Browse > Article
http://dx.doi.org/10.12989/sem.2014.51.4.651

Relaxed Saint-Venant principle for thermoelastic micropolar diffusion  

Marin, Marin (Department of Mathematics, Transilvania University of Brasov)
Abbas, Ibrahim (Department of Mathematics, King Abdulaziz University)
Kumar, Rajneesh (Department of Mathematics, Kurukshetra University)
Publication Information
Structural Engineering and Mechanics / v.51, no.4, 2014 , pp. 651-662 More about this Journal
Abstract
The main goal of this study is to extend the domain of influence result to cover the micropolar thermoelastic diffusion. So, we prove that for a finite time t>0 the displacement field $u_i$, the microrotation vector ${\varphi}_i$, the temperature ${\theta}$ and the chemical potential P generate no disturbance outside a bounded domain $B_t$.
Keywords
thermoelastic; micropolar; diffusion; domain of influence;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Takabatake, H. (2012), "Effects of dead loads on the staticanalysis of plates" Struct. Eng. Mech., 42(6), 761-781.   DOI   ScienceOn
2 Abbas, I.A. and Othman, M.I. (2012a), "Generalized thermoelsticity of thermal shock problem in an isotropic hollow cylinder and temperature dependent elastic moduli" Chin. Phys. B, 21(1), 0146011-0146016.
3 Abbas, I.A. and Othman, M.I. (2012b), "Generalized thermoelasticity of thermal shock problem in a nonhomogeneous isotropic hollow cylinderwith energy dissipation" Int. J. Thermophy., 33(5), 913-923.   DOI
4 Abbas, I.A. and Kumar, R. (2013), "Deformation due to thermal source in micropolar elastic media with thermal and conductive temperatures" J. Comput. Theor. Nanosci., 10(9), 2241-2247.   DOI
5 Aouadi, M. (2009), "The coupled theory of micropolar thermoelastic diffusion" Acta Mechanica, 208, 181-203.   DOI
6 Aouadi, M. (2010), "A theory of thermoelastic diffusion materials with voids" Z. Angew. Math. Phys., 61,357-379   DOI
7 Kim, D.K., Yu, S.Y. and Choi, H.S. (2013), "Condition assessment of raking damaged bulk carriers under vertical bending moments" Struct. Eng. Mech., 46(5), 629-644.   DOI
8 Carbonaro, B. and Russo, R. (1984), "Energy inequalities in classical elastodynamics" J. Elasticity, 14, 163-174.   DOI
9 Chirita, S. and Ciarletta, M. (2007), "On the strong ellipticity of the anisotropic linearly elastic materials" J. Elasticity, 87(1), 1-27.   DOI
10 Hetnarski, R. and Ignaczak, J. (1999), "Generalized thermoelasticity" J. Thermal Stresses, 22, 451-476.   DOI
11 Kumar, R., Gupta, V. and Abbas, I.A. (2013), "Plane deformation due to thermal source in fractional order thermoelastic media" J. Comput. Theor. Nanosci., 10(10), 2520-2525.   DOI
12 Marin, M (1994), "The Lagrange identity method in thermoelasticity of bodies with microstructure" Int. J. Engng. Sci., 32(8), 1229-1240.   DOI
13 Marin, M. and Marinescu, C. (1998), "Thermoelasticity of initially stressed bodies, asymptotic equipartition of energies" Int. J. Eng. Sci., 36(1), 73-86.   DOI
14 Marin, M. (2010a), "A partition of energy in thermoelsticity of microstretchbodies" Nonlin. Anal., RWA, 11(4), 2436-2447.   DOI   ScienceOn
15 Marin, M. (2010b), "Some estimates on vibrations in thermoelasticity ofdipolar bodies" J. Vib. Control, 16(1), 33-47   DOI
16 Marin, M., Agarwal, R.P. and Mahmoud, S.R. (2013), "Modeling a microstretch thermoelastic body with two temperature" Abstract and Applied Analysis, doi: 10.1155/2013/583464.   DOI
17 Nowacki, W. (1974a), "Dynamical problems of thermoelastic diffusion in solids I" Bull. Acad. Pol. Sci. Ser. Tech., 22, 55-64
18 Nowacki, W. (1974b), "Dynamical problems of thermoelastic diffusion insolids II" Bull. Acad. Pol. Sci. Ser. Tech, 22, 129-135.
19 Sherif, H.H., Hamza, F. and Salex, H. (2004), "The theory of generalizedthermoelastic diffusion" Int. J. Eng. Sci., 42, 591-608.   DOI   ScienceOn
20 Nowacki, W. (1976), "Dynamical problems of diffusion in solids" Eng. Fract. Mech., 8, 261-266.   DOI   ScienceOn
21 Abbas, I.A. (2012), "Generalized magneto-thermoelastic interaction in a fiber-reinforced anisotropic hollow cylinder" Int. J. Thermophy., 33(3), 567-579.   DOI