• Title/Summary/Keyword: finite domain

Search Result 1,559, Processing Time 0.025 seconds

Finite element analysis of welding process by parallel computation (병렬 처리를 이용한 용접 공정 유한 요소 해석)

  • 임세영;김주완;최강혁;임재혁
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.156-158
    • /
    • 2003
  • An implicit finite element implementation for Leblond's transformation plasticity constitutive equations, which are widely used in welded steel structure is proposed in the framework of parallel computing. The implementation is based upon the multiplicative decomposition of deformation gradient and hyper elastic formulation. We examine the efficiency of parallel computation for the finite element analysis of a welded structure using domain-wise multi-frontal solver.

  • PDF

EXISTENCE OF SOLUTION OF FINITE SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS

  • Ohm, Mi-Ray
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.309-318
    • /
    • 1994
  • The approach presented in this paper is based on the transformation of the Stefan problem in one space dimension to an initial-boundary value problem for the heat equation in a fixed domain. Of course, the problem is non-linear. The finite element approximation adopted here is the standared continuous Galerkin method in time. In this paper, only the regular case is discussed. This means the error analysis is based on the assumption that the solution is sufficiently smooth. The aim of this paper is the existence of the solution in a finite Galerkin system of ordinary equations.

  • PDF

BOUNDARY BEHAVIOR OF HOLOMORPHIC DISCS IN CONVEX FINITE TYPE DOMAINS

  • Lee, Kang-Hyurk
    • East Asian mathematical journal
    • /
    • v.31 no.3
    • /
    • pp.351-356
    • /
    • 2015
  • In this paper, we study holomorphic discs in a domain with a plurisubharmonic peak function at a boundary point. The aim is to describe boundary behavior of holomorphic discs in convex finite type domains in the complex Euclidean space in term of a special local neigh-borhood system at a boundary point.

Space-Time Finite Element Analysis of Transient Problem (동적 문제의 공간-시간 유한요소해석)

  • Kim, Chi-Kyung;Lim, Hong-Bin
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.4
    • /
    • pp.201-206
    • /
    • 1993
  • A space-time finite element method was presented for time dependent problem. The method which treat both the space and time unformly were proposed and numerically tested. The weighted residual process was used to formulate a finite element method in a space-time domain based upon continuous Galerkin method. This method leads to a conditional stabie high-order accurate solver.

  • PDF

Transient Analysis of General Dispersive Media Using Laguerre Functions (라게르 함수를 이용한 일반적인 분산 매질의 시간 영역 해석)

  • Lee, Chang-Hwa;Kwon, Woo-Hyen;Jung, Baek-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.10
    • /
    • pp.1005-1011
    • /
    • 2011
  • In this paper, we present a marching-on-in-degree(MOD) finite difference method(FDM) based on the Helmholtz wave equation for analyzing transient electromagnetic responses in a general dispersive media. The two issues related to the finite difference approximation of the time derivatives and the time consuming convolution operations are handled analytically using the properties of the Laguerre functions. The basic idea here is that we fit the transient nature of the fields, the flux densities, the permittivity with a finite sum of orthogonal Laguerre functions. Through this novel approach, not only the time variable can be decoupled analytically from the temporal variations but also the final computational form of the equations is transformed from finite difference time-domain(FDTD) to a finite difference formulation through a Galerkin testing. Representative numerical examples are presented for transient wave propagation in general Debye, Drude, and Lorentz dispersive medium.

NONEXISTENCE OF H-CONVEX CUSPIDAL STANDARD FUNDAMENTAL DOMAIN

  • Yayenie, Omer
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.823-833
    • /
    • 2009
  • It is well-known that if a convex hyperbolic polygon is constructed as a fundamental domain for a subgroup of the modular group, then its translates by the group elements form a locally finite tessellation and its side-pairing transformations form a system of generators for the group. Such hyperbolically convex polygons can be obtained by using Dirichlet's and Ford's polygon constructions. Another method of obtaining a fundamental domain for subgroups of the modular group is through the use of a right coset decomposition and we call such domains standard fundamental domains. In this paper we give subgroups of the modular group which do not have hyperbolically convex standard fundamental domain containing only inequivalent cusps.

OVERRINGS OF t-COPRIMELY PACKED DOMAINS

  • Kim, Hwan-Koo
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.191-205
    • /
    • 2011
  • It is well known that for a Krull domain R, the divisor class group of R is a torsion group if and only if every subintersection of R is a ring of quotients. Thus a natural question is that under what conditions, for a non-Krull domain R, every (t-)subintersection (resp., t-linked overring) of R is a ring of quotients or every (t-)subintersection (resp., t-linked overring) of R is at. To address this question, we introduce the notions of *-compact packedness and *-coprime packedness of (an ideal of) an integral domain R for a star operation * of finite character, mainly t or w. We also investigate the t-theoretic analogues of related results in the literature.

Improved Weighted Integral Method and Application to Analysis of Semi-infinite Domain (개선된 가중적분법과 반무한 영역의 해석)

  • 노혁천;최창근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.369-376
    • /
    • 2002
  • The stochastic analysis of semi-infinite domain is presented using the weighted integral method, which is improved to include the higher order terms in expanding the displacement vector. To improve the weighted integral method, the Lagrangian remainder is taken into account in the expansion of the status variable with respect to the mean value of the random variables. In the resulting formulae only the 'proportionality coefficients' are introduced in the resulting equation, therefore no additional computation time and memory requirement is needed. The equations are applied in analyzing the semi-infinite domain. The results obtained by the improved weighted integral method are reasonable and are in good agreement with those of the Monte Carlo simulation. To model the semi-infinite domain, the Bettess's infinite element is adopted, where the theoretical decomposition of the strain-displacement matrix to calculate the deviatoric stiffness of the semi-infinite domains is introduced. The calculated value of mean and the covariance of the displacement are revealed to be larger than those given by the finite domain assumptions which is thought to be rational and should be considered in the design of structures on semi-infinite domains.

  • PDF

(4+n)-noded Moving Least Square(MLS)-based finite elements for mesh gradation

  • Lim, Jae Hyuk;Im, Seyoung
    • Structural Engineering and Mechanics
    • /
    • v.25 no.1
    • /
    • pp.91-106
    • /
    • 2007
  • A new class of finite elements is described for dealing with mesh gradation. The approach employs the moving least square (MLS) scheme to devise a class of elements with an arbitrary number of nodal points on the parental domain. This approach generally leads to elements with rational shape functions, which significantly extends the function space of the conventional finite element method. With a special choice of the nodal points and the base functions, the method results in useful elements with polynomial shape functions for which the $C^1$ continuity breaks down across the boundaries between the subdomains comprising one element. Among those, (4 + n)-noded MLS based finite elements possess the generality to be connected with an arbitrary number of linear elements at a side of a given element. It enables us to connect one finite element with a few finite elements without complex remeshing. The effectiveness of the new elements is demonstrated via appropriate numerical examples.

Analysis of Semi-Infinite Problems Subjected to Body Forces Using Nonlinear Finite Elements and Boundary Elements (물체력이 작용되는 반무한영역문제의 비선형유한요소-경계요소 조합해석)

  • Hwang, Hak Joo;Kim, Moon Kyum;Huh, Taik Nyung;Ra, Kyeong Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.45-53
    • /
    • 1991
  • The underground structure, which has infinite or semi-infinite boundary conditions, is subjected by body forces and in-situ stresses. It also has stress concentration, which causes material nonlinear behavior, in the vicinity of the excavated surface. In this paper, some methods which can be used to transform domain integrals into boundary integrals are reviewed in order to analyze the effect of the body forces and the in-situ stresses. First, the domain integral of the body force is transformed into boundary integral by using the Galerkin tensor and divergence theorem. Second, it is transformed by writing the domain integral in cylindrical coordinates and using direct integration. The domain integral of the in-situ stress is transformed into boundary integral applying the direct integral method in cylindrical coordinates. The methodology is verified by comparing the results from the boundary element analysis with those of the finite element analysis. Coupling the above boundary elements with finite elements, the nonlinear behavior that occurs locally in the vicinity of the excavation is analyzed and the results are verified. Thus, it is concluded that the domain integrals of body forces and in-situ stresses could be performed effectively by transforming them into the boundary integrals, and the nonlinear behavior can be reasonably analyzed by coupled nonlinear finite element and boundary element method. The result of this research is expected to he used for the analysis of the underground structures in the effective manner.

  • PDF