DOI QR코드

DOI QR Code

SMOOTHERS BASED ON NONOVERLAPPING DOMAIN DECOMPOSITION METHODS FOR H(curl) PROBLEMS: A NUMERICAL STUDY

  • DUK-SOON, OH (DEPARTMENT OF MATHEMATICS, CHUNGNAM NATIONAL UNIVERSITY)
  • Received : 2022.09.04
  • Accepted : 2022.12.15
  • Published : 2022.12.25

Abstract

This paper presents a numerical study on multigrid algorithms of V-cycle type for problems posed in the Hilbert space H(curl) in three dimensions. The multigrid methods are designed for discrete problems originated from the discretization using the hexahedral Nédélec edge element of the lowest-order. Our suggested methods are associated with smoothers constructed by substructuring based on domain decomposition methods of nonoverlapping type. Numerical experiments to demonstrate the robustness and the effectiveness of the suggested algorithms are also provided.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1F1A1A01072168).

References

  1. V. Girault and P.-A. Raviart. Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics 5, Springer-Verlag, Berlin, 1986. 
  2. P. B. Monk. A mixed method for approximating Maxwell's equations, SIAM J. Numer. Anal., 28 (1991), 1610-1634.  https://doi.org/10.1137/0728081
  3. D. N. Arnold, R. S. Falk, and R. Winther. Multigrid in H(div) and H(curl). Numer. Math., 85 (2000), 197-217.  https://doi.org/10.1007/PL00005386
  4. J. G. Calvo. A two-level overlapping Schwarz method for H(curl) in two dimensions with irregular subdomains. Electron. Trans. Numer. Anal., 44 (2015), 497-521. 
  5. J. G. Calvo. A new coarse space for overlapping Schwarz algorithms for H(curl) problems in three dimensions with irregular subdomains. Numer. Algorithms, 83 (2020), 885-899.  https://doi.org/10.1007/s11075-019-00707-9
  6. C. R. Dohrmann and O. B. Widlund. A BDDC algorithm with deluxe scaling for three-dimensional H(curl) problems. Comm. Pure Appl. Math., 69 (2016), 745-770.  https://doi.org/10.1002/cpa.21574
  7. R. Hiptmair. Multigrid method for Maxwell's equations. SIAM J. Numer. Anal., 36 (1999), 204-225.  https://doi.org/10.1137/S0036142997326203
  8. R. Hiptmair and J. Xu. Nodal auxiliary space preconditioning in H (curl) and H(div) spaces. SIAM J. Numer. Anal., 45 (2007), 2483-2509.  https://doi.org/10.1137/060660588
  9. Q. Hu and J. Zou. A nonoverlapping domain decomposition method for Maxwell's equations in three dimensions. SIAM J. Numer. Anal., 41 (2003), 1682-1708.  https://doi.org/10.1137/S0036142901396909
  10. T. V. Kolev and P. S. Vassilevski. Parallel auxiliary space AMG for H(curl) problems. J. Comput. Math., 27 (2009), 604-623.  https://doi.org/10.4208/jcm.2009.27.5.013
  11. Y.-J. Lee, J. Wu, J. Xu, and L. Zikatanov. Robust subspace correction methods for nearly singular systems. Math. Models Methods Appl. Sci., 17 (2007), 1937-1963.  https://doi.org/10.1142/S0218202507002522
  12. A. Toselli. Overlapping Schwarz methods for Maxwell's equations in three dimensions. Numer. Math., 86 (2000), 733-752.  https://doi.org/10.1007/PL00005417
  13. A. Toselli. Domain decomposition methods of dual-primal FETI type for edge element approximations in three dimensions. C. R. Math. Acad. Sci. Paris, 339 (2004), 673-678.  https://doi.org/10.1016/j.crma.2004.09.021
  14. S. Zampini. Adaptive BDDC deluxe methods for H(curl). Lecture Notes in Computational Science and Engineering, Springer Cham, proceedings of the 23rd DD, Jeju Island, Korea, 2015. 
  15. Z. Q. Cai, C. I. Goldstein, and J. E. Pasciak. Multilevel iteration for mixed finite element systems with penalty. SIAM J. Sci. Comput., 14 (1993), 1072-1088.  https://doi.org/10.1137/0914065
  16. R. Hiptmair. Multigrid method for H(div) in three dimensions. Electron. Trans. Numer. Anal., 6 (1997), 133-152. 
  17. D. N. Arnold, R. S. Falk, and R. Winther. Preconditioning in H(div) and applications. Math. Comp., 66 (1997), 957-984.  https://doi.org/10.1090/S0025-5718-97-00826-0
  18. D. N. Arnold, R. S. Falk, and R. Winther. Multigrid preconditioning in H(div) on non-convex polygons. Comput. Appl. Math., 17 (1998), 303-315. 
  19. S. C. Brenner and D.-S. Oh. Multigrid methods for H(div) in three dimensions with nonoverlapping domain decomposition smoothers Numer. Linear Algebra Appl., 25 (2018) 
  20. S. C. Brenner and D.-S. Oh. A smoother based on nonoverlapping domain decomposition methods for H(div) problems: a numerical study. Lecture Notes in Computational Science and Engineering, Springer Cham, proceedings of the 24th DD, Svalbard, Norway, 2017. 
  21. D.-S. Oh. Multigrid methods for 3D H(curl) problems with nonoverlapping domain decomposition smoothers., 2022. submitted, arXiv:2205.05840. 
  22. P. Monk. Finite element methods for Maxwell's equations. Numerical Mathematics and Scientific Computation. Oxford University Press, New York, 2003. 
  23. J.-C. Nedelec. Mixed finite elements in R3. Numer. Math., 35 (1980), 315-341.  https://doi.org/10.1007/BF01396415
  24. S. C. Brenner and L. R. Scott. The mathematical theory of finite element methods Texts in Applied Mathematics, Springer, New York, 2008. 
  25. R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J. C. V. Dobrev, Y. Dudouit, A. Fisher, T. Kolev, W. Pazner, M. Stowell, V. Tomov, I. Akkerman, J. Dahm, D. Medina, and S. Zampini. MFEM: A modular finite element library. Computers & Mathematics with Applications, 81 (2021), 42-74.  https://doi.org/10.1016/j.camwa.2020.06.009
  26. MFEM: Modular finite element methods [Software]. mfem.org.