DOI QR코드

DOI QR Code

CLASSIFICATION OF FREE ACTIONS OF FINITE GROUPS ON 3-DIMENSIONAL NILMANIFOLDS

  • Koo, Daehwan (Daejeon Science High School for the Gifted) ;
  • Oh, Myungsung (Department of Mathematics Education Chungnam National University) ;
  • Shin, Joonkook (Department of Mathematics Education Chungnam National University)
  • Received : 2016.05.31
  • Accepted : 2017.07.03
  • Published : 2017.09.01

Abstract

We study free actions of finite groups on 3-dimensional nil-manifolds with the first homology ${\mathbb{Z}}^2{\oplus}{\mathbb{Z}}_p$. By the works of Bieberbach and Waldhausen, this classification problem is reduced to classifying all normal nilpotent subgroups of almost Bieberbach groups of finite index, up to affine conjugacy.

Keywords

References

  1. D. Choi and J. K. Shin, Free actions of finite abelian groups on 3-dimensional nilmanifolds, J. Korean Math. Soc. 42 (2005), no. 4, 795-826. https://doi.org/10.4134/JKMS.2005.42.4.795
  2. H. Y. Chu and J. K. Shin, Free actions of finite groups on the 3-dimensional nilmanifold, Topology Appl. 144 (2004), no. 1-3, 255-270. https://doi.org/10.1016/j.topol.2004.05.006
  3. K. Dekimpe, P. Igodt, S. Kim, and K. B. Lee, Affine structures for closed 3-dimensional manifolds with nil-geometry, Quart. J. Math. Oxford Ser. (2) 46 (1995), no. 182, 141-167. https://doi.org/10.1093/qmath/46.2.141
  4. K. Y. Ha, J. H. Jo, S. W. Kim, and J. B. Lee, Classification of free actions of finite groups on the 3-torus, Topology Appl. 121 (2002), no. 3, 469-507. https://doi.org/10.1016/S0166-8641(01)00090-6
  5. W. Heil, On $P^2$-irreducible 3-manifolds, Bull. Amer. Math. Soc. 75 (1969), 772-775. https://doi.org/10.1090/S0002-9904-1969-12283-4
  6. W. Heil, Almost sufficiently large Seifert fiber spaces, Michigan Math. J. 20 (1973), 217-223. https://doi.org/10.1307/mmj/1029001101
  7. J. Hempel, Free cyclic actions of $S^1{\times}S^1{\times}S^1$, Proc. Amer. Math. Soc. 48 (1975), no. 1, 221-227. https://doi.org/10.1090/S0002-9939-1975-0362312-5
  8. K. B. Lee, There are only finitely many infra-nilmanifolds under each manifold, Quart. J. Math. Oxford Ser. (2) 39 (1988), no. 153, 61-66. https://doi.org/10.1093/qmath/39.1.61
  9. K. B. Lee and F. Raymond, Rigidity of almost crystallographic groups, Combinatorial methods in topology and algebraic geometry (Rochester, N.Y., 1982), 73-78, Contemp. Math., 44, Amer. Math. Soc., Providence, RI, 1985.
  10. K. B. Lee, J. K. Shin, and Y. Shoji, Free actions of finite abelian groups on the 3-torus, Topology Appl. 53 (1993), no. 2, 153-175. https://doi.org/10.1016/0166-8641(93)90134-Y
  11. M. S. Oh and J. K. Shin, Free actions on the 3-dimensional nilmanifold, J. Chungcheong Math. Soc. 20 (2007), no. 3, 223-230.
  12. P. Orlik, Seifert Manifolds, Lecture Notes in Math. 291, Springer-Verlag, Berlin, 1972.
  13. P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), no. 5, 401-487. https://doi.org/10.1112/blms/15.5.401
  14. J. K. Shin, Isometry groups of unimodular simply connected 3-dimensional Lie groups, Geom. Dedicata 65 (1997), no. 3, 267-290. https://doi.org/10.1023/A:1004957320982
  15. J. K. Shin, Free actions of finite groups on the 3-dimensional nilmanifold for Type 1, J. Chungcheong Math. Soc. 19 (2006), no. 4, 437-443.
  16. F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. 87 (1968), no. 2, 56-88. https://doi.org/10.2307/1970594
  17. S. Wolfram, Mathematica, Wolfram Research, 1993.