• Title/Summary/Keyword: finite domain

Search Result 1,555, Processing Time 0.024 seconds

Numerical Dispersive Characteristics and Stability Condition of the Multi-Resolution Time Domain(MRTD) Method (다해상도 시간영역법의 수치적 분산특성과 안정조건)

  • 홍익표;유태훈;윤영중;박한규
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.4
    • /
    • pp.328-335
    • /
    • 1996
  • The numerical dispersive characteristics and the numerical stability confition of the Multi-Resolution Time-Domain(MRTD) method are calculated. A dispersion analysis of the MRTD schemes including a comparison to Yee's Finite-Difference Time-Domain(FDTD) method is given. The superiority of the MRTD method to the spatial discretization is shown. The required computational memory can be reduced by using the MRTD method. We expect that the MRTD method will be very useful method for numerical modelling of electromagnetics.

  • PDF

Relaxed Saint-Venant principle for thermoelastic micropolar diffusion

  • Marin, Marin;Abbas, Ibrahim;Kumar, Rajneesh
    • Structural Engineering and Mechanics
    • /
    • v.51 no.4
    • /
    • pp.651-662
    • /
    • 2014
  • The main goal of this study is to extend the domain of influence result to cover the micropolar thermoelastic diffusion. So, we prove that for a finite time t>0 the displacement field $u_i$, the microrotation vector ${\varphi}_i$, the temperature ${\theta}$ and the chemical potential P generate no disturbance outside a bounded domain $B_t$.

SMOOTHERS BASED ON NONOVERLAPPING DOMAIN DECOMPOSITION METHODS FOR H(curl) PROBLEMS: A NUMERICAL STUDY

  • DUK-SOON, OH
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.4
    • /
    • pp.323-332
    • /
    • 2022
  • This paper presents a numerical study on multigrid algorithms of V-cycle type for problems posed in the Hilbert space H(curl) in three dimensions. The multigrid methods are designed for discrete problems originated from the discretization using the hexahedral Nédélec edge element of the lowest-order. Our suggested methods are associated with smoothers constructed by substructuring based on domain decomposition methods of nonoverlapping type. Numerical experiments to demonstrate the robustness and the effectiveness of the suggested algorithms are also provided.

NON-OVERLAPPING RECTANGULAR DOMAIN DECOMPOSITION METHOD FOR TWO-DIMENSIONAL TELEGRAPH EQUATIONS

  • Younbae Jun
    • East Asian mathematical journal
    • /
    • v.39 no.1
    • /
    • pp.75-85
    • /
    • 2023
  • In this paper, a non-overlapping rectangular domain decomposition method is presented in order to numerically solve two-dimensional telegraph equations. The method is unconditionally stable and efficient. Spectral radius of the iteration matrix and convergence rate of the method are provided theoretically and confirmed numerically by MATLAB. Numerical experiments of examples are compared with several methods.

RECTANGULAR DOMAIN DECOMPOSITION METHOD FOR PARABOLIC PROBLEMS

  • Jun, Youn-Bae;Mai, Tsun-Zee
    • The Pure and Applied Mathematics
    • /
    • v.13 no.4 s.34
    • /
    • pp.281-294
    • /
    • 2006
  • Many partial differential equations defined on a rectangular domain can be solved numerically by using a domain decomposition method. The most commonly used decompositions are the domain being decomposed in stripwise and rectangular way. Theories for non-overlapping domain decomposition(in which two adjacent subdomains share an interface) were often focused on the stripwise decomposition and claimed that extensions could be made to the rectangular decomposition without further discussions. In this paper we focus on the comparisons of the two ways of decompositions. We consider the unconditionally stable scheme, the MIP algorithm, for solving parabolic partial differential equations. The SOR iterative method is used in the MIP algorithm. Even though the theories are the same but the performances are different. We found out that the stripwise decomposition has better performance.

  • PDF

Time-Domain Response of Transmission-Line Structures Excited by an External Electromagnetic Pulse (외부 전자파 펄스에 의해 여기된 전송선로 구조의 시간 영역 응답)

  • 김태현;정연춘;김세윤;박동철;배범열;박종한
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.3
    • /
    • pp.239-245
    • /
    • 1996
  • The time-domain response of a two-conductor-structure transmission line excited by an incident electromagnetic pulse is numerically analyzed using the Finite-Difference Time-Domain (FDTD) method. The external electromagnetic pulse is generated by ultilizing a TEM cell. The simulated time-domain response is compared with the time-domain response which is obtained by the Inverse Fast Fourier Transform(IFFT) of the frequency domain measurement data.

  • PDF

Soil-Structure Interaction Analysis in the Time Domain Using Explicit Frequency-Dependent Two Dimensional Infinite Elements (명시적 주파수종속 2차원 무한요소를 사용한 지반-구조물 상호작용의 시간영역해석)

  • 윤정방;김두기
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.42-49
    • /
    • 1997
  • In this paper, the method for soil-structure interaction analyses in the time domain is proposed. The far field soil region which is the outside of the artificial boundary is modeled by using explicit frequency-dependent two dimensional infinite elements which can include multiple wave components propagating into the unbounded medium. Since the dynamic stiffness matrix of the far field soil region using the proposed infinite elements is obtained explicitly in terms of exciting frequencies and constants in the frequency domain, the matrix can be easily transformed into the displacement unit-impulse response matrix, which corresponds to a convolution integral of it in the time domain. To verify the proposed method for soil-structure interaction analyses in the time domain, the displacement responses due to an impulse load on the surface of a soil layer with the rigid bed rock are compared with those obtained by the method in the frequency domain and those by models with extend finite element meshes. Good agreements have been found between them.

  • PDF

Time Domain Soil-Structure Interaction Analysis for Earthquake Loadings Based on Analytical Frequency-Dependent Infinite Elements (무한요소를 사용한 지반-구조물 상호작용계의 시간 영역 지진응답해석)

  • 김두기
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.107-112
    • /
    • 1999
  • This paper presents a time domain method for soil-structure interaction analysis for seismic loadings. It is based on the finite element formulation incorporating analytical frequency-dependent infinite elements for the far-field soil. The dynamic stiffness matrices of the far-field region formulated in frequency domain using the present method can be easily transformed into the corresponding matrices in time domain. Hence the response can be analytical computed in time domain. Example analysis has been carried out to verify the present method for an embedded block in a multi-layered half-space. The present methods can be easily extended to the nonlinear analysis since the response analysis is carried out in time domain.

  • PDF

Development of Finite Element Domain Decomposition Method Using Local and Mixed Lagrange Multipliers (국부 및 혼합 Lagrange 승수법을 이용한 영역분할 기반 유한요소 구조해석 기법 개발)

  • Kwak, Jun Young;Cho, Hae Seong;Shin, Sang Joon;Bauchau, Olivier A.
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.469-476
    • /
    • 2012
  • In this paper, a finite element domain decomposition method using local and mixed Lagrange multipliers for a large scal structural analysis is presented. The proposed algorithms use local and mixed Lagrange multipliers to improve computational efficiency. In the original FETI method, classical Lagrange multiplier technique was used. In the dual-primal FETI method, the interface nodes are used at the corner nodes of each sub-domain. On the other hand, the proposed FETI-local analysis adopts localized Lagrange multipliers and the proposed FETI-mixed analysis uses both global and local Lagrange multipliers. The numerical analysis results by the proposed algorithms are compared with those obtained by dual-primal FETI method.