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Abstract. In two previous papers the author presented a general construction of finite,

fiber- and orientation-preserving group actions on orientable Seifert manifolds. In this

paper we restrict our attention to elliptic 3-manifolds. For illustration of our methods a

constructive proof is given that orientation-reversing and fiber-preserving diffeomorphisms

of Seifert manifolds do not exist for nonzero Euler class, in particular elliptic 3-manifolds.

Each type of elliptic 3-manifold is then considered and the possible group actions that

fit the given construction. This is shown to be all but a few cases that have been con-

sidered elsewhere. Finally, a presentation for the quotient space under such an action is

constructed and a specific example is generated.

1. Introduction

1.1. Discussion of results

In previous papers [8] and [9] we considered orientable Seifert manifolds and
the possible finite groups that can act fiber- and orientation-preservingly.

The main results in those papers established that firstly:

Theorem 1.1. Let M be a closed, compact, and orientable Seifert 3-manifold that
fibers over an orientable base space. Let φ : G→ Diff fp

+ (M) be a finite group action
on M such that the obstruction class can expressed as

b =

m∑
i=1

(bi ·#Orbφ(αi))

for a collection of fibers {α1, . . . , αm} and integers {b1, . . . , bm}. Then φ is an
extended product action.
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Where an extended product action is intuitively a product action on an ori-
entable surface with boundary cross S1 extended across Dehn fillings of the bound-
ary tori.

Secondly, it was shown that:

Corollary 1.2. Suppose that φ : G → Diff(M) is a finite group action on an
orientable Seifert manifold with a non-orientable base space. Then provided that the
unique lifted group action φ̃ : G→ Diff(M̃) satisfies the obstruction condition, G is
isomorphic to a subgroup of Z2×H where H is a finite group that acts orientation-
preservingly on the orientable base space of M̃ .

These two results will allow us to consider the elliptic 3-manifolds in particular
and present the possible finite, fiber- and orientation-preserving groups that can act
on them.

We then present a proof that all finite, fiber-preserving actions on Seifert man-
ifolds with non-zero Euler class must be orientation-preserving by using our partic-
ular construction and in particular apply this to elliptic manifolds.

Finally, we consider the quotient orbifolds that will arise under the given actions
and present a thorough example of one such action.

1.2. Preliminary definitions

Throughout we consider M to be an oriented smooth manifold of dimension
3 and without boundary. G is always assumed to be a finite group. We denote
Diff(M) as the group of self-diffeomorphisms of M , and then define a G-action on
M as an injection φ : G → Diff(M). We use the notation Diff+(M) for the group
of orientation-preserving self-diffeomorphisms of M .

M is further assumed to be an orientable Seifert-fibered manifold. That is, M
can be decomposed into disjoint fibers where each fiber is a simple closed curve and
each fiber has a fibered neighborhood which can be mapped under a fiber-preserving
map onto a solid fibered torus.

A Seifert bundle is a Seifert manifoldM along with a continuous map p :M → B
where p identifies each fiber to a point. For clarity, we denote the underlying space
of B as BU .

We use the normalized notation (g, ϵ|(q1, p1), . . . , (qn, pn), (1, b)) to indicate an
orientable Seifert manifold with normalized Seifert invariants (q1, p1), . . . , (qn, pn),
obstruction class b, and ϵ = o1 if the base space is orientable and ϵ = n2 is the base
space is not orientable.

The Euler class of a Seifert manifold with normalized Seifert manifold is given
by e = −(b +

∑n
i=1

pi

qi
) and an elliptic Seifert manifold is such that e = 0 and the

base orbifold has positive Euler characteristic.
We say a G-action is fiber-preserving if for any fiber γ and any g ∈ G, φ(g)(γ)

is some fiber of M . We use the notation Diff fp(M) for the group of fiber-preserving
self-diffeomorphisms of M (given some Seifert fibration). Given a fiber-preserving
G-action, there is an induced action φBU

: GBU
→ Diff(BU ) on the underlying

space BU of the base space B.
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Given a finite action φ : G → Diff fp(M), we define the orbit number of a fiber
γ under the action to be #Orbφ(γ) = #{α|φ(g)(γ) = α for some g ∈ G}.

If we have a manifold M , then a product structure on M is a diffeomorphism
k : A×B →M for some manifolds A and B. [6] If a Seifert-fibered manifoldM has
a product structure k : S1 × F → M for some surface F and k(S1 × {x}) are the
fibers of M for each x ∈ F , then we say that k : S1 × F →M is a fibering product
structure of M .

Given that the first homology group (equivalently the first fundamental group)
of a torus is Z × Z generated by two elements represented by any two nontrivial
loops that cross at a single point, we can use the meridian-longitude framing from a
product structure as representatives of two generators. If we have a diffeomorphism
f : T1 → T2 and product structures ki : S1 × S1 → Ti, then we can express the
induced map on the first homology groups by a matrix that uses bases for H1(Ti)
derived from the meridian-longitude framings that arise from ki : S1 × S1 → Ti.

We denote this matrix as

[
a11 a12
a21 a22

]k1

k2

.

We say that a G-action φ : G→ Diff(A×B) is a product action if for each g ∈ G,
the diffeomorphism φ(g) : A×B → A×B can be expressed as (φ1(g), φ2(g)) where
φ1(g) : A → A and φ2(g) : B → B. Here φ1 : G → Diff(A) and φ2 : G → Diff(B)
are not necessarily injections.

Given an action φ : G → Diff(M) and a product structure k : A × B → M ,
we say that φ leaves the product structure k : A × B → M invariant if ψ(g) =
k−1 ◦ φ(g) ◦ k defines a product action ψ : G→ Diff(A×B).

Suppose that we now have a fibering product structure k : S1 × F → M . We
then say that each boundary torus is positively oriented if the fibers are given an
arbitrary orientation and then each boundary component of k({u} ×F ) is oriented
by taking the normal vector to the surface according the orientation of the fibers.

We consider two particular types of 3-orbifold. We define the solid torus with
exceptional core V (k) to be a solid torus with an exceptional set of order k running
along the core loop of the solid torus. We define the Conway ball B(k) to be a ball
with exceptional set consisting of two arcs of order two joined by an arc of order k
according to Figure 1 below:

Figure 1: A solid torus V (k) and Conway ball B(k)
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2. Preliminary Results

We begin with some preliminary results that we will use in the next section
regarding orientation-reversing diffeomorphisms.

Lemma 2.1. Let F be an orientable surface with boundary. Let the boundary be
positively oriented according to some orientation of F and f : F → F be a diffeo-
morphism. Then f is orientation-preserving on F if and only if f is orientation-
preserving between some pair of boundary components.

Proof. In a regular neighborhood of two exchanged boundary components (they
may be the same), the diffeomorphism is either a reflection or a rotation (given pa-
rameterizations of the annuli). If it is a reflection, the orientation on the boundary is
reversed and and the orientation on F is reversed. If it is a rotation, the orientation
on the boundary is preserved and and the orientation on F is preserved.

Corollary 2.2. Let M̂ be an oriented trivially Seifert fibered 3-manifold with posi-
tively oriented boundary ∂M̂ = T1∪. . .∪Tn. Then a fiber-preserving diffeomorphism
f : M̂ → M̂ is orientation-preserving if and only if f is orientation-preserving be-
tween some pair of boundary tori.

Proof. Firstly, there is a fibering product structure k : S1 × F → M̂ . Suppose
that the diffeomorphism preserves the orientation of the fibers. Then the projected
diffeomorphism on F must be orientation-preserving. By Lemma 2.1, this is if and
only if it is orientation-preserving between some pair of boundary components. As
the diffeomorphism preserves the orientation of a fiber, this is equivalent to f being
orientation-preserving between some pair of boundary tori.

If now we suppose that the diffeomorphism reverses the orientation of the fibers.
Then the projected diffeomorphism on F must be orientation-reversing. By Lemma
2.1, this is if and only if it is orientation-reversing between some pair of boundary
components. As the diffeomorphism reverses the orientation of a fiber, this is equiv-
alent to f being orientation-preserving between some pair of boundary tori.

3. Conditions for an Orientation-reversing Action

We now use the previous section to establish some results about the conditions
under which an orientation-reversing action is possible.

Firstly, a condition on the order of critical fibers:

Proposition 3.1. All finite, fiber-preserving actions on an orientable Seifert 3-
manifold fibering over an orientable base space with at least one critical fiber of
order greater than two are orientation-preserving.

Proof. Suppose for contradiction that there exists a periodic, fiber-preserving and
orientation-reversing diffeomorphism f :M →M .

We begin with normalized invariants forM = (g, o1|(q1, p1), . . . , (qn, pn), (1, b)).
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We then take a regular fiber γ with #Orbf (γ) = l for some l. Then adjust the
invariants to yield M = (g, o1|(q1, p1), . . . , (qn, pn), (1, b1), . . . , (1, bl)) where each

(1, bi) refer to a fiber in Orbf (γ). Necessarily,
∑l

i=1 bi = b.

We can then proceed as in [8] to yield a manifold M̂ with fibering product
structure kM̂ : S1×F → M̂ and a collection of solid tori X with product structure
kX : S1 × (D1 ∪ . . . ∪Dn+l)→ X.

We can also now define a restricted map f̂ ∈ Diff(M̂). Suppose that the filling
of Ti yields a critical fiber of order greater than 2.

Suppose that f̂(Ti) = Tj . It could be that i = j.
According to the given product structures (with positively oriented restrictions

on the boundary) we then have the following homological diagram:

(d|∂Vi
)∗

H1(Ti) ← H1(∂Vi)

f̂∗ ↓ ↓ (d|−1
∂Vj
◦ f̂ ◦ d|∂Vi)∗

H1(Tj) ← H1(∂Vj)
(d|∂Vj )∗

Now, f :M →M is orientation-reversing and extends into the solid tori Vi, Vj ,

hence (d|−1
∂Vj
◦ f̂ ◦ d|∂Vi

)∗ = ±
[

1 0
a 1

]k∂Vi

k∂Vj

or ±
[
−1 0
a 1

]k∂Vi

k∂Vj

. By Corollary 2.2,

we must have the second case.
Then according to the framings on Vi, Vj , the fibrations are given by a (−qi, yi) =

(−qj , yj) curve where qi = qj > 2. f̂ must preserve the fibration hence:

±
[
−1 0
a 1

] [
−qi
yi

]
= ±

[
qi
−yi

]
But this implies that −aqi + yi = −yi, and so aqi = 2yi. This further implies

that qi divides 2 which is a contradiction.

Secondly, we establish that if the Euler class of the manifold is non-zero, then
there are no orientation-reversing actions. This can be seen by noting that fiber-
preserving diffeomorphisms induce isomorphisms on Euler class. In particular,
orientation-preserving maps induce the identity and orientation-reversing induce
the negative identity map. For more details, see Theorem 2.4 in [1]. The following
result then follows straightforwardly, but we present a constructive proof to further
illustrate our methods:

Proposition 3.2. All finite, fiber-preserving actions on an orientable Seifert
3-manifold fibering over an orientable base space with nonzero Euler class are
orientation-preserving.

Proof. Again suppose for contradiction that there exists a periodic, fiber-preserving
and orientation-reversing diffeomorphism f : M → M . We proceed as in the
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previous proposition to yield a manifold M̂ with fibering product structure kM̂ :

S1 × F → M̂ , a collection of solid tori X with product structure kX : S1 × (D1 ∪
. . . ∪Dn+l)→ X, and a restricted diffeomorphism f̂ : M̂ → M̂ .

We now consider the first homology group of M̂ . We have the presentation:

H1(M̂) = ⟨α1, . . . , αn+l, a1, b1, . . . , ag, bg, t|α1 · · ·αn+l = 1, all commute⟩

Where t represents an oriented fiber and α1, . . . , αn+l represent positively ori-
ented loops kTi

({u} × S1) on each boundary torus.
So we must have:

f̂∗(αi) = α±1
j(i)t

ci

For some integer ci and some permutation j ∈ perm{1, . . . n+ l}.
Here the sign is the same for each αi. So then:

1 = f̂∗(α1 · · ·αl) = t
∑n+l

i=1 ci

Hence,
n+l∑
i=1

ci = 0

Case 1: There are no critical fibers. That is, n = 0.
Hence the obstruction is nonzero. We then consider the diagram:

(d|∂Vi
)∗

H1(Ti) ← H1(∂Vi)

(f̂ |Ti)∗ ↓ ↓ (d|−1
∂Vj(i)

◦ f̂ |Ti ◦ d|∂Vi)∗

H1(Tj(i)) ← H1(∂Vj(i))
(d|∂Vj(i)

)∗

So now (d|∂Vi)∗ =

[
−1 bi
0 1

]k∂Vi

kTi

and (d|−1
∂Vj(i)

◦f̂ |Ti◦d|∂Vi)∗ = ±
[

1 0
0 −1

]k∂Vi

k∂Vj(i)

This is as the diffeomorphism extends, is fiber-preserving, and orientation-reversing
as well as each Vi being trivially fibered. Here we again use Corollary 2.2.

Hence: (f̂ |Ti)∗ = ±
[

1 −(bi + bj(i))
0 −1

]kTi

kTj(i)

. So then from above, ci = ∓(bi+

bj). Hence, we have:

l∑
i=1

(bi + bj(i)) = 2

l∑
i=1

bi = 0

But by Theorem 1.1 of [7],
∑l

i=1 bi is the obstruction term and by assumption
is nonzero. Hence there can be no such f .
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Case 2: There are critical fibers.
Let the fillings of T1, . . . , Tn be by nontrivially fibered solid tori and the fillings

of Tn+1, . . . , Tl be by trivially fibered solid tori.
Firstly, for T1, . . . , Tn we have the diagram:

(d|∂Vi)∗
H1(Ti) ← H1(∂Vi)

(f̂ |Ti
)∗ ↓ ↓ (d|−1

∂Vj(i)
◦ f̂ |Ti

◦ d|∂Vi
)∗

H1(Tj(i)) ← H1(∂Vj(i))
(d|∂Vj(i)

)∗

Now, in order for (d|−1
∂Vj(i)

◦ f̂ |Ti
◦d|∂Vi

)∗ to extend into the solid torus, preserve

a nontrivial fibration, and be orientation-reversing, according to Corollary 2.2 we
must have:

(d|−1
∂Vj(i)

◦ f̂ |Ti ◦ d|∂Vi)∗ = ±
[

1 0
−1 −1

]k∂Vi

k∂Vj(i)

As the fibration on both Vi and Vj(i) is a (−2, 1) fibration by Proposition 3.1.
Hence, we have:

(d|∂Vi)∗ =

[
0 1
1 2

]k∂Vi

kTi

and

(d|∂Vj(i)
)∗ =

[
0 1
1 2

]k∂Vj(i)

kTi

So that:

(f̂ |Ti
)∗ = ±

[
1 −1
0 −1

]kTi

kTj(i)

That is, for those Vi that are nontrivially fibered, ci = ∓1. Here again the sign
is the same for all.

For Tn+1, . . . , Tl we proceed as in Case 1, to yield ci = ∓(bi + bj(i)) for i =
n+ 1, . . . , l.

So now,

0 =

n+l∑
i=1

ci =

n∑
i=1

∓1 +
l∑

i=n+1

∓(bi + bj(i)) = ∓n∓ 2b = ±2e

This is twice the Euler class of the bundle which is nonzero. This yields our
contradiction
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This proposition establishes the fact that there are no orientation-reversing
actions on elliptic manifolds as these have nonzero Euler class.

4. Manifolds Fibering over S2

We apply the results of [8] in the case where the base space of the fibration
on the Seifert manifold M has underlying space S2. Recall for an action φ : G →
Diff fp(M), there is an induced action φS2 : GS2 → Diff(S2). We first consider these
possible actions.

4.1. Finite group actions on S2

By [11], the possible branching data of a quotient space of S2 acted on by a
finite group is given by Table 10.1.1. The semidirect product ◦− is defined so that
for H ◦− Z2, the Z2 generator anti-commutes with each element of H. Indeed,
throughout, this will be the only semidirect product used. If H happens to be
abelian, we use Dih(H) instead.

The notation here is such that rotxn is a rotation of order n about the x-axis
when S2 is embedded about the origin in R3, similarly with rotyn, rot

z
n. Then ref

xy

is a reflection in the x− y plane, and again similarly with other reflections. Lastly
rotL1 , rotL2 , rotL3 refer to rotations about lines regarding the rotational symmetry
of a tetrahedron, an octahedron, and an icosahedron when inscribed inside S2. For
more details see [3]. Note that the groups may be given by different names in other
sources. For example, A4 ◦− Z2 is really S4, but we write as a semidirect product
for convenience.

These groups form partially ordered sets. We do not expressly show these, but
they can be worked out by referring to the generators given.

Remark 4.1. By reference to the generators, it is clear is that any finite group that
acts on S2 is a subgroup of a finite group that is a semidirect product of a group
of orientation-preserving diffeomorphisms and a Z2 generated by an orientation-
reversing element. Again, the semidirect product is such that the Z2 generator anti-
commutes with all elements of the group of orientation-preserving diffeomorphisms.

This leads us to consider which of these will satisfy the obstruction condition
in Table 1:

Remark 4.2. Note that for all actions with induced actions as above, the ob-
struction condition will be satisfied if the obstruction term is even, but there could
actions that will not satisfy the obstruction condition if the obstruction term is odd.
One such action is exhibited in [8].
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Number Underlying Space G Data Generators

1
2
3
4
5
6
7

S2

Trivial
Zn

Dih(Z2n)
Dih(Z2n+1)

A4

S4

A5

()
(n, n)

(2, 2, 2n)
(2, 2, 2n+ 1)

(2, 3, 3)
(2, 3, 4)
(2, 3, 5)

id
rotzn

rotz2n, rot
y
2

rotz2n+1, rot
y
2

rotz2, rot
L1
3

rotz2, rot
L2
3

rotz2, rot
L3
3

8
9
10
11
12
13
14
15
16
17
18
19

D

Z2

Z2n × Z2

Z4n+2

Dih(Zn)
Dih(Z2n) ◦− Z2

Dih(Z2n+1) ◦− Z2

A4 ◦− Z2

S4 × Z2

A5 × Z2

Dih(Z2n) ◦− Z2

Dih(Z2n+1) ◦− Z2

A4 × Z2

(; )
(2n; )

(2n+ 1; )
(;n, n)

(; 2, 2, 2n)
(; 2, 2, 2n+ 1)

(; 2, 3, 3)
(; 2, 3, 4)
(; 2, 3, 5)
(2; 2n)

(2; 2n+ 1)
(3; 2)

refxy

rotz2n, ref
xy

rotz2n+1 ◦ refxy

rotzn, ref
yz

rotz2n, rot
y
2 , ref

yz

rotz2n+1, rot
y
2 , ref

yz

rotz2, rot
L1
3 , refyz

rotz2, rot
L2
3 , refxy

rotz2, rot
L3
3 , refxy

rotz2n, rot
y
2 , ref

xz

rotz2n+1, rot
y
2 , ref

xz

rotz2, rot
L1
3 , refxy

20
21

P2 Z2

Z2n

()
(n)

rotz2 ◦ refxy

rotz2n ◦ refxy

Table 1: Orbit numbers of finite group actions on S2.

Number G Orbit Numbers of non-regular points LCM |G|/LCM OC Satisfied?

1
2
3
4
5
6
7

Trivial
Zn

Dih(Z2n)
Dih(Z2n+1)

A4

S4

A5

1
1, 1

2, 2n, 2n
2, 2n+ 1, 2n+ 1

4, 4, 6
6, 8, 12
6, 10, 15

1
n
2n

4n+ 2
6
12
30

1
1
2
1
2
2
1

all b
all b
b even
all b
b even
b even
all b

8
9
10
11
12
13
14
15
16
17
18
19

Z2

Z2n × Z2

Z4n+2

Dih(Zn)
Dih(Z2n) ◦− Z2

Dih(Z2n+1) ◦− Z2

A4 ◦ Z2

S4 × Z2

A5 × Z2

Dih(Z2n) ◦− Z2

Dih(Z2n+1) ◦− Z2

A4 × Z2

1
2, n

2, 2n+ 1
1, 1

2, 2n, 2n
2, 2n+ 1, 2n+ 1

4, 4, 6
6, 8, 12
6, 10, 15
2, 4n

2, 4n+ 2
6, 8

2
2n

4n+ 2
2n
4n

8n+ 4
12
24
60
4n

4n+ 2
12

1
2
1
1
2
1
2
2
2
2
2
2

all b
b even
all b
all b
b even
all b
b even
b even
b even
b even
b even
b even

20
21

Z2

Z2n

−
2

1
n

2
2

b even
b even

Table 2: Orbit numbers of finite group actions on S2.
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4.2. Manifolds fibering over S2

We now prove a general result that will set up the group structure for the groups
acting on manifolds fibering over an orbifold with underlying space S2. Throughout
this section we assume normalized form for Seifert invariants.

Proposition 4.3. Let M = (0, o1|(q1, p1), . . . , (qn, pn), (1, b)) and φ : G →
Diff fp

+ (M) be a finite action that satisfies the obstruction condition. Then G is
isomorphic to a subgroup of (Zm × GS2+) ◦− Z2 for some m ∈ N and GS2+ is the
orientation-preserving subgroup of the induced action φS2 : GS2 → Diff(S2).

Proof. As φ : G→ Diff fp
+ (M) satisfies the obstruction condition, we can restrict to

the action φ̂ : G→ Diff(S1)×Diff(F ).
Now, consider φ̂S1(G), the projection onto Diff(S1). So then φ̂S1(G) is a sub-

group of Dih(Zm) ∼= Zm ◦− Z2 for some m.
Also, φ̂F (G) the projection onto Diff(F ) will be a subgroup of φ̂F (G)+ ◦− Z2

by the remark above, where φ̂+
F (G)+ is the orientation-preserving subgroup.

So now, φ̂(G) ⊂ φ̂S1(G)× φ̂F (G) ⊂ (Zm ◦− Z2)× (φ̂F (G)+ ◦− Z2). But, φ̂(G)
is orientation-preserving. Hence, we consider the orientation-preserving subgroup
of (Zm ◦− Z2)× (φ̂F (G)+ ◦− Z2).

Note that g ∈ ((Zm ◦− Z2) × (φ̂F (G) ◦− Z2))+ if and only if g = (g1, g2) or
g = (g1z1, g2z2) for (g1, g2) ∈ Zm × φ̂F (G)+ and z1, z2 are respective generators of
the two Z2 components. It therefore follows that ((Zm◦−Z2)×(φ̂F (G)+◦−Z2))+ =
(Zm× φ̂F (G)+) ◦− Z2 where the Z2 is generated by z = (z1, z2), and the semidirect
product is defined by z(g1, g2)z

−1 = (g−1
1 , g−1

2 ).
Now, φ̂F (G)+ ∼= GS2+ and φ̂(G) ∼= G so that G ⊂ (Zm ×GS2+) ◦− Z2.

This result essentially states that we need only check that the obstruction con-
dition is satisfied and calculate the possible orientation-preserving subgroup of the
induced action φS2 : GS2 → Diff(S2). This we can do by reference to the Tables 1
and 2.

We now proceed to consider the individual cases for the number of critical fibers.
For each proof the construction set out in [8] provides the converse.

4.3. One critical fiber

We now consider the case where there is only one critical fiber.

Corollary 4.4. Let M = (0, o1|(q, p), (1, b)). There exists a finite action φ : G →
Diff fp

+ (M) if and only if G is isomorphic to a subgroup of Dih(Zm × Zn) for some
m,n ∈ N.

Proof. Note that the induced action φS2 : GS2 → Diff(S2) must fix a point. By
Tables 1 and 2, we can assume that this is of the form of action 11. This action
satisfies the obstruction condition for any b. Hence, GS2+

∼= Zn for some n ∈ N.
Then by Proposition 4.1, G is isomorphic to a subgroup of (Zm × Zn) ◦− Z2 =
Dih(Zm × Zn).
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4.4. Two critical fibers

Now consider two critical fibers. Firstly, when the respective normalized fillings
are not equal.

Corollary 4.5. Let M = (0, o1|(q1, p1), (q2, p2), (1, b)) with (q1, p1) ̸= (q2, p2).

There exists a finite action φ : G → Diff fp
+ (M) if and only if G is isomorphic

to a subgroup of Dih(Zm × Zn) for some m,n ∈ N.

Proof. Note that the induced action φS2 : GS2 → Diff(S2) must fix two points.
By Tables 1 and 2, we again assume the form of action 11. This action satisfies
the obstruction condition for any b. Hence, GS2+

∼= Zn for some n ∈ N. Then by
Proposition 4.1, G is isomorphic to a subgroup of (Zm × Zn) ◦− Z2 = Dih(Zm ×
Zn).

Now consider when the fillings of the two critical fibers are equal.

Corollary 4.6. Let M = (0, o1|(q, p), (q, p), (1, b)) with b even. There exists a

finite action φ : G → Diff fp
+ (M) if and only if G is isomorphic to a subgroup of

(Zm ×Dih(Zn)) ◦− Z2 for some m,n ∈ N.

Proof. We assume that the induced action φS2 : GS2 → Diff(S2) exchanges two
points referring to the critical fibers. Otherwise, we apply Corollary 4.3. Given that
two points are exchanged, we consult the Tables to note that we can assume that φS2

is in the form of actions 12/13 or 17/18. The obstruction condition will be satisfied
for each of these as we assume that b is even. Then in either case, GS2+

∼= Dih(Zn)
and by Proposition 4.1, G is isomorphic to a subgroup of (Zm × GS2+) ◦− Z2

∼=
(Zm ×Dih(Zn)) ◦− Z2.

Remark 4.7. Note thatM = (0, o1|(q, p), (q, p), (1, b)) with b even is simply S2×S1.
M = (0, o1|(q, p), (q, p), (1, b)) with b odd is a Lens space and so as an exception to
our results, we refer the reader to [4] for a classification of finite actions on these
manifolds.

4.5. Three critical fibers

We now move on to having three critical fibers and break into the three possible
scenarios: that they all have different fillings; that two have the same fillings; and
that they all have the same filling.

Corollary 4.8. Let M = (0, o1|(q1, p1), (q2, p2), (q3, p3), (1, b)) with (qi, pi) all dif-

ferent. There exists a finite action φ : G→ Diff fp
+ (M) if and only if G is isomorphic

to a subgroup of Dih(Zm) for some m ∈ N.

Proof. Note that the induced action φS2 : GS2 → Diff(S2) must fix three points.
By Tables 1 and 2, the only such induced action is the trivial action 1, that is GS2
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is the trivial group. This action trivially satisfies the obstruction condition for any
b.

Hence, by Proposition 4.1, G is a subgroup of (Zm×GS2+)◦−Z2
∼= Zm ◦−Z2 =

Dih(Zm).

Corollary 4.9. Let M = (0, o1|(q1, p1), (q, p), (q, p), (1, b)) with (q1, p1) ̸= (q, p).

There exists a finite action φ : G → Diff fp
+ (M) if and only if G is isomorphic to a

subgroup of Dih(Zm × Z2) for some m ∈ N.

Proof. Note that the induced action φS2 : GS2 → Diff(S2) must fix a point and at
most exchange two others. By Tables 1 and 2, the only such action is of the form
of action 11 with n = 2. This action satisfies the obstruction condition for any b.
So GS2+

∼= Z2. Hence by Proposition 4.1, G is a subgroup of (Zm × Z2) ◦− Z2 =
Dih(Zm × Z2).

Corollary 4.10. Let M = (0, o1|(q, p), (q, p), (q, p), (1, b)). There exists a finite

action φ : G → Diff fp
+ (M) if and only if G is isomorphic to a subgroup of (Zm ×

Dih(Z3)) ◦− Z2.

Proof. We assume that φS2 : GS2 → Diff(S2) exchanges three points, else apply
Corollary 4.5. or Corollary 4.6. So now by Tables 1 and 2 we can assume that
φS2 : GS2 → Diff(S2) is of the form of action 13 with n = 1. This action satisfies
the obstruction condition for any b and GS2+

∼= Dih(Z3). Hence, by Proposition
4.1, G is isomorphic to a subgroup of (Zm ×Dih(Z3)) ◦− Z2.

4.6. No critical fibers

In the case where there are no critical fibers, we note that there are no restric-
tions on φS2 : GS2 → Diff(S2). Hence we cannot guarantee that the obstruction
condition will be satisfied unless b is even. In such a case the group will be a sub-
group of a group of the form (Zm × H) ◦− Z2 where H is a group from the list
of groups that act orientation-preservingly on S2. Note, however that once again,
these manifolds are Lens spaces of the form L(b, 1) and we again refer the reader to
[4].

4.7. Manifolds fibering over P2

We here apply the results of [9] to yield the following result:

Corollary 4.11. Let M = (1, n2|(q, p), (1, b)). There exists a finite action φ : G→
Diff fp

+ (M) if and only if G is isomorphic to a subgroup of Z2 ×Dih(Zn) for some
n ∈ N.

Proof. Let M̃ = (0, o1|(q, p), (q, p), (1, 2b)) be the orientable base space double
cover of M . According to [9], we consider a corresponding finite action φ̃ : G →
Difffop

+ (M̃) that commutes with the covering translation τ : M̃ → M̃ .
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Now note that the induced action φ̃S2 : GS2 → Diff(S2) can exchange two points

but must be orientation-preserving as φ̃ : G → Difffop
+ (M̃) is fiber-orientation-

preserving. We can then assume that φS2 is in the form of actions 3/4. Then,
GS2 ∼= Dih(Zn) for some n ∈ N. Again by Table 2, it will satisfy the obstruction
condition as 2b is even.

So now apply the results of [9] to note that there is a restricted action ̂̃φ :

G → Diff( ˆ̃M) and product structure k : S1 × F → ̂̃M (F is in fact an annulus) so

such that (k−1 ◦ ̂̃φ(g) ◦ k)(u, x) = (ϵ(g)u, ̂̃φ2(g)(x)) for ϵ(g) = ±1. We then note

that ̂̃φ2(G)
∼= GS2 ∼= Dih(Zn). Hence, ̂̃φ(G) ∼= G is isomorphic to a subgroup of̂̃φ1(G)× ̂̃φ2(G)
∼= Z2×Dih(Zn). Again, our construction set out in [8] provides the

converse.

5. Elliptic 3-manifolds

Recall that elliptic 3-manifolds are Seifert manifolds where χorb(B) > 0 and
the Euler class of the Seifert bundle is nonzero. [10] By [11], the orbifolds without
boundary that have positive orbifold Euler characteristic are:

S2, S2(q1), S
2(q1, q2), S

2(2, 2, q),P2(q), S2(2, 3, 3), S2(2, 3, 4), S2(2, 3, 5)

We note that by Proposition 3.2, all fiber-preserving actions on elliptic manifolds
are orientation-preserving as the Euler class must be nonzero. Hence we can break
down the possible base spaces and apply the results of the previous sections. In
each subsection, suppose that we have a finite action φ : G→ Diff fp(M).

5.1. Base space S2

These manifolds are lens spaces fibered without critical fibers. By [4], these are
of the form L(p, q) where q = ±1(mod p).

By Remark 2, we can only certainly work with even obstruction condition and
in which case the lens space is constructed by two (b, 1) fillings of S1×A. We then
calculate: [

−1 b
0 1

] [
1 0
0 −1

] [
−1 b
0 1

]
=

[
1 −2b
0 −1

]
Thus we have the lens spaces L(2b, 1) for nonzero b ∈ Z.
So now we apply Section 4 to state that the group G will be a subgroup of a

group of the form (Zm ×H) ◦− Z2 where H is a group from the list of groups that
act orientation-preservingly on S2 and m ∈ N.

5.2. Base space S2(q)

These manifolds are again lens spaces, but fibered with one critical fiber. All
lens spaces can be given such a fibration except those of the form L(p, q) where
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q = ±1(mod p) mentioned above. This follows from fibering one solid torus side of
the Heegaard torus trivially and inducing a fibration on the other side.

We can now apply Corollary 4.2. to find that the group G is a subgroup of
Dih(Zm × Zn) for m,n ∈ N.

5.3. Base space S2(q1, q2)

So M = (0, o1|(p1, q1), (p2, q2), (1, b)). Once again, these manifolds are lens
spaces, but now fibered with two critical fibers. All lens spaces can be fibered in
this way.

We first consider (p1, q1) ̸= (p2, q2). Then G is a subgroup of Dih(Zm×Zn) for
m,n ∈ N by Corollary 4.3.

If (p1, q1) = (p2, q2) then our results only apply in the case where b is even, in
which case the manifold is not elliptic by Remark 3.

5.4. Base space S2(2, 2, q)

So M = (0, o1|(q, p), (2, 1), (2, 1), (1, b)). These manifolds are now prism mani-
folds fibered longitudinally. We split into the two cases:

Case 1: (q, p) = (2, 1)
In this case we apply Corollary 4.7 to yield that G is a subgroup of (Zm ×

Dih(Z3)) ◦− Z2 for m ∈ N.
Case 2: (q, p) ̸= (2, 1)
In this case we instead apply Corollary 4.6 to yield that G is a subgroup of

Dih(Zm × Z2) for m ∈ N.

5.5. Base space P2(p)

These manifolds are again prism manifolds but fibered meridianally.
We apply Corollary 4.8 to yield that the group G is a subgroup of Z2×Dih(Zn)

for some n ∈ N.

5.6. Base space S2(2, 3, 3)

In this case, M = (0, o1|(2, 1), (3, p1), (3, p2), (1, b)) for p1 = 1, 2 and p2 = 1, 2.
We hence break into the two possible cases:

Case 1: p1 = p2
In this case we apply Corollary 4.6 to yield that G is a subgroup of (Zm ×

Dih(Z3)) ◦− Z2 for m ∈ N.
Case 2: p1 ̸= p2
In this case we instead apply Corollary 4.5 to yield that G is a subgroup of

Dih(Zm) for some m ∈ N.

5.7. Base space S2(2, 3, 4) and S2(2, 3, 5)

In both of these cases M = (0, o1|(2, 1), (3, p1), (q2, p2), (1, b)) for q2 ̸= 2, 3.
Hence we apply apply Corollary 4.7 to yield that G is a subgroup of Dih(Zm)
for some m ∈ N.



Finite, Fiber-preserving Group Actions on Elliptic 3-manifolds 377

6. Quotient Spaces

We now consider the quotient spaces under these constructed actions.

6.1. General outline of construction

We first note that an orientation and fiber-preserving action on a fibered torus
will have quotient type either a torus or a S2(2, 2, 2, 2). This follows from [10] and
the fact that S2(2, 3, 6), S2(3, 3, 3), and S2(2, 4, 4) cannot be Seifert fibered. We
then consider the quotient of M̂ ∼= S1×F under a product action and the stabilizers
of the boundary tori. Here, F will be a disc with holes. There will be then glued
in either a solid torus with exceptional core or a Conway ball.

The main part is to establish what form the quotients of M̂ and each Vi will
be, and then how the gluing maps look under the projection.

Formally, for a representation M = (0, o2|(q1, p1), . . . , (qn, pn)), we take an ac-

tion φ : G→ Diff fp
+ (M) that restricts to an action φ̂ : G→ Diff fp

+ (M̂) which leaves

some fibering product structure k : S1 × F → M̂ invariant and which extends
over the fillings of a collection of fibered solid tori X = V1 ∪ . . . ∪ Vn. We denote
φX : G→ Diff fp

+ (X) to be the restricted action on X.

We then let p̂ : M̂ → M̂/φ̂ and pX : X → X/φX be the quotient maps.
We then have the diagram:

d|∂Vi

Ti ← ∂Vi
p̂|Ti

↓ ↓ (pX)|∂Vi

Ti/Stabφ̂(Ti) ← ∂Vi/StabφX
(∂Vi)

d′|∂Vi/StabφX
(∂Vi)

We hence need to find the following:
• M̂/φ̂
• Vi/StabφX

(Vi)
• d′|∂Vi/StabφX

(∂Vi)

6.2. M̂/φ̂

We first consider actions constructed via the method of [8] that are fiber-
orientation-preserving. For this section we consider F in the more general setting
as any orientable surface with boundary.

Lemma 6.1. Let φ̂S1×F : G→ Diff+(S
1)×Diff+(F ) be a finite group action such

that no element leaves an isolated fiber invariant. Then (S1×F )/φ̂S1×F is a trivially
fibered Seifert 3-manifold with fibering product structure S1 × (F/(φ̂S1×F )F ).

Proof. It is clear that (S1 × F )/φ̂S1×F is a trivially fibered Seifert 3-manifold. It
remains to show that it has the fibering product structure S1× (F/(φ̂S1×F )F ). We
examine the diagram:
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projF
S1 × F → F

pφS1×F
↓

(S1 × F )/φ̂S1×F = S1 × F ′ → F ′

projF ′

Now, pφS1×F
: S1 × F → S1 × F ′ can be chosen so that pφS1×F

(u, x) =

(p1(u, x), p2(x)).
So now, we have projF ′(p(u, x)) = p2(x) and p2 is the covering map for

(φ̂S1×F )F . Hence F ′ = F/(φ̂S1×F )F .

Remark 6.2. As φ̂S1×F : G → Diff+(S
1) × Diff+(F ) will be extended over some

fillings, if it does happen to leave some isolated fibers invariant, then we can simply
drill out these fibers and restrict to φ̂′

S1×F : G → Diff+(S
1) × Diff+(F

′) and then
consider the resultant torus boundaries to be filled according to a (1, 0) filling.
Therefore, for our purposes, we can without loss of generality assume that our action
φ̂S1×F : G→ Diff+(S

1)×Diff+(F ) does not leave any isolated fibers invariant and
so the previous lemma holds.

We now allow the fibers to be reversed.

Lemma 6.3. Let φ̂S1×F : G→ Diff(S1)×Diff(F ) be a finite, orientation-preserving
group action so that (φ̂S1×F )+ : G+ → Diff+(S

1) × Diff+(F ) is such that no el-
ement leaves an isolated fiber invariant. Then any element that reverses the ori-
entation on both components will induce some product involution f = (f1, f2) of
S1× (F/((φ̂S1×F )+F ) that also reverses the orientation on both components. Then
(S1 × F )/φ̂S1×F is found by taking I × (F/(φ̂S1×F )+F ) and identifying (i, x) with
(i, f2(x)) for i = 0, 1 and leaving exceptional sets of order 2 as properly embedded
arcs or circles according to the fixed point set of f2.

Proof. If g− is an element of G, so that φ̂S1×F (g−) reverses the orientation on both
components, then we have some f : S1× (F/((φ̂S1×F )+F )→ S1× (F/((φ̂S1×F )+F )
so that p(φ̂S1×F )+ ◦ φ(g−) = f ◦ p(φ̂S1×F )+ .

To see that f is an involution requires only the observation that G+ is an index
two subgroup of G.

To see that it is a product, we note that if it does not preserve the product
structure S1 × (F/((φ̂S1×F )+F ), then g− cannot preserve the product structure
S1 × F . Hence f is a product reversing the orientation on both components.

The result therefore follows.

Corollary 6.4. Let F be a genus 0 surface with boundary. Let φ̂S1×F : G →
Diff(S1)×Diff(F ) be a finite, orientation-preserving group action so that (φ̂S1×F )+ :
G+ → Diff+(S

1)×Diff+(F ) is such that no element leaves an isolated fiber invari-
ant. Then any element that reverses the orientation on both components will induce
some product involution f = (f1, f2) of S

1× (F/((φ̂S1×F )+F ) that also reverses the
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orientation on both components. Then (S1 × F )/φ̂S1×F is a ball B less a disjoint
collection of balls and solid tori in the interior of B with exceptional sets of order
2 as properly embedded arcs or circles according to the fixed point set of f2.

Proof. From Lemma 6.2, we note that S1×(F/((φ̂S1×F )+F ) is simply another genus
0 surface with boundary cross I. It then follows that the boundary identification
will fold S1 × (F/((φ̂S1×F )+F ) up to a ball with removed interior balls and solid
tori and exceptional sets of order 2 as properly embedded arcs or circles according
to the fixed point set of f2.

Example 6.5. Consider F × S1 where F is a disc with three discs removed. Then
take a Dih(Z2)-action on F × S1 generated by g1: an order 2 rotation on F fixing
two of the boundary components and exchanging the other two with no rotation
in the S1 component, and g2: the antipodal map on F and a reflection on S1.
Then (F × S1)/⟨g1⟩ is an annulus cross S1. g2 induces an involution on this space
consisting of the antipodal map on the annulus and a reflection in the S1 component.
This quotients to a ball with no interior balls removed and no exceptional set.

Example 6.6. Now consider again F × S1 where F is a disc with three discs
removed. This time take a Dih(Z2)-action on F × S1 generated by g1: an order
2 rotation in the S1 component and the identity on F and g2: a reflection on F
that leaves two boundary components invariant, exchanging the other two, and a
reflection in the S1 component. Here (F × S1)/⟨g1⟩ is homeomorphic to F × S1

and g2 induces the same map on the quotient space. This then quotients to the
following space:

Figure 2: Quotient under the action of Example 6.6

6.3. Vi/StabφX
(Vi)

We begin by assuming that the action preserves the orientation of the fibers
and note that the filling is of a fibered solid torus where the critical fiber is also an
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exceptional set. By [5] the action of the stabilizer on Vi will be a Zm × Zl-action
where m divides l with generators φ(g1)(u, v) = (e2aπiu, e2bπiv) and φ(g2)(u, v) =
(e2cπiu, e2dπiv) where a = a1

a2
, b = b1

b2
, c = c1

c2
, d = d1

d2
are rational numbers. The

quotient will then be a solid torus with an exceptional core of order k, where m|k|l.
This follows again from [5].

Lemma 6.7. The quotient of a solid torus under a Zm-action with generator
φ(g1)(u, v) = (e2aπiu, e2bπiv) is a solid torus with exceptional core of order:

k =
b2

gcd(a2, b2)

Proof. So φ(g1)
a2(u, v) = (u, e2a2bπiv) and φ(g1)

a2 is an order lcm(a2,b2)
a2

= b2
gcd(a2,b2)

element that fixes the core. The quotient space then has an exceptional core of order
k = b2

gcd(a2,b2)
.

Lemma 6.8. The quotient of a solid torus under a Zm×Zl-action where m divides
l with generators φ(g1)(u, v) = (e2aπiu, e2bπiv) and φ(g2)(u, v) = (e2cπiu, e2dπiv) is
a solid torus with exceptional core of order:

k =
b2d2gcd(a2, c2)

gcd(d2gcd(a2, c2)gcd(a2, b2), a2b1c1d2z + b2c2d1)

Where z is such that a1z+1
a2
∈ Z.

Proof. We begin by noting that the quotient of the solid torus under the normal
group generated by g1 is V (k′) where k′ = b2

gcd(a2,b2)
. We then claim the projection

under the restricted action of ⟨g1⟩, is pg1(u, v) = (ua2 , uz
′
vk

′
) where z′ = a2b1

gcd(a2,b2)
z

for z such that a1z + a2y = −1.
To prove this, we first note that:

pg1(e
2aπiu, e2bπiv) = ((e2aπiu)a2 , (e2aπiu)z

′
(e2bπiv)k

′
) = (ua2 , e2πi(az

′+bk′)uz
′
vk

′
)

So then:

az′ + bk′ =
b1

gcd(a2, b2)
a1z +

b1
gcd(a2, b2)

=
a1b1

gcd(a2, b2)
(−1− a2y) +

b1
gcd(a2, b2)

=
−a2y

gcd(a2, b2)
∈ Z

So that:
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pg1(e
2aπiu, e2bπiv) = (ua2 , uz

′
vk

′
)

Also, if we solve pg1(u, v) = (1, 1), we yield ua2 = 1 and uz
′
vk

′
= 1. So that

there are a2k
′ = a2b2

gcd(a2,b2)
possible solutions. This is the order of g1.

Now, there is an induced map φ(g2) such that φ(g2) ◦ pg1 = pg1 ◦ φ(g2).
We compute:

φ(g2)(u
a2 , uz

′
vk

′
) = (φ(g2) ◦ pg1)(u, v)

= (pg1 ◦ φ(g2))(u, v)
= pg1(e

2cπiu, e2dπiv)

= (e2a2cπiua2 , e2πi(cz
′+dk′)uz

′
vk

′
)

It follows that φ(g2)(u, v) = (e2πa2ciu, e2π(cz
′+dk′)iv).

So then φ(g2)
c2

gcd(a2,c2) (u, v) = (u, e
2π

c2
gcd(a2,c2)

(cz′+dk′)i
v).

Now φ(g2)
c2

gcd(a2,c2) is an element that fixes the core of V (k′) and is of order the
denominator of c2

gcd(a2,c2)
(cz′ + dk′) when in reduced form. We calculate:

c2
gcd(a2, c2)

(cz′ + dk′) =
c1d2z

′ + d1c2k
′

d2gcd(a2, c2)

Hence φ(g2)
c2

gcd(a2,c2) has order d2gcd(a2,c2)
gcd(d2gcd(a2,c2),c1d2z′+c2d1k′) .

So finally, the order of the exceptional core of quotient space of the whole action
is:

k = k′
d2gcd(a2, c2)

gcd(d2gcd(a2, c2), c1d2z′ + c2d1k′)

=
b2

gcd(a2, b2)

d2gcd(a2, c2)

gcd(d2gcd(a2, c2), c1d2z′ + c2d1k′)

=
b2d2gcd(a2, c2)

gcd(d2gcd(a2, b2)gcd(a2, c2), c1d2a2b1z + c2d1b2)

We now consider an action of the stabilizer that reverses the orientation of
the fibers. By [5] the action will be a Dih(Zm × Zl)-action where m divides l
with generators φ(g1)(u, v) = (e2aπiu, e2bπiv), φ(g2)(u, v) = (e2cπiu, e2dπiv), and
φ(g3)(u, v) = (u−1, v−1). We here note that similar to the proof of Lemma 6.2. we
can consider the quotient of the Zm × Zl-action and then the induced involution
upon it. The following lemma then holds:
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Lemma 6.9. The quotient of a solid torus under a Dih(Zm×Zl)-action where m di-
vides l with generators φ(g1)(u, v) = (e2aπiu, e2bπiv), φ(g2)(u, v) = (e2cπiu, e2dπiv),
and φ(g3)(u, v) = (u−1, v−1) is a Conway ball with exceptional core of order:

k =
b2d2gcd(a2, c2)

gcd(d2gcd(a2, c2)gcd(a2, b2), a2b1c1d2z + b2c2d1)

Where z is such that a1z+1
a2
∈ Z.

Proof. This follows from considering an orientation-preserving involution on V (k)
the quotient of the Zm × Zl-action generated by φ(g1)(u, v) = (e2aπiu, e2bπiv) and
φ(g2)(u, v) = (e2cπiu, e2dπiv).

6.4. d′|∂Vi/StabφX
(∂Vi)

We again begin by assuming that the action preserves the orientation of the
fibers. So now M̂/φ̂ has a collection of boundary tori. These will be filled by solid
tori with a possible exceptional core. It remains to show how the gluing map from
the boundary of the solid tori into M̂/φ̂ will look.

By using product structures k : S1 × F → M̂ and k′ : S1 × F/φ̂F → M̂/φ̂
that restrict to positively oriented product structures kTi

: S1 × S1 → Ti and
k′T ′

i
: S1 × S1 → T ′

i , we can consider:

H1(M̂) = ⟨t, x1, . . . , xs, a1, b1, . . . , ag, bg|x1 · · ·xs = 1, all commute⟩

H1(M̂/φ̂) =
〈
t′, x′1, . . . , x

′
s′ , a

′
1, b

′
1, . . . , a

′
g′ , b′g′ |x′1 · · ·x′s′ = 1, all commute

〉
Here note that we again allow F to be more generally any orientable surface with

boundary as it presents no extra complication to the calculations. t, t′ represent
a fiber of M̂ and M̂/φ̂ respectively; x1, . . . , xs represent the boundary loops of
k({1}×F ); and similarly x′1, . . . , x

′
s′ represent the boundary loops of k′({1}×F/φ̂F ).

We then we have that:

(pφ̂)∗(t) = t′a, (pφ̂)∗(xi) = x
′mj(i)

j(i) t′lj(i)

Here j : {1, . . . , s} → {1, . . . , s′} is a surjection.
Note that this is well-defined as if j(i1) = j(i2) then (pφ̂)∗(xi1) = (pφ̂)∗(φ(g)∗(xi2))

for some g ∈ G.
Now, 1 = (pφ̂)∗(x1 · · ·xs) = x

′m1#j−1(1)
1 · · ·x′ms′#j−1(s′)

s′ t′l1#j−1(1)+...+ls′#j−1(s′).
So that 0 = l1#j

−1(1) + . . . + ls′#j
−1(s′) and necessarily mj(i1)#j

−1(i1) =
mj(i2)#j

−1(i2) for any i1, i2 ∈ {1, . . . , s}.
Now, for any torus (either on the boundary of M̂ or on the boundary of one of

the solid tori) we have that Stab(T ) ∼= Zm or Zm × Zl where m divides l. [5]
So we consider the diagram:
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d|∂Vi

Ti ← ∂Vi
pφ̂|Ti

↓ ↓ pφX
|∂Vi

T ′
i′ = Ti/Stab(Ti) ← ∂V ′

i′

d′|∂V ′
i′

We begin with the cyclic case. We can then choose the product structure such
that (k−1

Ti
◦ φ̂(g) ◦ kTi)(u, v) = (e2aπiu, e2bπiv) for some a, b ∈ Q and g a generator

of Stab(Ti). Letting a = a1

a2
, b = b1

b2
be fully reduced, this has order lcm(a2, b2).

Lemma 6.10. If Stab(Ti) ∼= Zm, then (k−1
T ′
i′
◦ pφ̂ ◦ kTi)(u, v) = (u

lcm(a2,b2)
b2 vlj(i) , vb2)

where lj(i) is an integer such that a1lcm(a2,b2)
a2b2

+ lj(i)
b1
b2

= a1

gcd(a2,b2)
+ lj(i)

b1
b2

is integer

valued.

Proof. The projection pφ̂|Ti
will need to send a fiber to a fiber, hence (k−1

T ′
i′
◦ pφ̂ ◦

kTi)(u, v) = (urvs, vt). But now:

(urvs, vt) = (k−1
T ′
i′
◦ pφ̂ ◦ kTi

)(e2aπiu, e2bπiv)) = (e2(ar+bs)πiurvs, e2btπivt)

So then take t = b2.

Now consider (k−1
T ′
i′
◦ pφ̂ ◦ kTi

)(u, v) = (urvs, vt) = (1, 1). This should have

lcm(a2, b2) solutions. So u
r = 1 has lcm(a2,b2)

b2
solutions and r = lcm(a2,b2)

b2
.

Now, ar + bs = a lcm(a2,b2)
b2

+ bs ∈ Z. So let s = lj(i) be a solution to this.
This exists as gcd(a2, b2) divides b2 by [2]. There are however an infinite number of
choices depending upon the product structure k′T ′

i
: S1 × S1 → T ′

i .

The projection pφX
|∂Vi will need to extend over the entire solid torus and so will

need to send a meridian to a meridian. We can again choose the product structure
such that (k−1

∂Vi
◦φX(g) ◦ k∂Vi

)(u, v) = (e2aπiu, e2bπiv). Hence pφX
|∂Vi

will similarly

give (k−1
∂V ′

i′
◦ pφ̂ ◦ k∂Vi

)(u, v)(ua2 , uzv
lcm(a2,b2)

a2 ). Here the choice of z will not affect

the filling but depends upon the product structure k′∂V ′
i′
: S1 × S1 → ∂V ′

i′ .

We proceed with Stab(Ti) ∼= Zm × Zl where m divides l. Then (k−1
Ti
◦ φ̂(g1) ◦

kTi)(u, v) = (e2aπiu, e2bπiv) and (k−1
Ti
◦ φ̂(g1) ◦ kTi)(u, v) = (e2cπiu, e2dπiv) for some

a, b, c, d ∈ Q and g1, g2 generators of Stab(Ti). Here m = lcm(a2, b2) and l =
lcm(c2, d2).

Lemma 6.11. If Stab(Ti) ∼= Zm × Zl, then

(k−1
T ′
i′
◦ pφ̂ ◦ kTi

)(u, v) = (u
ml

lcm(b2,d2) vlj(i) , vlcm(b2,d2)), where lcm(b2, d2) divides lj(i).
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Proof. The projection pφ̂|Ti
will again need to send a fiber to a fiber. Hence it will

again be of the form (k−1
T ′
i′
◦ pφ̂ ◦ kTi

)(u, v) = (urvs, vt). Now:

(urvs, vt) = (k−1
T ′
i′
◦ pφ̂ ◦ kTi

)(e2aπiu, e2bπiv)) = (e2(ar+bs)πiurvs, e2btπivt)

(urvs, vt) = (k−1
T ′
i′
◦ pφ̂ ◦ kTi)(e

2cπiu, e2dπiv)) = (e2(cr+ds)πiurvs, e2dtπivt)

Hence we take t = lcm(b2, d2).
Now consider (k−1

T ′
i′
◦ pφ̂ ◦ kTi

)(u, v) = (urvs, vt) = (1, 1). This should have ml

solutions. So ur = 1 has ml
lcm(b2,d2)

solutions and r = ml
lcm(b2,d2)

.

Finally, s is such that aml
lcm(b2,d2)

+ bs ∈ Z and cml
lcm(b2,d2)

+ ds ∈ Z. We now

calculate:

lcm(a2, b2)lcm(c2, d2) = lcm(lcm(a2, b2), lcm(c2, d2))gcd(lcm(a2, b2), lcm(c2, d2))

= lcm(lcm(a2, b2), lcm(c2, d2))lcm(a2, b2)

So that:

lcm(c2, d2) = lcm(lcm(a2, b2), lcm(c2, d2))

= lcm(lcm(a2, c2), lcm(b2, d2))

Then:

aml

lcm(b2, d2)
=

a1lcm(a2, b2)lcm(c2, d2)

a2lcm(b2, d2)

=
a1lcm(a2, b2)lcm(lcm(a2, c2), lcm(b2, d2))

a2lcm(b2, d2)
∈ Z

Similarly, cml
lcm(b2,d2)

∈ Z. So then we require that bs, ds ∈ Z. Hence, b2 and d2
must divide s and we take s = lj(i) to be a multiple of lcm(b2, d2).

The projection pφX
|∂Vi will need to extend over the entire solid torus and

so will need to send a meridian to a meridian. We can again choose the
product structure such that (k−1

∂Vi
◦ φX(g1) ◦ k∂Vi

)(u, v) = (e2aπiu, e2bπiv) and

(k−1
∂Vi
◦ φX(g1) ◦ k∂Vi

)(u, v) = (e2cπiu, e2dπiv). Hence pφX
|∂Vi

will similarly give

(k−1
∂V ′

i′
◦ pφ̂ ◦ k∂Vi)(u, v) = (ulcm(a2,c2), uzv

ml
lcm(a2,c2) ). Here the choice of z will not

again affect the filling but depends upon the product structure k′∂V ′
i′
: S1 × S1 →

∂V ′
i′ .



Finite, Fiber-preserving Group Actions on Elliptic 3-manifolds 385

So now we have from above that 0 = l1#j
−1(1) + . . .+ ls′#j

−1(s′). Hence we
have the degree of freedom to choose c1, . . . , cs′−1 (according to the conditions), but
then cs′ will be uniquely determined.

Each filling d′|∂V ′
i′
will now be determined be solving:

(pφ̂|Ti
)∗(d|∂Vi

)∗ = (d′|∂V ′
i′
)∗(pφX

|∂Vi
)∗

Example 6.12. We consider a Dih(Z6 × Z12)-action on the lens space M =
(0, o1|(3, 2), (1, 5)) constructed by:

f1 : S1 ×A→ S1 ×A, f1(u, ρv) = (e
2πi
6 u, ρe

2πi
3 v)

f2 : S1 ×A→ S1 ×A, f1(u, ρv) = (u, ρe
2πi
12 v)

f2 : S1 ×A→ S1 ×A, f1(u, ρv) = (u−1, ρv−1)

Here we parameterize A = {ρv|1 ≤ ρ ≤ 2, v ∈ S1}. Note that according to
the product structure S1 × A one boundary torus is positively oriented and the
other negatively depending on the orientation on the fiber. We take S1 × S1 to be
positively oriented and S1 × 2S1 to be negatively oriented.

We calculate first (S1 × A)/Dih(Z6 × Z12). This will be I × A where (0, ρv)
is identified with (0, ρv−1) and (0, ρv) is identified with (0, ρv−1) with four arcs of
order 2. It will be S2 × S1 with four properly embedded arcs looking as shown in
Figure 3:

Figure 3: Quotient space (S1 ×A)/Dih(Z6 × Z12)

Next we compute the orders of the exceptional sets of the two Conway balls that
fill the two boundary components. We first calculate the generators of the induced
action on the solid tori V1 and V2 that correspond to the fillings (3, 2) and (1, 5).
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Firstly, for V1, we compute:

(d|−1
∂V1
◦ f1 ◦ d|∂V1

)(u, v) = (d|−1
∂V1
◦ f1)(u−1v2, u−1v3)

= d|−1
∂V1

(e
2πi
6 u−1v2, e

2πi
3 u−1v3)

= (e2πi(
−3
6 + 2

3 )u, e2πi(
−1
6 + 1

3 )v)

= (e
2πi
6 u, e

2πi
6 v)(d|−1

∂V1
◦ f2 ◦ d|∂V1

)(u, v)

= (d|−1
∂V1
◦ f2)(u−1v2, u−1v3)

= d|−1
∂V1

(u−1v2, e
2πi
12 u−1v3)

= (e2πi(
2
12 )u, e2πi(

3
12 )v)

= (e
2πi
6 u, e

2πi
4 v)

So then by Lemma 6.6, the exceptional set will have order:

k =
(6)(12)gcd(6, 6)

gcd(12gcd(6, 6)gcd(6, 6), (6)(1)(1)(12)z + (6)(6)(11))
=

432

gcd(432, 72z + 396)

Here z is such that z+1
6 ∈ Z. So take z = −1 and then k = 432

gcd(432,324) =
432
108 = 4.

Secondly, for V2, we compute:

(d|−1
∂V2
◦ f1 ◦ d|∂V2)(u, v) = (d|−1

∂V2
◦ f1)(u−1v5, v)

= d|−1
∂V2

(e
2πi
6 u−1v5, e−

2πi
3 v)

= (e2πi(
−1
6 − 5

3 )u, e−
2πi
3 v)

= (e
2πi
6 u, e

4πi
3 v)(d|−1

∂V2
◦ f2 ◦ d|∂V2

)(u, v)

= (d|−1
∂V2
◦ f2)(u−1v5, v)

= d|−1
∂V2

(u−1v5, e−
2πi
12 v)

= (e2πi(
−5
12 )u, e−

2πi
12 v)

= (e
14πi
12 u, e

10πi
12 v)

So then again using Lemma 6.6, the exceptional set will have order:

k =
(3)(12)gcd(2, 12)

gcd(12gcd(2, 12)gcd(2, 3), (2)(2)(7)(12)z + (3)(12)(5))
=

72

gcd(24, 288z + 180)

Here z is such that z+1
2 ∈ Z. So take z = −1 and then:

k =
72

gcd(24, 108)
=

72

12
= 6
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We now compute the projection maps. By section 6.1, the projection map from
both S1 × S1 and S1 × 2S1 will have the matrix:[ ml

lcm(b2,d2)
c

0 lcm(b2, d2)

]
=

[
6 c
0 12

]
Here lcm(b2, d2) = 12 divides c, so we take c = 12.
The projection map from ∂V1 will have matrix:[

lcm(a2, c2) 0
z ml

lcm(a2,c2)

]
=

[
6 0
6 12

]
The projection map from ∂V2 will have matrix:[

lcm(a2, c2) 0
z ml

lcm(a2,c2)

]
=

[
12 0
6 6

]
We now calculate the projected filling of S1 × S1 with V1 by solving:

(pφ̂|S1×S1)∗(d|∂V1
)∗ = (d′|∂V ′

1
)∗(pφX

|∂V1
)∗[

6 12
0 12

] [
−1 2
−1 3

]
=

[
x′ p′

y′ q′

] [
6 0
6 12

]
This yields: [

−18 48
−12 36

]
=

[
6x′ + 6p′ 12p′

6y′ + 6q′ 12q′

]
So then p′ = 4, q′ = 3, x′ = −7, and y′ = −5.
We now calculate the projected filling of S1 × 2S1 with V2 by solving:
(pφ̂|S1×2S1)∗(d|∂V2

)∗ = (d′|∂V ′
2
)∗(pφX

|∂V2
)∗[

6 12
0 12

] [
−1 5
0 1

]
=

[
x′ p′

y′ q′

] [
12 0
6 6

]
This yields: [

−6 42
0 12

]
=

[
12x′ + 6p′ 6p′

12y′ + 6q′ 6q′

]
So then p′ = 7, q′ = 2, x′ = −4, and y′ = −1.
This fully characterizes the quotient space. We visualize in Figure 4:

7. Summary of Results and Future Work

In this paper we have studied the group actions on Seifert fibered elliptic man-
ifolds using the results of [8] and [9]. We have extended the results of those papers
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Figure 4: Full quotient space

by considering when an orientation-reversing action is possible and shown this can
only happen if there are no critical fibers of order greater than 2 and the Euler
class is non-zero. These results allowed us to consider the possible base spaces of
the Seifert manifolds and determine what the possible group actions are. As fu-
ture work, Seifert manifolds that do admit orientation-reversing actions could be
considered as well as a construction of such an action.
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