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OVERRINGS OF t-COPRIMELY PACKED DOMAINS

Hwankoo Kim

Abstract. It is well known that for a Krull domain R, the divisor class
group of R is a torsion group if and only if every subintersection of R is

a ring of quotients. Thus a natural question is that under what condi-
tions, for a non-Krull domain R, every (t-)subintersection (resp., t-linked
overring) of R is a ring of quotients or every (t-)subintersection (resp.,

t-linked overring) of R is flat. To address this question, we introduce the
notions of ∗-compact packedness and ∗-coprime packedness of (an ideal
of) an integral domain R for a star operation ∗ of finite character, mainly
t or w. We also investigate the t-theoretic analogues of related results in

the literature.

1. Introduction

The notion of compact packedness of (an ideal of) a commutative ring with
identity, as a generalization of the Prime Avoidance Theorem, was first intro-
duced by C. Reis and T. Viswanathan in [32], and further investigated by J. V.
Pakala and T. S. Shores, N. Popescu, and W. Smith in [30, 31, 34]. This notion
was generalized to that of coprime packedness of (an ideal of) a commutative
ring with identity by V. Erdoǧdu in [9] and further extensively studied by V.
Erdoǧdu, S. McAdam, D. E. Rush and L. J. Wallace in [10, 11, 12, 13, 33]. Re-
cently in [4], the t-analogue notions of compact packedness and related proper-
ties were introduced by G. W. Chang and C. J. Hwang and generalized weakly
factorial domains and weakly Krull domains were characterized in terms of
these notions.

Let T be an overring of an integral domain R. Then the following chain of
implications is well known: T is a ring of quotients of R ⇒ T is flat over R ⇒
T is t-flat over R ⇒ T is a t-subintersection of R ⇒ T is a generalized ring of
quotients of R ⇒ T is t-linked over R (We will define these concepts later). It
was shown in [25, Proposition 2.10] that a domain R is a PvMD if and only if
every t-linked overring of R is t-flat. Thus the last four conditions are equivalent
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for PvMDs, but in general none of the implications can be reversed ([16, p.
287]). On the other hand, it is also well known that for a Krull domain R, the
divisor class group of R is a torsion group if and only if every subintersection of
R is a ring of quotients ([15, Proposition 6.8]). Thus a natural question is that
under what conditions, for a non-Krull domain R, every (t-)subintersection
(resp., t-linked overring) of R is a ring of quotients or every (t-)subintersection
(resp., t-linked overring) of R is flat. To address this question, we introduce the
notions of ∗-compact packedness and ∗-coprime packedness of (an ideal of) an
integral domain R for a star operation ∗ of finite character, mainly t or w. We
also investigate the t-theoretic analogues of related results of [11, 27, 29, 35],
using methods developed there.

Throughout this paper, R denotes an integral domain with quotient field K.
Let F(R) denote the set of nonzero fractional ideals of R. A ∗-operation (star
operation) on R is a mapping A → A∗ from F(R) to F(R) which satisfies the
following conditions for all a ∈ K \ {0} and A,B ∈ F(R): (1) (a)∗ = (a) and
(aA)∗ = aA∗, (2) A ⊆ A∗; if A ⊆ B, then A∗ ⊆ B∗, and (3) (A∗)∗ = A∗.
For details on star operations, the reader may consult [18, Sections 32 and
34]. Yet for our purposes, we include some of the definitions. An A ∈ F(R)
is called a ∗-ideal if A∗ = A. Recall that the function on F(R) defined by
A 7→ Av := (A−1)−1 is a star operation called the v-operation, where A−1 :=
R :K A = {x ∈ K | xA ⊆ R}. The t-operation on R is the star operation
defined by A 7→ At := ∪{Jv|J ⊆ A with J ∈ F(R) finitely generated}. The w-
operation on R is the star operation defined by A 7→ Aw := {x ∈ K | Jx ⊆ A for
some finitely generated ideal J of R with J−1 = R} ([36]). Finally the identity
mapping on F(R) is obviously a star operation; it is called the d-operation.
Given a star operation ∗, we have (AB)∗ = (A∗B∗)∗ for all A,B ∈ F(R). This
equation is said to define the ∗-multiplication. For any star operation ∗ and for
any A ∈ F(R), we have A ⊆ A∗ ⊆ Av, and hence (A∗)v = Av. In particular,
a v-ideal (divisorial ideal) is a ∗-ideal for any ∗. A star operation A 7→ A∗ is
said to be of finite character if A∗ =

∪
(Ai)∗ for each A ∈ F(R), where {Ai} is

the family of nonzero finitely generated fractional ideals of R contained in A.
The t-operation, w-operation, and d-operation on R are the most important
examples of star operations of finite character.

Let ∗ be a star operation of finite character on an integral domain R. Then
the set of integral proper ∗-ideals has maximal elements under inclusion, called
∗-maximal ideals, and these ideals are prime. A ∗-ideal which is prime is also
called a ∗-prime ideal. We denote by ∗-Spec(R) the set of ∗-prime ideals of
R and by ∗-Max(R) the set of ∗-maximal ideals of R. In [21], E. G. Houston
defined the t-dimension of a domain R to be the supremum of the lengths of all
chains of t-primes in R. The w-dimension of R can be also defined similarly.
In particular, if each t-maximal ideal of R has height one, we may say that R
has t-dimension one. We will often use the following well-known facts.
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• A minimal prime ideal of a t-ideal (resp., w-ideal) is a t-ideal (resp.,
w-ideal), e.g., a height-one prime ideal is a t-ideal (resp., w-ideal).

• t-Max(R)=w-Max(R).

In [36, 37], F. Wang and R. L. McCasland defined an integral domain R to be
a strong Mori domain (for short, SM domain) if R satisfies the ascending chain
condition on w-ideals. Note that the class of Noetherian domains is properly
contained in the class of SM domains and the class of SM domains is properly
contained in the class of Mori domains (An integral domain R is called a Mori
domain if R satisfies the ascending chain condition on v-ideals). Recall that
a domain R is a Prüfer v-multiplication domain (or PvMD for short) if RM

is a valuation domain for each t-maximal ideal M of R. Note that both SM
domains and PvMDs are generalizations of Krull domains.

A nonempty set F of nonzero ideals of R is called a multiplicative system
of ideals if IJ ∈ F for each I, J ∈ F . The ring RF := {x ∈ K | xI ⊆ R for
some I ∈ F} is called a generalized ring of quotients of R.

A particular type of multiplicative system is a localizing system. This is a
set F of ideals of R such that (1) if I ∈ F and J is an ideal of R with I ⊆ J ,
then J ∈ F , and (2) if I ∈ F and J is an ideal of R with (J :R a) ∈ F for
every a ∈ I, then J ∈ F . If Λ is a subset of Spec(R), then F (Λ) := {I | I is
an ideal of R such that I ⊈ P for each P ∈ Λ} is a localizing system. It is easy
to see that RF(Λ) =

∩
P∈Λ RP .

These notions have t-analogues. A set of t-ideals is a t-multiplicative system
if it is closed under t-multiplication; a t-multiplicative system T is a t-localizing
system if it satisfies the closure operations (1) and (2) above. Denoting the set
of t-ideals of R by t(R), it is easy to see that if F is a localizing system, then
T := F ∩ t(R) is a t-localizing system and RT = RF ([16, p. 287]).

An overring T of R is called a t-subintersection of R if it has the form
∩
RP ,

where the intersection is taken over some set of t-primes P of R. We say that
T is t-flat over R if TM = RM∩R for each t-maximal ideal M of T . Finally,
recall from [6] that T is t-linked over R if for each finitely generated ideal I of
R with I−1 = R we have (IT )−1 = T . Following [5], we say that an integral
domain R is t-linkative if every overring of R is t-linked over R.

For unexplained terminology and notation, we refer to [15, 18, 24].

2. On Prüfer v-multiplication domains

Let R be an integral domain and let ∗ be a star operation of finite character
on R. An integral ∗-ideal I of R is said to be ∗-coprimely packed (resp., ∗-
compactly packed) if for any set Λ of ∗-maximal (resp., ∗-prime) ideals of R
with I ⊆

∪
Q∈Λ Q, one has I ⊆ P for some P ∈ Λ. A class I of integral

∗-ideals is said to be ∗-coprimely packed (resp., ∗-compactly packed) if every
element of I is ∗-coprimely packed (resp., ∗-compactly packed). Finally, R is
said to be ∗-coprimely packed (resp., ∗-compactly packed) if every ∗-ideal of R
is ∗-coprimely packed (resp., ∗-compactly packed). Then it is clear that if R
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is ∗-compactly packed, then it is ∗-coprimely packed, but we believe that in
general the converse does not hold (we will provide a counterexample for the
case ∗ = t after Corollary 3.3). It is obvious that ∗-compactly packedness and
∗-coprime packedness are the same in the case of ∗-dim(R) = 1. If ∗ = d, then
the notions of d-compactly packed and d-coprimely packed are just those of
compactly packed and coprimely packed introduced in [32] and [9] respectively.
It was shown in [4, Proposition 3.1] that t-Spec(R) is t-compactly packed if
and only if every prime t-ideal of R is the radical of a principal ideal.

If S is a multiplicatively closed subset of R, then FS denotes the localizing
system consisting of all ideals J such that J ∩ S ̸= ∅. As mentioned in the
introduction, TS := FS ∩ t(R) is a t-localizing system consisting of all t-
ideals I such that I ∩ S ̸= ∅. In particular, if P is a prime ideal of R, then
TP := TR\P = F ({P}) ∩ t(R).

Theorem 2.1. Let R be an integral domain. Then the following statements
are equivalent.

(1) R is t-compactly packed.
(2) t-Spec(R) is t-compactly packed.
(3) Every prime t-ideal of R is the radical of a principal ideal.
(4) If a t-localizing system F is of the form F (Λ) ∩ t(R) for some Λ ⊆ t-

Spec(R), then there exists a multiplicatively closed subset S of R such
that F = TS.

Proof. (1) ⇒ (2). It is obvious.
(2) ⇔ (3). [4, Proposition 3.1].
(3) ⇒ (1). Suppose that every prime t-ideal of R is the radical of a principal

ideal and that I ⊆
∪

P∈Λ P for some t-ideal I of R and subset Λ of t-Spec(R).
Let S := R\

∪
P∈Λ P , which is a multiplicatively closed subset of R and expand

I to a t-ideal Q, which is maximal with respect to avoiding S. Indeed, this
follows from Zorn’s Lemma and the fact that, for every directed family {Iα} of
integral t-ideals,

∪
α Iα is a t-ideal. Then such a Q is necessarily (t-)prime, so

the radical of a principal ideal, say xR. Now x ∈ P for some P ∈ Λ, whence
I ⊆ P as desired.

(1) ⇒ (4). Let F be a t-localizing system of the form F (Λ) ∩ t(R) for
some Λ ⊆ t-Spec(R) and let S = R \

∪
P∈Λ P . Then it is easy see that S is

a multiplicatively closed subset of R and TS ⊆ F =
∩

P∈Λ TP . Now we will
show that F ⊆ TS . If I is a t-ideal of R such that I ̸∈ TS , then I ∩ S = ∅,
and so I ⊆

∪
P∈Λ P ; thus by hypothesis I ⊆ P for some P ∈ Λ. This implies

that I ̸∈ TP , whence I ̸∈ F . Therefore F = TS .
(4) ⇒ (1). Let I be a t-ideal of R and {Pi}i ⊆ t-Spec(R) such that I ⊆

∪
i Pi

be given. Set S := R \
∪

i Pi and F :=
∩

i TPi . Then by hypothesis F = TS′

for some multiplicatively closed subset S′ of R. It is easy to see that Pi ̸∈ F
for any i. So Pi ∩ S′ = ∅, according to the definition of TS′ . Thus we have
shown that S′ ⊆ S, and hence TS′ ⊆ TS . But for any i we have Pi ∩ S = ∅,
whence TS ⊆ TPi and so TS ⊆

∩
i TPi = F = TS′ . But I ̸∈ TS′ and then
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I ̸∈
∩

i TPi , thus I ̸∈ TPi for some i. Thus I ⊆ Pi. Therefore R is t-compactly
packed. □

Note that the equivalence (1) and (4) of Theorem 2.1 is the t-theoretic
analogue of [31, Théorème 2.1].

Proposition 2.2. If an integral domain R is t-compactly packed, then every
t-flat overring of R is a ring of quotients of R.

Proof. Let T be a t-flat overring of R, and let Φ be the family of all t-prime
ideals P of R such that RP ⊇ T . Then T =

∩
P∈Φ RP . Now let S := R∩U(T ),

where U(T ) is the set of all units in T . Then S is a multiplicatively closed subset
of R. Since RS is also a (t-)flat overring of R, we have that T ⊇ RS =

∩
Q∈Ψ RQ

for the family Ψ of all t-prime ideals Q of R such that RQ ⊇ RS and Φ ⊆ Ψ.
Assume that Φ ̸= Ψ and let Q ∈ Ψ \ Φ. Then Q ⊈

∪
P∈Φ P by the t-compact

packedness. Indeed, if Q ⊆
∪

P∈Φ P , then Q ⊆ P for some P ∈ Φ, and so
T ⊆ RP ⊆ RQ, and hence also Q ∈ Φ, a contradiction. Now there exists an
x ∈ Q \

∪
P∈Φ P . Thus x ∈ U(T ) ∩ R = S but x is not a unit in RS , which is

impossible. Hence Φ = Ψ and T = RS . □
An integral domain R is said to have the QR-property if every overring of R

is a ring of quotients. The tQR-property, which is the t-theoretic analogue of
the QR-property, was introduced and studied in [7]: A domain R has the tQR-
property (or is a tQR-domain) if each t-linked overring of R is a ring of quotients
of R. It was shown in [7, Theorem 1.3] that for a PvMD R, R is a tQR-domain
if and only if for each finitely generated ideal A of R, we have An ⊆ bR ⊆ Av

for some n ≥ 1 and some b ∈ R. Thus it is clear that GCD-domains are
tQR-domain, since every finite type v-ideal of a GCD-domain is principal. It
follows from [25, Proposition 2.10] that a tQR-domain is necessarily a PvMD
(and hence integrally closed), and conversely, we have the following result.

Corollary 2.3. If an integral domain R is a t-compactly packed PvMD, then
R has the tQR-property.

Example 2.4. (1) A simple and nontrivial example of a t-compactly packed
PvMD (i.e., non-Krull) is a rank-one non-discrete valuation domain V .

(2) There exists an example of a t-compactly packed domain which is not a
tQR-domain. Let K be an algebraically closed field and F a proper subfield
such that [K : F ] = ∞ and X an indeterminate. Then it is well-known that
R := F +XK[X] is a non-Noetherian one-dimensional domain with Max(R) =
{XK[X]} ∪ {(1 − aX)R | a ∈ K \ {0}}. Clearly, R is a coprimely packed
(compactly packed) t-linkative domain ([6, Corollary 2.7]) that is not semilocal.
Since R is t-linkative, we have d = w on R, and so R is w-coprimely packed
(w-compactly packed). Since w-dim(R) = 1 and w-Max(R) = t-Max(R), we
have w-Spec(R) = t-Spec(R), and so by Theorem 2.1, R is also t-coprimely
packed (t-compactly packed). Note that R is not a Krull domain (actually it is
not a PvMD). Indeed, if not, then R is a one-dimensional Krull domain. Thus
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by [18, (43.16) Theorem] R is a Dedekind domain. Hence R is Noetherian, a
contradiction.

Recall that an integral domain R is called a weakly factorial domain (or
WFD for short) if each nonzero nonunit of R is expressible as a product of
primary elements of R. Also we recall that a domain R is a generalized weakly
factorial domain (GWFD) if each nonzero prime ideal of R contains a principal
primary ideal. It was shown in [4, Theorem 3.2] that a domain R is a GWFD
if and only if R is t-compactly packed with t-dim(R) = 1. The following result
generalizes [26, Corollary 9]: Every flat overring of a WFD R is a quotient ring
of R.

Corollary 2.5. Every t-flat overring of a WFD R is a ring of quotients of R.

Proof. This follows from [4, Proposition 3.1 and Theorem 3,2] and the fact that
every WFD is a GWFD. □

Corollary 2.6. If an integral domain R has only a finite number of t-prime
ideals, then every t-flat overring of R is a ring of quotients of R.

Proof. It follows from the Prime Avoidance Theorem that R is t-compactly
packed. □

The t#-property was introduced and studied in [16]: A domain R has the
t#-property (or is a t#-domain) if

∩
M∈M1

RM ̸=
∩

N∈M2
RN for any two

distinct subsets M1,M2 of the set of t-maximal ideals of R. It follows from
[16, Corollary 1.3] and [36, Proposition 5.7] that every H-domain (and hence
(strong) Mori domain) is a t#-domain (A domain R is said to be an H-domain
if for each ideal I of R with I−1 = R, there exists a finitely generated ideal
J ⊆ I such that J−1 = R). Let ∆ denote the set of all t-maximal ideals of R,
and let ∆P = ∆ \ {P} for each P ∈ ∆.

Lemma 2.7. Let R be a PvMD. Then

(1) R has the property t# if and only if RQ ⊉
∩

P∈∆Q
RP for each Q ∈ ∆.

(2) If R has the property t# and if t-dimR=1, then each t-linked overring
of R has the property t#.

(3) If Q ⊈
∪

P∈∆Q
P for each Q ∈ ∆, then R has the property t#.

(4) If R has the tQR-property, then P ⊆
∪

α∈I Pα if and only if
∩

α∈I RPα

⊆ RP for each family P ∪ {Pα}α∈I of t-prime ideals of R.
(5) Every t-linked overring of R has the property t# if and only if, for each

t-prime ideal P of R, there exists a finitely generated ideal J ⊆ P such
that each t-maximal ideal of R containing J also contains P .

(6) R has the property t# if and only if there is a unique set {Pα} of
incomparable t-primes such that R =

∩
RPα .

Proof. (1) [16, Theorem 1.2]. (2) This follows from [16, Proposition 2.8] and
[16, Theorem 1.2] (cf. [17, Corollary 2]). (3) This follows from (1) (cf. [17,
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Lemma 2]). (4) (cf. [17, Lemma 3]). (5) [16, Proposition 2.8: (7) ⇔ (10)] (cf.
[19, Theorem 3]). (6) [16, Theorem 1.8]. □

Since Lemma 2.7(3) holds, t-compact packedness of R implies the property
t#. Moreover, from Lemma 2.7(5) and Theorem 2.1 it can be proved that if R
is t-compactly packed, then each t-linked overring of R has the property t#.

Theorem 2.8. A PvMD R is t-compactly packed if and only if R has the
tQR-property and every t-linked overring of R has the property t#.

Proof. Suppose that a PvMD R is t-compactly packed. Then the tQR-property
follows from Corollary 2.3, while Lemma 2.7(5) implies that every t-linked
overring of R has the property t#.

Conversely, suppose that a PvMD R has the tQR-property and every t-linked
overring of R has the property t#. Let P ⊆

∪
α∈I Pα, where P and Pα are

t-prime ideals of R. Suppose that P is not contained in any Pα. Without loss
of generality, we may assume that there are no containment relations among
the Pα’s. Since S :=

∩
α∈I RPα

has the property t#, it follows from Lemma
2.7(6) that S′ := S ∩ RP ̸= S. Since R has the tQR-property, we have that
S = RM and S′ = RN for some saturated multiplicatively closed subsets M,N
of R. In this case both sets M and N must equal R \

∪
α∈I Pα, so that S = S′,

a contradiction. Thus P is contained in some Pα. □
As a consequence, since Lemma 2.7(2) holds, we obtain the following gener-

alization of Lemma 2.7(3).

Corollary 2.9. Let R be a PvMD with t-dim(R) = 1. Then Q ⊈
∪

P∈∆Q
P

for each t-maximal ideal Q of R if and only if R has the tQR-property and the
property t#.

Let R be an integral domain and ∗ be a star-operation on R. Then we set
N∗ := {f ∈ R[X] | C(f)∗ = R}, where C(f) is the content ideal of R generated
by the coefficients of f . We call R[X]N∗ the ∗-Nagata ring of R.

Lemma 2.10. (1) (cf. [18, (19.6) Theorem]) Let R be an integral domain with
quotient field K and let P be a prime t-ideal of R. Then there exists a t-linked
valuation overring V with maximal ideal M such that M ∩R = P .

(2) Let R be a PvMD. Then any t-linked valuation overring of R is of the
form RP for some prime t-ideal P of R.

Proof. (1) Let P be a prime t-ideal of R. Then PR[X]Nt is a prime ideal of the
ring R[X]Nt . Thus by [18, (19.6) Theorem], there exists a valuation overring
V ′ of R[X]Nt with maximal ideal M ′ such that M ′ ∩R[X]Nt = PR[X]Nt . Set
V := V ′ ∩K. Then by [3, Lemma 3.3], V is a t-linked valuation overring with
maximal ideal M := M ′ ∩K. It is clear that M ∩R = P .

(2) Let V be a t-linked valuation overring of R with maximal ideal M . Let
P := M ∩R. Then since V is a t-linked valuation overring of R, it follows from
[25, Lemma 2.9] that P is a prime t-ideal of R. We show that V = RP . The



198 HWANKOO KIM

inclusion RP ⊆ V is straightforward. Now since R is a PvMD, RP is a valuation
domain with maximal ideal PRP . Since P ⊆ M , we have PRP ⊆ MVM = M .
Thus V ⊆ RP by [18, (17.6) Theorem]. Hence V = RP . □

The following result shows that for a t-compactly packed domain R, to
determine if R is a tQR-domain, it suffices to consider all t-linked valuation
overrings of R.

Theorem 2.11. If a domain R is t-compactly packed and every t-linked valu-
ation overring of R is a ring of quotients of R, then R has the tQR-property.

Proof. Let T be a t-linked overring of R. Then T =
∩
TM , where the intersec-

tion is taken over all t-maximal idealsM of T . Then for such t-maximal idealM
of T , by Lemma 2.10(1), there exists a t-linked valuation overring (W,N) of R
such that T ⊆ W and N ∩T = M . But by hypothesis, W is a ring of quotients
of R and hence is of the form RP , where P = N ∩R. Therefore RP ⊆ TM ⊆ W
and RP = W implies that RP = TM . Thus T =

∩
RPλ

, where {Pλ} is a collec-
tion of prime t-ideals of R. We then have R ⊆ T ′ := RS ⊆ T =

∩
RPλ

, where
S = R \

∪
Pλ. But as before, T ′ can be written T ′ =

∩
RPµ , where {Pµ} is a

collection of prime t-ideals of R. Therefore RPµ ⊇ RS implies that Pµ ⊆
∪
Pλ.

Since R is t-compactly packed, Pµ ⊆ Pλ for some λ, and so RPµ ⊇ RPλ
. Thus

for each µ there exists a λ such that RPλ
⊆ RPµ . So T ′ =

∩
RPµ ⊇

∩
RPλ

= T .
Therefore T ′ = T and T is a ring of quotients of R. □

Remark 2.12. Using Lemma 2.10(2) and Theorem 2.11, we can give another
proof of Corollary 2.3.

For the rest of this section, we fix the following notations. Let R be an
integral domain with quotient field K, L be an algebraic extension of K, and
D be the integral closure of R in L. If R is a QR-domain, then D need not
be a QR-domain, even if L/K is finite-dimensional Galois ([20, Section 4]). As
mentioned in [14, p. 46], H. Prüfer showed that the integral closure of a Prüfer
domain (respectively, a PvMD) in an algebraic field extension is still a Prüfer
domain (respectively, a PvMD). In [27], J. L. Mott established some sufficient
conditions for D to be a QR-domain, for example, if R is a QR-domain and
D is compactly packed, then D is a QR-domain ([27, Corollary 2.2]). Now we
generalize this t-theoretically.

Theorem 2.13. Let R be a PvMD (resp., Prüfer domain). If D is t-compactly
packed, then D is a tQR-domain (resp., QR-domain).

Proof. Let R be a PvMD. Then it follows from [14, Corollary 4.2] that D is a
PvMD. Thus by Corollary 2.3, D is a tQR-domain.

Now let R be a Prüfer domain. Then R is a PvMD. By the PvMD case,
D is a tQR-domain. It is well known that if R is a Prüfer domain, then D is
a Prüfer domain ([18, (22.3) Theorem]). Thus d = t on D. Therefore D is a
QR-domain. □
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Corollary 2.14. Let R be a tQR-domain (resp., QR-domain). If D is t-
compactly packed, then D is a tQR-domain (resp., QR-domain).

3. On strong Mori domains

Recall from [15] that a domain R is said to be almost factorial if R is a Krull
domain with torsion divisor class group.

Theorem 3.1. If R is an SM domain, then R has the tQR-property if and
only if R is almost factorial.

Proof. If R is a Krull domain with torsion divisor class group, then R has the
tQR-property by [7, Theorem 1.3]. Conversely, suppose thatR is an SM domain
with the tQR-property. Then R is a Krull domain (and hence v = t = w) since
R is an integrally closed SM domain [37, Theorem 2.8]. If P is any prime t-ideal

of R, then by Lemma 2.7(2), Theorem 2.8, and Theorem 2.1, P =
√
xR for

some x ∈ R. But since P is a t-maximal ideal of R, this implies that P is the
only prime t-ideal containing x, so xR has a prime t-representation of the form
xR = (Pn)t for some nonnegative integer n. Since every t-ideal can be written
as a t-product of prime t-ideals, it then follows that the divisor class group of
R is a torsion group. □

Proposition 3.2. Let R be an SM domain in which every w-maximal ideal is
the radical of a principal ideal. Then w-dim(R) = 1.

Proof. By [2, Corollary 2.3], the minimal prime ideals of a non-zero nonunit
principal ideal aR have height one. Hence the nonunits of R are covered by
prime ideals of height one. In particular, every w-maximal ideal M is contained
in

∪
Pα, where the Pα are prime ideals of height one. But then M =

√
xR ⊆∪

Pα and so it follows from x ∈ Pβ that M ⊆ Pβ . Thus every w-maximal ideal
of R has height one. Therefore w-dim(R) = 1. □

Let X(1)(R) (or just X(1)) denote the prime ideals of height one in R. We
recall from [26] that an integral domain R is called an infra-Krull domain if
R =

∩
P∈X(1) RP where the intersection is locally finite and for each P in

X(1)(R), RP is a Noetherian domain. Then it is easily seen that R is an
infra-Krull domain if and only if R is an SM domain with w-dim(R) = 1.

Corollary 3.3. If an SM domain R is t-compactly packed, then R is an infra-
Krull domain.

Now we can provide an example of t-coprimely packed domain R which is
not t-compactly packed: Take R to be any SM domain with t-dimension at
least 2 in which there are finitely many t-maximal ideals (cf., [22]).

Lemma 3.4. Consider the following statements for a height-one prime ideal
P .

(1) P is the radical of a principal ideal.
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(2) There exists a non-zero f ∈ P such that fR is a primary ideal of R.
(3) There exists a non-zero f ∈ P such that fnR is a primary ideal of R

for each n ∈ N.
(4) P ⊈

∪
Q∈∆P

Q, where ∆P := X(1)(R) \ {P}.
Then (3) ⇒ (2) ⇒ (1) ⇒ (4). Moreover, if R is an infra-Krull domain, then
(4) ⇒ (3), and hence all statements are equivalent.

Proof. (3) ⇒ (2) ⇒ (1) ⇒ (4). [29, Proposition 3]. (4) ⇒ (3). Assume that
P ⊈

∪
Q∈∆P

Q. Then choose f ∈ P \
∪

Q∈∆P
Q. Since R is an SM domain, it

follows from [2, Corollary 2,3] that for each n ∈ N, fnR = Qn,1 ∩ · · · ∩Qn,mn

with each Qn,i primary. We also have that each
√
Qn,i ∈ X(1)(R) since w-

dim(R) ≤ 1. Thus P =
√
fnR =

√
Qn,1 ∩ · · · ∩

√
Qn,mn . Hence P =

√
Qn,i

for all i, and so we conclude that P is the only prime divisor of fnR, that is,
fnR is a P -primary ideal of R. □

From [29, Proposition 1] and the fact that (
√
I)w =

√
Iw for each ideal I of

R ([36, Proposition 2.4]) one immediately derives the following result.

Lemma 3.5. Let R be an integral domain and let I be a w-ideal of R with√
I = P1 ∩ · · · ∩ Pn (Pi ∈ w-Spec(R)). If each Pi is the radical of a principal

ideal of R, then
√
I is the radical of a principal ideal of R.

It was shown in [4] that an integral domain R with t-dim(R) = 1 is a GWFD
if and only if R is t-compactly packed.

Theorem 3.6. Let R be an infra-Krull domain. Then the following are equiv-
alent.

(1) R is w-compactly packed.
(2) R is t-compactly packed.

(3) Every t-ideal I of R is radically principal, i.e.,
√
I =

√
(x) for some

x ∈ R.
(4) Every w-ideal of R is radically principal.
(5) Every (t-)subintersection

∩
P∈∆ RP (∆ ⊆ t-Spec(R)) is a ring of quo-

tients of R.

Proof. (4) ⇒ (3). This follows from the fact that every t-ideal of R is a w-ideal.
(3) ⇒ (2). This follows from Theorem 2.1.
(2) ⇔ (1). This follows from the fact that w-dim(R) = 1 and t-Max(R)=w-

Max(R).
(1) ⇒ (5). Let ∆ be a subset of X(1)(R) and let

∩
P∈∆ RP be a t-subinter-

section of R. By Theorem 2.1, for every P ∈ X(1)(R) \∆, there exists fP ∈ R
such that P =

√
fPR. Let S be the set of elements which are expressible as

finite products of fP ’s for P ∈ X(1)(R)\∆. Then we will show that
∩

P∈∆ RP =
RS . If P ∈ ∆, then P ∩ S = ∅. Indeed, suppose that P ∩ S ̸= ∅. Then
fQ ∈ P for some Q ∈ X(1)(R) \ ∆. Since Q =

√
fQR ⊆ P , we have that

P = Q ∈ X(1)(R) \∆, a contradiction. Hence ∆ = {Q′ ∩R | Q′ ∈ X(1)(RS)}.
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Thus (RP )S = RP for all P ∈ ∆, and hence
∩

P∈∆ RP =
∩

P∈∆(RP )S ⊇ RS .
For the reverse inclusion, if x ∈

∩
P∈∆ RP , then R :R x is a w-ideal of R. Since

R is an SM domain, by [2, Corollary 2.3] R :R x = Q1∩· · ·∩Qn with each Qi a
primary ideal. Now since w-dim(R) = 1, we have that

√
Qi ∈ X(1)(R) \∆ for

all i = 1, . . . , n. Hence there exists f ∈ S ∩ (R :R x), which shows that x ∈ RS .
Thus

∩
P∈∆ RP ⊆ RS . Therefore

∩
P∈∆ RP = RS .

(5) ⇒ (4). We first show that every prime w-ideal of R is the radical of
a principal ideal of R. Let P be a prime w-ideal. Since w-dim(R) = 1 and
w-Max(R)=t-Max(R), P is a prime t-ideal. Let ∆P := t-Spec(R) \ {P}. By
Lemma 3.4 it is sufficient to show that P ⊈

∪
Q∈∆P

Q. Then by hypothesis,

we would have
∩

Q∈∆P
RQ = RS for some multiplicatively closed subset S of

R. Assume that P ⊆
∪

Q∈∆P
Q. Then since Q∩S = ∅ for all Q ∈ ∆P , we have

that P ∩ S = ∅. Thus (RQ′)S = RQ′ for all Q′ ∈ t-Spec(R) = X(1)(R), and
hence RS =

∩
Q∈∆P

RQ =
∩

Q∈∆P
(RQ)S =

∩
Q∈X(1)(RQ)S =

∩
Q∈X(1) RQ =

R. Thus RS = R. By [36, Theorem 4.3], we can write P = (x1, . . . , xn)w.
Since P ⊈ Q for any Q ∈ ∆P , we have that Rxi ⊆

∩
{RQ | xi ̸∈ Q and

Q ∈ ∆P }, and so
∩

i Rxi ⊆
∩

Q∈∆P
RQ = RS = R. Hence by [1, Lemma 2.1],

Pv = ((x1, . . . , xn)w)v = (x1, . . . , xn)v = R, and so Pw = R, which contradicts
P is a prime w-ideal. Therefore P ⊈

∪
Q∈∆P

Q. Hence by Lemma 3.4, every
prime w-ideal of R is the radical of a principal ideal of R. Now let I be a w-
ideal of R. Then

√
I is also a w-ideal of R ([36, Proposition 2.4]). Since R is an

SM domain, by [2, Corollary 2.3]
√
I = P1 ∩ · · · ∩Pn for some Pi ∈ w-Spec(R).

Thus by Lemma 3.5 every w-ideal I of R is radically principal. □

Corollary 3.7. Let R be a Krull domain. Then every subintersection
∩

P∈∆RP

(∆ ⊆ X(1)(R)) of R is a ring of quotients of R if and only if every height-one
prime ideal of R is the radical of a principal ideal.

4. t-coprime packedness

Recall that a t-ideal I of an integral domain R is said to be t-coprimely
packed if for every set Λ of t-maximal ideals of R with I ⊆

∪
Q∈Λ Q, one has

I ⊆ P for some P ∈ Λ, and if this holds for each t-ideal of R, then R is said to
be t-coprimely packed. Then we have the following t-theoretic analogue of [13,
Lemma 2].

Proposition 4.1. The following statements are equivalent.

(1) If I is a t-ideal of R and if Λ is a set of t-maximal ideals of R with
I ⊆

∪
M∈Λ M , then I ⊆ M for some M ∈ Λ.

(2) If I is a t-ideal of R and if Λ is a set of prime t-ideals of R with
I ⊆

∪
Q∈Λ Q, then (I + P )t ̸= R for some P ∈ Λ.

(3) If I is a t-ideal of R and if Λ(I) = {M | M is a t-maximal ideal of R
with I ⊈ M}, then I ⊈

∪
Q∈Λ(I) Q.
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(4) If P is a t-prime ideal of R and if Λ is a set of t-maximal ideals of R
with P ⊆

∪
M∈Λ M , then P ⊆ M for some M ∈ Λ.

Recall that t-Max(R) is t-coprimly packed if for a t-maximal ideal M of R
and for any set {Mλ}λ∈Λ of t-maximal ideals of R, if M ⊆

∪
λ∈Λ Mλ, then

M = Mλ for some λ ∈ Λ. Equivalently, if no t-maximal ideal of R is contained
in the union of the other t-maximal ideals.

An integral domain R is an almost Krull domain if RM is a rank-one discrete
valuation domain for each t-maximal ideal M of R. It was shown in [8, Lemma
1.16] that R is an almost Krull domain if and only if R is a strongly discrete
PvMD of t-dimension one.

Theorem 4.2. Let R be an almost Krull domain. Then t-Max(R) is t-
coprimely packed if and only if R is almost factorial.

Proof. The “if” part is clear since R is of t-dimension one, so we need only
prove the “only if” part. Suppose that t-Max(R) is coprimely packed. Since
R is of t-dimension one, t-Max(R) is t-compactly packed. Thus by Theorem
2.8 R is an almost Krull domain satisfying the t#-property, and hence by [8,
Theorem 1.17] R is a Krull domain. Now the rest of the proof is the same as
in Theorem 3.1. □

Combining Theorem 2.8 and Theorem 4.2, we can recover a classical result
of Storch ([15, Proposition 6.8]) in the following.

Corollary 4.3. Let R be a Krull domain. Then R is almost factorial if and
only if every subintersection of R is a ring of quotients.

Proposition 4.4. Let R be a PvMD. Then the following statements are equiv-
alent.

(1) t-Max(R) is t-coprimely packed.
(2) Each t-maximal ideal M of R contains a principal ideal xR such that√

xR is a prime t-ideal of R contained in M but no other t-maximal
ideal.

Proof. (1) ⇒ (2). Suppose that t-Max(R) is t-coprimely packed. Let M be a
t-maximal ideal of R and let x be an element in M which is not contained in
any other t-maximal ideal of R. Since

√
xR is the intersection of all the prime

t-ideals of R containing x, it follows that any prime t-ideal of R containing x
is contained in M but no other t-maximal ideal. But since R is a PvMD, the
set of prime t-ideals of R contained in M is linearly ordered ([28, Proposition

4.4]), and so
√
xR is a prime t-ideal of R and M is the unique t-maximal ideal

of R containing
√
xR.

(2) ⇒ (1). Suppose (2) holds. Let Λ be a nonempty subset of t-Max(R)
and M ∈ t-Max(R) \ Λ. Then by assumption M contains a prime t-ideal of

the form
√
xR and (

√
xR + N)t = R for all N ∈ Λ. Thus it follows that√

xR ⊈
∪

N∈Λ N , and so M ⊈
∪

N∈Λ N . Therefore t-Max(R) is t-coprimely
packed. □
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Theorem 4.5. Let R be a tQR-domain with t-dim(R) < ∞. Then t-Max(R)
is t-coprimely packed if and only if every t-maximal ideal of R is the radical of
a principal ideal.

Proof. Suppose that t-Max(R) is t-coprimely packed. Let M be any t-maximal

ideal of R and x ∈ M \
∪

N∈∆M
N . Then by Proposition 4.4,

√
xR is a prime

t-ideal of R contained only in M . If M =
√
xR, then we are done. If not,

then there exists y ∈ M \
√
xR. Since R is a tQR-domain, by [7, Theorem 1.3]

we have that
√
(xR+ yR)t =

√
zR for some z ∈ M . Clearly

√
xR ⊊

√
zR.

Again by Proposition 4.4, we have
√
zR is a prime t-ideal of R contained in M

which is not contained in any other t-maximal ideal of R. Continuing in this
way (after a finite number of steps) we can find m ∈ M \

∪
N∈∆M

N such that

M =
√
mR. The proof of the converse is easy and will be omitted. □

Corollary 4.6. Let R be a GCD-domain with t-dim(R) < ∞. Then t-Max(R)
is t-coprimely packed if and only if every t-maximal ideal of R is the radical of
a principal ideal.

Proposition 4.7. Let R be a tQR-domain with t-dim(R) < ∞ in which every
t-ideal of R is contained in only finitely many t-maximal ideals. Then t-Max(R)
is t-coprimely packed.

Proof. Let M be a t-maximal ideal of R and 0 ̸= x ∈ M . Let M1,M2, . . . ,Mn

be the other t-maximal ideals of R containing x and let y ∈ M \
∪n

i=1 Mi.
Then (xR+ yR)t ⊆ M but (xR+ yR)t ⊈

∪n
i=1 Mi. Since R is a tQR-domain,√

(xR+ yR)t =
√
zR for some z ∈ M and

√
zR is a prime t-ideal of R con-

tained in M but no other t-maximal ideal. Then M =
√
mR for some m ∈ M

follows from the proof of Theorem 4.5. Therefore t-Max(R) is t-coprimely
packed. □
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Prüfer v-multiplication domains, Comm. Algebra 17 (1989), no. 11, 2835–2852.

[7] , t-linked overrings as intersections of localizations, Proc. Amer. Math. Soc. 109
(1990), no. 3, 637–646.



204 HWANKOO KIM

[8] S. El Baghdadi and S. Gabelli, Ring-theoretic properties of PvMDs, Comm. Algebra 35
(2007), no. 5, 1607–1625.
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