Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1F1A1A01072168).
References
- V. Girault and P.-A. Raviart. Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics 5, Springer-Verlag, Berlin, 1986.
- P. B. Monk. A mixed method for approximating Maxwell's equations, SIAM J. Numer. Anal., 28 (1991), 1610-1634. https://doi.org/10.1137/0728081
- D. N. Arnold, R. S. Falk, and R. Winther. Multigrid in H(div) and H(curl). Numer. Math., 85 (2000), 197-217. https://doi.org/10.1007/PL00005386
- J. G. Calvo. A two-level overlapping Schwarz method for H(curl) in two dimensions with irregular subdomains. Electron. Trans. Numer. Anal., 44 (2015), 497-521.
- J. G. Calvo. A new coarse space for overlapping Schwarz algorithms for H(curl) problems in three dimensions with irregular subdomains. Numer. Algorithms, 83 (2020), 885-899. https://doi.org/10.1007/s11075-019-00707-9
- C. R. Dohrmann and O. B. Widlund. A BDDC algorithm with deluxe scaling for three-dimensional H(curl) problems. Comm. Pure Appl. Math., 69 (2016), 745-770. https://doi.org/10.1002/cpa.21574
- R. Hiptmair. Multigrid method for Maxwell's equations. SIAM J. Numer. Anal., 36 (1999), 204-225. https://doi.org/10.1137/S0036142997326203
- R. Hiptmair and J. Xu. Nodal auxiliary space preconditioning in H (curl) and H(div) spaces. SIAM J. Numer. Anal., 45 (2007), 2483-2509. https://doi.org/10.1137/060660588
- Q. Hu and J. Zou. A nonoverlapping domain decomposition method for Maxwell's equations in three dimensions. SIAM J. Numer. Anal., 41 (2003), 1682-1708. https://doi.org/10.1137/S0036142901396909
- T. V. Kolev and P. S. Vassilevski. Parallel auxiliary space AMG for H(curl) problems. J. Comput. Math., 27 (2009), 604-623. https://doi.org/10.4208/jcm.2009.27.5.013
- Y.-J. Lee, J. Wu, J. Xu, and L. Zikatanov. Robust subspace correction methods for nearly singular systems. Math. Models Methods Appl. Sci., 17 (2007), 1937-1963. https://doi.org/10.1142/S0218202507002522
- A. Toselli. Overlapping Schwarz methods for Maxwell's equations in three dimensions. Numer. Math., 86 (2000), 733-752. https://doi.org/10.1007/PL00005417
- A. Toselli. Domain decomposition methods of dual-primal FETI type for edge element approximations in three dimensions. C. R. Math. Acad. Sci. Paris, 339 (2004), 673-678. https://doi.org/10.1016/j.crma.2004.09.021
- S. Zampini. Adaptive BDDC deluxe methods for H(curl). Lecture Notes in Computational Science and Engineering, Springer Cham, proceedings of the 23rd DD, Jeju Island, Korea, 2015.
- Z. Q. Cai, C. I. Goldstein, and J. E. Pasciak. Multilevel iteration for mixed finite element systems with penalty. SIAM J. Sci. Comput., 14 (1993), 1072-1088. https://doi.org/10.1137/0914065
- R. Hiptmair. Multigrid method for H(div) in three dimensions. Electron. Trans. Numer. Anal., 6 (1997), 133-152.
- D. N. Arnold, R. S. Falk, and R. Winther. Preconditioning in H(div) and applications. Math. Comp., 66 (1997), 957-984. https://doi.org/10.1090/S0025-5718-97-00826-0
- D. N. Arnold, R. S. Falk, and R. Winther. Multigrid preconditioning in H(div) on non-convex polygons. Comput. Appl. Math., 17 (1998), 303-315.
- S. C. Brenner and D.-S. Oh. Multigrid methods for H(div) in three dimensions with nonoverlapping domain decomposition smoothers Numer. Linear Algebra Appl., 25 (2018)
- S. C. Brenner and D.-S. Oh. A smoother based on nonoverlapping domain decomposition methods for H(div) problems: a numerical study. Lecture Notes in Computational Science and Engineering, Springer Cham, proceedings of the 24th DD, Svalbard, Norway, 2017.
- D.-S. Oh. Multigrid methods for 3D H(curl) problems with nonoverlapping domain decomposition smoothers., 2022. submitted, arXiv:2205.05840.
- P. Monk. Finite element methods for Maxwell's equations. Numerical Mathematics and Scientific Computation. Oxford University Press, New York, 2003.
- J.-C. Nedelec. Mixed finite elements in R3. Numer. Math., 35 (1980), 315-341. https://doi.org/10.1007/BF01396415
- S. C. Brenner and L. R. Scott. The mathematical theory of finite element methods Texts in Applied Mathematics, Springer, New York, 2008.
- R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J. C. V. Dobrev, Y. Dudouit, A. Fisher, T. Kolev, W. Pazner, M. Stowell, V. Tomov, I. Akkerman, J. Dahm, D. Medina, and S. Zampini. MFEM: A modular finite element library. Computers & Mathematics with Applications, 81 (2021), 42-74. https://doi.org/10.1016/j.camwa.2020.06.009
- MFEM: Modular finite element methods [Software]. mfem.org.