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BOUNDARY BEHAVIOR OF HOLOMORPHIC DISCS IN

CONVEX FINITE TYPE DOMAINS

Kang-Hyurk Lee

Abstract. In this paper, we study holomorphic discs in a domain with

a plurisubharmonic peak function at a boundary point. The aim is to

describe boundary behavior of holomorphic discs in convex finite type
domains in the complex Euclidean space in term of a special local neigh-

borhood system at a boundary point.

1. Introduction

We will describe the boundary behavior of holomorphic discs in a domain
(connected open set) in Cn in terms of a certain local neighborhood system
at a boundary point. This research has its origin in author’s thesis ([5]) for
strongly pseudoconvex domains in almost complex manifolds. An aim of [5] was
to study a convergence of the scaling sequence in almost complex manifolds.
In order to get the convergence, it needs to consider a special neighborhood
system at a strongly pseudoconvex boundary point which is invariant under
the non-isotropic dilation. Let Ω be a domain in Cn which has the hyperplane
{z ∈ Cn : Re z1 = 0} as a tangent plane at the strongly pseudonvex boundary
point 0 ∈ ∂Ω. Then we consider the local neighborhood system {Q(0, δ) : δ > 0}
of 0 where

Q(0, δ) = {z = (z1, z
′) ∈ C× Cn−1 : |z1| < δ, |z′| < δ1/2} ,

which is invariant under the dilation Dt(z1, z
′) = (tz1, t

1/2z′) (t > 0), that is,
Dt(Q(0, δ)) = Q(0, tδ) for any t and δ. Proposition 3.2 in [5] states that if a
holomorphic disc u : ∆ → Ω satisfies u(0) ∈ Q(0, δ) for a sufficiently small δ,
then u(∆r) ⊂ Q(0, Cδ) for some constant C which is independent of u. Here
we denote by ∆r = {ζ ∈ C : |ζ| < r} and ∆ = ∆1. This result is based on a
localization lemma of holomorphic discs due to Ivashkovich-Rosay (Lemma 2.2
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in [4]) which says that a certain estimate of a plurisubharmonic peak function
of a boundary point may well control holomorphic discs whose origin is close to
the point.

In this paper, we will give a similar result for domains in Cn of finite type
in the sense of D’Angelo [1]. In Section 2, we shall give a localization result
(Lemma 2.1) from a plurisubharmonic peak function with a certain boundary
estimate. Then the boundary behavior of holomorphic discs in a convex finite
type domain will be described in terms of a suitable local neighborhood system
in Section 3.

2. A localization

Let Ω be a domain in Cn and p be a boundary point of Ω. If there is a
real-valued function ϕp on Ω ∩ U for a neighborhood U of p such that ϕp is

plurisubharmonic on Ω∩U , ϕp < 0 on Ω∩U \ {p} and ϕp(p) = 0, then we call
ϕp a local plurisubharmonic peak function at p. It is well-known that if p ∈ ∂Ω
admits a plurisubharmonic peak function, then for any neighborhood V of p
and any real number r with 0 < r < 1 there is a neighborhood W of p such that
u(∆r) ⊂ V for any holomorphic disc u : ∆→ Ω with u(0) ∈W (see Lemma 2.1
in [4]).

Lemma 2.1. Let p be a boundary point of a domain Ω in Cn admitting a local
plurisubharmonic peak function ϕp defined on Ω ∩ U for a neighborhood U of p
such that

−A |z − p|λ ≤ ϕp(z) ≤ −B |z − p|2kλ (1)

for some positive integer k and positive real numbers A, B, λ with 2kλ ≥ 2.
Then there is a positive real number cr for each 0 < r < 1 such that for every
holomorphic disc u : ∆→ Ω with its oringin u(0) sufficiently close to p,

|u(0)− u(ζ)| ≤ cr |u(0)− p|1/2k

if ζ ∈ ∆r.

Proof. Let us assume that the neighborhood U has a diameter less than 1. Given

r, fix r < r1 < 1. Since 2kλ > 2, the function |u− p|2kλ is plurisubharmonic on
∆ for any holomorphic disc u : ∆→ Cn. Applying the Poisson integral formula

to |u− p|2kλ, we have a constant C = C(r, r1) such that

|u(ζ)− p|2kλ ≤ C
∫ 2π

0

∣∣u(r1e
iθ)− p

∣∣2kλ dθ
2π

for any ζ ∈ ∆r.
Let u : ∆→ Ω be a holomorphic disc whose origin u(0) is sufficiently close to

p. Since p admits the plurisubharmonic peak function ϕp, we may assume that

u(∆r1) ⊂ U . Thus we can consider the subharmonic function ϕp ◦ u defined on

∆r1 . Equation (1) implies the inequality

−A |u(ζ)− p|λ ≤ ϕp ◦ u(ζ) ≤ −B |u(ζ)− p|2kλ (2)
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for |ζ| ≤ r1. By the second inequality of (2) and the mean value inequality of
the subharmonic function ϕp ◦ u, it follows that

C

∫ 2π

0

∣∣u(r1e
iθ)− p

∣∣2kλ dθ
2π
≤ −C

B

∫ 2π

0

ϕp ◦ u(r1e
iθ)
dθ

2π
≤ −C

B
ϕp ◦ u(0) .

From the first inequality of (2), we have

|u(ζ)− p|2kλ ≤ AC

B
|u(0)− p|λ

for any ζ ∈ ∆r. Thus we obtain that

|u(ζ)− u(0)|2k ≤ (|u(0)− p|+ |u(ζ)− p|)2k ≤ cr |u(0)− p|

for some cr depending only on r, r1 and (1). This proves the lemma. �

Suppose that Ω is strongly pseudoconvex at p ∈ ∂Ω. Then we can choose
a local defining function ρ : U → R on a neighborhood U of p, a smooth
function with Ω ∩ U = {z ∈ Cn : ρ(z) < 0}, which is strictly plurisubharmonic

on U . Taking small ε > 0 so that ϕp(z) = ρ(z) − ε |z − p|2 is also strictly
plurisubharmonic near p, we have the local plurisubharmonic peak function ϕp
at p with −A |z − p| ≤ ϕp(z) ≤ −B |z − p|2. Thus we can apply Lemma 2.1 for
k = 1.

Let Ω ⊂⊂ Cn be a convex domain with smooth boundary and of finite
type 2k. Let 0 < λ < 1. Then by Fornaess-Sibony [2], Ω admits a global
plurisubharmonic peak function ϕp at each p such that

|ϕp(z)− ϕp(z′)| ≤ A |z − z′|
λ

for any z, z′ ∈ U ,

and

ϕp(z) ≤ −
1

A
|z − p|2kλ for any z ∈ Ω ∩ U ,

for some real positive number A which is independent of a choice of p. Com-
bining these conditions, we get

−A |z − p|λ ≤ ϕp(z) ≤ −
1

A
|z − p|2kλ .

Since this estimate is uniform for p ∈ ∂Ω, we have

Corollary 2.2. Let Ω be a convex domain with smooth boundary and of finite
type 2k and let 0 < r < 1. Then there is a constant cr such that for any holo-
morphic disc u : ∆→ Ω whose origin u(0) is sufficiently close to the boundary
∂Ω,

|u(0)− u(ζ)| ≤ cr (dist(u(0), ∂Ω))
1/2k

if ζ ∈ ∆r.
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If Ω be a (not necessarily convex) domain of finite type 2k in Cn, every
boundary point p of Ω admits a plurisubharmonic peak function ϕp with

−A |z − p| ≤ ϕp(z) ≤ − |z − p|2k .

for some uniform constant A (Theorem A in [2]). Thus Corollary 2.2 also holds
for finite type bounded domains in Cn.

3. Boundary behavior of holomorphic discs on convex finite type
domains

Let Ω ⊂ Cn be a domain with smooth boundary. For each point p ∈ ∂Ω, let
νp ∈ Cn be the outward unit normal vector of ∂Ω at p. Then we decompose
the complex vector space Cn by

Cn = Np ⊕ Tp
where Np is a complex 1-dimensional vector space generated by νp and Tp is
its orthogonal complement. We denote by π1 : Cn → Np and π2 : Cn → Tp
corresponding orthogonal projections. For δ > 0, let us define

QkΩ(p, δ) = {z ∈ Cn : |π1(z − p)| < δ, |π2(z − p)| < δ1/2k} .

If Ω is of finite type 2k at p, then {QkΩ(p, δ)} is a suitable local neighborhood
system at p in the sense of the following.

Theorem 3.1. Let Ω be a convex domain with smooth boundary and of finite
type 2k and let p ∈ ∂Ω. For each 0 < r < 1, there are a positive real number
Cr such that if u : ∆ → Ω is a holomorphic disc with u(0) ∈ QkΩ(p, δ) for a
sufficiently small δ, then

u(∆r) ⊂ QkΩ(p, Crδ) .

Proof. Taking a complex rigid motion of Cn, we may assume that p = 0 and
νp = (1, 0, . . . , 0). Then there are an open neighborhood U of 0 and a local
defining function ρ : U → R of Ω such that

ρ(z) = Re z1 + ε(z)

where ε(z) = O(|z|2) and ε ≥ 0. Simultaneously we have

QkΩ(0, δ) = {z = (z1, z
′) ∈ C× Cn−1 : |z1| < δ, |z′| < δ1/2k} .

Let r < r1 < r2 < 1 and let u = (u1, u
′) : ∆ → Ω be a holomorphic disc

with u(0) ∈ QkΩ(0, δ) for a sufficiently small δ. Since dist(u(0), ∂Ω) < δ and

|u(0)|2 = |u1(0)|2 + |u′(0)|2 ≤ δ2 + δ1/k ≤ (C ′δ1/2k)2 for some uniform constant
K, Corollary 2.2 implies that

|u(ζ)| ≤ |u(ζ)− u(0)|+ |u(0)| ≤ cr2 (dist(u(0), ∂Ω))
1/2k

+ |u(0)|

≤ cr2δ1/2k +Kδ1/2k = (cr2 +K)δ1/2k
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for |ζ| < r2. Therefore it suffices to prove that there is a constant C depending
on r such that |u1(ζ)| < Cδ for |ζ| < r.

Let us see Reu1. Since the origin 0 admits a plurisubharmonic peak function,
we may assume that a holomorphic disc u : ∆ → Ω with u(0) ∈ Qk(0, δ) (δ is
sufficiently small) satisfies u(∆r2) ⊂ U . Then Reu1 is a negative harmonic
function on ∆r2 . Applying Harnack’s inequality to Reu1, we have

r2 − r1

r2 + r1
Reu1(0) ≤ Reu1(ζ)

for |ζ| < r1. Since Reu1(0) > −δ, we have

−r2 − r1

r2 + r1
δ < Reu1(ζ) < 0 (3)

for |ζ| < r1.
It remains to study Imu1. From the interior estimates of derivatives for the

harmonic function Reu1 (Theorem 2.10 in [3]), there is a constant L > 0 such
that

sup
∆r

|d(Reu1)| ≤ L sup
∆r1

|Reu1| ≤ L
r2 − r1

r2 + r1
δ .

Since |d(Reu1)| = |d(Imu1)| from the Cauchy-Riemann equation for the holo-
morphic function u1, we have

sup
∆r

|d(Imu1)| ≤ Lr2 − r1

r2 + r1
δ .

Since |Imu1(0)| < δ, the mean value theorem implies that there is a constant
C = C(r, r1, r2) such that |Imu1(ζ)| < Cδ for |ζ| < r. With (3) this completes
the proof. �

Using the interior derivative estimates for Imu1 and the Cauchy estimates
for u2, . . . , un, we have the following under the same setting of the proof.

Corollary 3.2. There is a constant C for r such that

‖π1 ◦ u‖C1(∆r) < Cδ ,

‖π2 ◦ u‖C1(∆r) < Cδ1/2k (j = 2, . . . , n) ,

for any holomorphic disc u in Ω with u(0) ∈ QkΩ(0, δ) for sufficiently small δ.
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