sciencedirect.com/science/article/pii/S0166864101000906
https://www.ams.org/journals/bull/1969-75-04/S0002-9904-1969-12283-4/home.html
https://projecteuclid.org/euclid.mmj/1029001101
https://www.jstor.org/stable/2040721?origin=crossref#metadata_info_tab_contents
https://academic.oup.com/qjmath/article-abstract/39/1/61/1607955?redirectedFrom=PDF
https://www.researchgate.net/publication/248672655_Rigidity_of_almost_crystallographic_groups
https://www.sciencedirect.com/science/article/pii/016686419390134Y


132 Daehwan Koo, Eunmi Park, and Joonkook Shin

[12] P. Orlik, Seifert Manifolds, Lecture Notes in Math., 291, Springer-Verlag,
Berlin, 1972.

[13] P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc., 15 (1983),
401–489.

[14] F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of
Math., 87 (1968), no. 2, 56–88.

[15] S. Wolfram, Mathematica, Wolfram Research, 1993.

*
Daejeon Science High School for the Gifted
Daejeon, 34142, Korea
E-mail : dhkoo2011@gmail.com

**
Daejeon Foreign Language High School
Daejeon, 35280, Korea
E-mail : pem0104@naver.com

***
Department of Mathematics Education
Chungnam National University,
Daejeon, 34134, Korea
E-mail : jkshin@cnu.ac.kr

https://www.springer.com/gp/book/9783540060147
https://homepages.warwick.ac.uk/~masgar/Teach/2012_MA4J2/geometry.pdf
https://www.jstor.org/stable/1970594?seq=1#metadata_info_tab_contents

