References
- D. Choi and J. K. Shin, Free actions of finite abelian groups on 3-dimensional nilmanifolds, J. Korean Math. Soc. 42 (2005), no. 4, 795-826. https://doi.org/10.4134/JKMS.2005.42.4.795
- H. Y. Chu and J. K. Shin, Free actions of finite groups on the 3-dimensional nilmanifold, Topology Appl. 144 (2004), no. 1-3, 255-270. https://doi.org/10.1016/j.topol.2004.05.006
- K. Dekimpe, P. Igodt, S. Kim, and K. B. Lee, Affine structures for closed 3-dimensional manifolds with nil-geometry, Quart. J. Math. Oxford Ser. (2) 46 (1995), no. 182, 141-167. https://doi.org/10.1093/qmath/46.2.141
- K. Y. Ha, J. H. Jo, S. W. Kim, and J. B. Lee, Classification of free actions of finite groups on the 3-torus, Topology Appl. 121 (2002), no. 3, 469-507. https://doi.org/10.1016/S0166-8641(01)00090-6
-
W. Heil, On
$P^2$ -irreducible 3-manifolds, Bull. Amer. Math. Soc. 75 (1969), 772-775. https://doi.org/10.1090/S0002-9904-1969-12283-4 - W. Heil, Almost sufficiently large Seifert fiber spaces, Michigan Math. J. 20 (1973), 217-223. https://doi.org/10.1307/mmj/1029001101
-
J. Hempel, Free cyclic actions of
$S^1{\times}S^1{\times}S^1$ , Proc. Amer. Math. Soc. 48 (1975), no. 1, 221-227. https://doi.org/10.1090/S0002-9939-1975-0362312-5 - K. B. Lee, There are only finitely many infra-nilmanifolds under each manifold, Quart. J. Math. Oxford Ser. (2) 39 (1988), no. 153, 61-66. https://doi.org/10.1093/qmath/39.1.61
- K. B. Lee and F. Raymond, Rigidity of almost crystallographic groups, Combinatorial methods in topology and algebraic geometry (Rochester, N.Y., 1982), 73-78, Contemp. Math., 44, Amer. Math. Soc., Providence, RI, 1985.
- K. B. Lee, J. K. Shin, and Y. Shoji, Free actions of finite abelian groups on the 3-torus, Topology Appl. 53 (1993), no. 2, 153-175. https://doi.org/10.1016/0166-8641(93)90134-Y
- M. S. Oh and J. K. Shin, Free actions on the 3-dimensional nilmanifold, J. Chungcheong Math. Soc. 20 (2007), no. 3, 223-230.
- P. Orlik, Seifert Manifolds, Lecture Notes in Math. 291, Springer-Verlag, Berlin, 1972.
- P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), no. 5, 401-487. https://doi.org/10.1112/blms/15.5.401
- J. K. Shin, Isometry groups of unimodular simply connected 3-dimensional Lie groups, Geom. Dedicata 65 (1997), no. 3, 267-290. https://doi.org/10.1023/A:1004957320982
- J. K. Shin, Free actions of finite groups on the 3-dimensional nilmanifold for Type 1, J. Chungcheong Math. Soc. 19 (2006), no. 4, 437-443.
- F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. 87 (1968), no. 2, 56-88. https://doi.org/10.2307/1970594
- S. Wolfram, Mathematica, Wolfram Research, 1993.