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ABSTRACT. This paper presents a numerical study on multigrid algorithms of V –cycle type for
problems posed in the Hilbert space H(curl) in three dimensions. The multigrid methods are
designed for discrete problems originated from the discretization using the hexahedral Nédélec
edge element of the lowest-order. Our suggested methods are associated with smoothers con-
structed by substructuring based on domain decomposition methods of nonoverlapping type.
Numerical experiments to demonstrate the robustness and the effectiveness of the suggested
algorithms are also provided.

1. INTRODUCTION

Let Ω be a domain that is bounded in R3. We will work with the H0(curl; Ω) Hilbert space
which consists of vector fields in the space (L2(Ω))3 with curl also in (L2(Ω))3 and vanishing
tangential components on the boundary ∂Ω (cf. [1]). We will consider the following variational
problem: Find u ∈ H0(curl; Ω) such that

a(u,v) = (f ,v), ∀v ∈ H0(curl; Ω), (1.1)

where
a(v,w) = α · (curlv, curlw) + β · (v,w).

Here, (·, ·) is the standard inner product on [L2(Ω)]
3 and we assume that α is nonnegative

and β is strictly positive. We also assume that f is a square integrable vector field on Ω, i.e.,
f ∈ (L2(Ω))3. In this manuscript, we will provide a multigrid framework for solving our
model problem (1.1).

The model problem (1.1) is originated from the applications in Maxwell’s equation; see
[2]. Relevant fast solvers, such as multigrid methods and domain decomposition methods, for
problems connected with H(curl) have been discussed in [3–14].

It is well-known that the traditional smoothers for solving the scalar elliptic problems do
not work well for vector field problems related to H(curl) and H(div); see [15]. Hence, a
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special smoothing technique is necessary for vector field problems. Function space splitting
methods based on Helmholtz type decompositions pioneered by Hiptmair [7,16] and Hiptmair
and Xu [8] have been considered. In [3,17,18], an overlapping type domain decomposition pre-
conditioner has been applied. We also note that the author and Brenner considered smoothers
associated with nonoverlapping type domain decomposition methods for H(div) problems
in [19, 20].

In this paper, we propose a V –cycle multigrid method with nonoverlapping domain decom-
position smoothers and mainly consider the numerical study that is not covered by theories
in [21]. In [21], the author provided the convergence analysis with the assumptions, i.e., con-
vex domain and constant material parameters in (1.1). We test our method with less strict
conditions, e.g., jump coefficients for α and β, nonconvex domain. We note that our multigrid
method is an H(curl) counterpart of the method in [19, 20] and a nonoverlapping alternative
of the method in [3], which requires less computational costs when applying the smoother.

The remainder of this paper is structured as follows. In Section 2, the standard way to
discretize our model problem using the hexahedral Nédélec element is introduced. We next
present our V –cycle multigrid algorithm in Section 3. Finally, we provide numerical experi-
ments in Section 4.

2. THE DISCRETE PROBLEM

We first consider a triangulation Th of Ω into hexahedral elements. The lowest order hexa-
hedral Nédélec element [22, 23] has the following form:a1 + a2y + a3z + a4yz

b1 + b2z + b3x+ b4zx
c1 + c2x+ c3y + c4xy


on each hexahedral mesh, where the ai’s, bi’s and ci’s are constants. We note that the twelve
degrees of freedom can be completely recovered by the average tangential component on each
edge of the element. Using the finite elements, we obtain the following discretized problem for
(1.1): Find uh ∈ Wh such that

a(uh,vh) = (f ,vh) ∀vh ∈ Wh,

where Wh is the Nédélec finite element space of the lowest order.
We define the operator A : Wh → W ′

h in the following way:

⟨Avh,wh⟩ = a(vh,wh) ∀vh,wh ∈ Wh.

Here, ⟨·, ·, ⟩ is the canonical bilinear form on W ′
h ×Wh. We then have the following discrete

problem:
Auh = fh, (2.1)

where fh ∈ W ′
h defined by

⟨fh,vh⟩ = (f ,vh) ∀vh ∈ Wh.
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3. V -CYCLE MULTIGRID METHOD

In a multigrid setting, we construct a nested sequence of triangulations, T0, T1, · · · , starting
with the initial triangulation T0 consisting of few hexahedral elements. We assume that Tk
is obtained by uniform subdivision from Tk−1. We then define Wk which is the lowest order
Nédélec space related to the kth level mesh and the corresponding discrete problem: Find
uk ∈ Wk such that

Akuk = fk. (3.1)
Here, fk is defined by

⟨fk,vk⟩ = (f ,vk) ∀vk ∈ Wk.

In order for solving the discrete problem (3.1) using multigrid methods, we need two essen-
tial ingredients, intergrid transfer operators and smoothers. We note that everything else can be
constructed in a standard way.

Since we are dealing with the nested finite element spaces, the natural injection can be
used as the coarse-to-fine operator Ikk−1 : Wk−1 −→ Wk. The fine-to-coarse operator Ik−1

k :
W ′

k −→ W ′
k−1 is then defined by

⟨Ik−1
k r,vk−1⟩ = ⟨r, Ikk−1vk−1⟩ ∀ r ∈ W ′

k, vk−1 ∈ Wk−1.

We now focus on the missing piece, smoother. As we are interested in designing nonover-
lapping type domain decomposition smoothers, we borrow the standard two level domain de-
composition framework, i.e., the coarse level and the fine level that are associated with Tk−1

and Tk, respectively.
Before we construct the smoothers, we set up notations for the geometric substructures. Let

Ek−1, Fk−1, and Vk−1 be the sets of interior edges, interior faces, and interior vertices of the
triangulation Tk−1, respectively.

We first consider the interior space. Given any coarse element T ∈ Tk−1, let us define the
subspace W T

k by
W T

k = {v ∈ Wk : v = 0 on Ω \ T}.
Let JT denote the natural injection from W T

k into Wk. The operator AT : W T
k →

(
W T

k

)′ is
constructed by

⟨ATv,w⟩ = a(v,w) ∀v,w ∈ W T
k .

For a coarse edge E ∈ Ek−1, there are four coarse elements, T i
E , i = 1, 2, 3, 4, in Tk−1 and

four coarse faces, F i
E , i = 1, 2, 3, 4, in Fk−1, that are sharing E. The edge space WE

k of Wk is
defined as follow:

WE
k =

{
v ∈ Wk : v = 0 on Ω \

((
∪4
i=1T

i
E

)⋃(
∪4
j=1F

j
E

)⋃
E
)
,

and a(v,w) = 0 ∀w ∈
(
W

T 1
E

k +W
T 2
E

k +W
T 3
E

k +W
T 4
E

k

)}
.

(3.2)

Let JE : WE
k → Wk be the natural injection and the operator AE : WE

k →
(
WE

k

)′ be defined
by

⟨AEv,w⟩ = a(v,w) ∀v,w ∈ WE
k .
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Finally, we define the vertex space WP
k of Wk. For each coarse vertex P ∈ Vk−1, there are

eight elements, T i
P , i = 1, · · · , 8, in Tk−1, twelve faces, F j

P , j = 1, · · · , 12, in Fk−1, and six
edges, El

P , l = 1, · · · , 6, in Ek−1, that have the point P in common. We define the vertex space
WP

k by

WP
k =

{
v ∈ Wk : v = 0 on Ω \

((
∪8
i=1T

i
P

)⋃(
∪12
j=1F

j
P

)⋃(
∪6
l=1E

l
P

))
,

and a(v,w) = 0 ∀w ∈

(
8∑

i=1

W
T i
P

k

)}
.

The natural injection JP : WP
k → Wk and the operator AP are obtained by a similar way to

JE and AE , respectively.
We now define two smoothers, the edge-based and the vertex-based preconditioners. The

edge-based smoother M−1
E,k is constructed as follow:

M−1
E,k = ηE

 ∑
T∈Tk−1

JTA
−1
T J t

T +
∑

E∈Ek−1

JEA
−1
E J t

E

 .

Similarly, the vertex-based smoother M−1
P,k is obtained by

M−1
P,k = ηP

 ∑
T∈Tk−1

JTA
−1
T J t

T +
∑

P∈Vk−1

JPA
−1
P J t

P

 .

Here, ηE and ηP are damping factors and J t
T : W ′

k →
(
W T

k

)′, J t
E : W ′

k →
(
WE

k

)′, and
J t
P : W ′

k →
(
WP

k

)′ are the transposes of JT , JE , and JP , respectively. We can decide the
damping factors such that

ρ
(
M−1

E,kAk

)
≤ 1 and ρ

(
M−1

P,kAk

)
≤ 1, (3.3)

where ρ
(
M−1

E,kAk

)
and ρ

(
M−1

P,kAk

)
are the spectral radii of M−1

E,kAk and M−1
P,kAk, respec-

tively. We note that the conditions in (3.3) are satisfied if ηE ≤ 1/12 and ηP ≤ 1/8.
Putting all together, we can completely determine the multigrid framework. The output

MGV (k, g, z0,m) of the kth level (symmetric) multigrid V -cycle algorithm for Akz = g,
with initial guess z0 ∈ Wk and m smoothing steps, is defined as follows:

For k = 0, the result is obtained by using a direct solver:

MGV (0, g,z0,m) = A−1
0 g.
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For k ≥ 1, we set

zl = zl−1 +M−1
k (g −Akzl−1) for l = 1, · · · ,m,

g = Ik−1
k (g −Akzm) ,

zm+1 = zm + Ikk−1MGV (k − 1, g, 0,m) ,

zl = zl−1 +M−1
k (g −Akzl−1) for l = m+ 2, · · · , 2m+ 1.

The output of MGV (k, g, z0,m) is z2m+1. The smoother Mk is either ME,k or MP,k defined
earlier in the current section.

In order to check the efficiency of the algorithm, we consider the following error propagation
operator:

Em
k (z − z0) = z −MGV (k, g, z0,m). (3.4)

The operator Em
k is affiliated with the error after one kth multigrid sweep with m smoothing

steps. For more detail, see [24, Chapter 6].

4. NUMERICAL RESULTS

We note that a part of the finite element discretizations has been implemented with the
MFEM library [25, 26]. The codes used for the experiments are available at the repository
https://github.com/duksoon-open/MG_ND.

FIGURE 1. Checkerboard distribution of the coefficients

4.1. Jump Coefficients. The first experiment is for the cube Ω = (−1, 1)3. The domain Ω
is decomposed into eight identical cubical subdomains and set the subregions as the initial tri-
angulation T0. We assume that the coefficients α and β are constants in each subdomain in a
checkerboard pattern; see Fig. 1. We apply the multigrid algorithms, edge-based method and
vertex-based method, introduced in Section 3. We report the contraction numbers by calculat-
ing the largest eigenvalue of the operators Em

k in (3.4), for k = 1, · · · , 4 and for m = 1, · · · , 5.
The results are presented in Table 1 and Table 2. We see that the multigrid methods provide



328 DUK-SOON OH

contraction and are robust to the jump between the interface of the initial mesh. In general, the
vertex-based methods perform better than the edge-based methods since we have more compu-
tational costs when applying the vertex-based smoothers. For the degrees freedom associated
with the coarse faces, we have the same number of sweeps. However, regarding the degrees
of freedom related to the coarse edges, the vertex-based methods act twice as many as the
edge-based methods.

TABLE 1. Contraction numbers of the V -cycle edge-based methods. αb and
βb for the black subregions and αw and βw for the white subregions as indi-
cated in a checkerboard pattern as in Fig. 1

m = 1 m = 2 m = 3 m = 4 m = 5
αb = 0.01, βb = 1, αw = 1, βw = 1

k = 1 0.905 0.827 0.762 0.709 0.663
k = 2 0.940 0.908 0.872 0.841 0.811
k = 3 0.967 0.952 0.935 0.917 0.902
k = 4 0.981 0.970 0.960 0.955 0.942

αb = 0.1, βb = 1, αw = 1, βw = 1
k = 1 0.905 0.827 0.763 0.710 0.666
k = 2 0.941 0.910 0.875 0.844 0.807
k = 3 0.967 0.954 0.937 0.92 0.905
k = 4 0.980 0.971 0.961 0.956 0.945

αb = 1, βb = 1, αw = 1, βw = 1
k = 1 0.907 0.831 0.769 0.719 0.677
k = 2 0.944 0.917 0.885 0.858 0.830
k = 3 0.970 0.959 0.944 0.930 0.917
k = 4 0.981 0.972 0.965 0.963 0.956

αb = 10, βb = 1, αw = 1, βw = 1
k = 1 0.909 0.836 0.777 0.729 0.690
k = 2 0.948 0.924 0.896 0.872 0.853
k = 3 0.972 0.965 0.952 0.941 0.931
k = 4 0.982 0.974 0.971 0.969 0.966

αb = 100, βb = 1, αw = 1, βw = 1
k = 1 0.910 0.837 0.778 0.731 0.693
k = 2 0.949 0.926 0.898 0.875 0.857
k = 3 0.973 0.966 0.954 0.943 0.934
k = 4 0.982 0.975 0.972 0.970 0.968
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TABLE 2. Contraction numbers of the V -cycle vertex-based methods. αb and
βb for the black subregions and αw and βw for the white subregions as indi-
cated in a checkerboard pattern as in Fig. 1

m = 1 m = 2 m = 3 m = 4 m = 5
αb = 0.01, βb = 1, αw = 1, βw = 1

k = 1 0.790 0.624 0.493 0.390 0.308
k = 2 0.792 0.627 0.495 0.393 0.312
k = 3 0.791 0.625 0.494 0.391 0.310
k = 4 0.791 0.626 0.495 0.392 0.317

αb = 0.1, βb = 1, αw = 1, βw = 1
k = 1 0.790 0.624 0.493 0.390 0.308
k = 2 0.791 0.626 0.494 0.392 0.310
k = 3 0.791 0.626 0.495 0.392 0.310
k = 4 0.791 0.626 0.495 0.392 0.311

αb = 1, βb = 1, αw = 1, βw = 1
k = 1 0.790 0.624 0.493 0.390 0.308
k = 2 0.791 0.626 0.495 0.392 0.310
k = 3 0.791 0.626 0.495 0.392 0.311
k = 4 0.791 0.626 0.495 0.392 0.311

αb = 10, βb = 1, αw = 1, βw = 1
k = 1 0.790 0.624 0.493 0.390 0.308
k = 2 0.791 0.626 0.495 0.392 0.311
k = 3 0.791 0.626 0.495 0.392 0.311
k = 4 0.791 0.626 0.495 0.392 0.311

αb = 100, βb = 1, αw = 1, βw = 1
k = 1 0.790 0.624 0.493 0.390 0.308
k = 2 0.791 0.626 0.495 0.392 0.311
k = 3 0.791 0.626 0.495 0.393 0.318
k = 4 0.791 0.632 0.524 0.483 0.429

4.2. Nonconvex Domains. In the second set of numerical tests, we consider two kinds of
nonconvex domains, Ω = (−1, 1)3\(−1, 0)3 or Ω = (−1, 1)3\[−1, 0] × [−1, 1] × [−1, 0];
see Figure 2a and Figure 2b. We begin with the initial mesh T0 which consists of seven or
six identical cubes as in Figure 2a and Figure 2b, respectively. We also inductively define the
kth level mesh Tk by a uniform subdivision. Other general settings are similar to those of
Section 4.1. We apply our multigrid algorithm for the problem (1.1) on the domains and report
the contraction numbers computed in the same manner with the first experiment. As we see
the results in the Table 3 and Table 4, the uniform convergences and robustness are observed
except for the problem with k = 1 using the vertex-based smoother.
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(A) Ω = (−1, 1)3\[−1, 0]3 (B) Ω = (−1, 1)3\[−1, 0]× [−1, 1]× [−1, 0]

FIGURE 2. Checkerboard distribution of the coefficients for the nonconvex
domains

TABLE 3. Contraction numbers of the V -cycle edge-based methods for the
nonconvex domains as in Figure 2. αb and βb for the black subregions and αw

and βw for the white subregions as indicated in a checkerboard pattern.

Figure 2a Figure 2b
m = 1 m = 2 m = 3 m = 4 m = 5 m = 1 m = 2 m = 3 m = 4 m = 5

αb = 0.01, βb = 1, αw = 1, βw = 1

k = 1 0.835 0.702 0.576 0.471 0.420 0.892 0.797 0.710 0.620 0.571
k = 2 0.940 0.881 0.828 0.785 0.749 0.966 0.937 0.910 0.883 0.855
k = 3 0.967 0.940 0.918 0.892 0.869 0.981 0.966 0.953 0.935 0.926
k = 4 0.982 0.969 0.957 0.948 0.934 0.985 0.972 0.961 0.956 0.944

αb = 0.1, βb = 1, αw = 1, βw = 1

k = 1 0.823 0.682 0.542 0.436 0.390 0.890 0.791 0.705 0.595 0.563
k = 2 0.943 0.887 0.832 0.796 0.757 0.966 0.940 0.910 0.883 0.860
k = 3 0.966 0.941 0.918 0.892 0.870 0.980 0.966 0.954 0.938 0.926
k = 4 0.983 0.970 0.958 0.948 0.936 0.983 0.973 0.962 0.956 0.945

αb = 1, βb = 1, αw = 1, βw = 1

k = 1 0.799 0.627 0.511 0.419 0.338 0.882 0.766 0.683 0.592 0.501
k = 2 0.945 0.894 0.844 0.802 0.768 0.968 0.943 0.912 0.881 0.864
k = 3 0.970 0.942 0.920 0.896 0.876 0.980 0.968 0.956 0.942 0.929
k = 4 0.984 0.974 0.961 0.950 0.941 0.986 0.975 0.967 0.960 0.955

αb = 10, βb = 1, αw = 1, βw = 1

k = 1 0.802 0.646 0.523 0.420 0.348 0.870 0.773 0.708 0.627 0.558
k = 2 0.946 0.896 0.851 0.804 0.773 0.969 0.944 0.914 0.883 0.865
k = 3 0.972 0.943 0.924 0.902 0.881 0.981 0.970 0.958 0.945 0.933
k = 4 0.986 0.976 0.964 0.954 0.945 0.987 0.977 0.972 0.966 0.957

αb = 100, βb = 1, αw = 1, βw = 1

k = 1 0.804 0.651 0.529 0.424 0.354 0.865 0.771 0.716 0.639 0.570
k = 2 0.947 0.896 0.851 0.805 0.774 0.969 0.944 0.914 0.884 0.865
k = 3 0.972 0.944 0.924 0.903 0.882 0.981 0.971 0.958 0.946 0.934
k = 4 0.986 0.976 0.965 0.955 0.946 0.987 0.978 0.971 0.965 0.956
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TABLE 4. Contraction numbers of the V -cycle vertex-based methods for the
nonconvex domain as in Figure 2. αb and βb for the black subregions and αw

and βw for the white subregions as indicated in a checkerboard pattern.

Figure 2a Figure 2b
m = 1 m = 2 m = 3 m = 4 m = 5 m = 1 m = 2 m = 3 m = 4 m = 5

αb = 0.01, βb = 1, αw = 1, βw = 1

k = 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1

k = 2 0.912 0.835 0.765 0.683 0.648 0.880 0.775 0.684 0.606 0.536
k = 3 0.905 0.825 0.758 0.689 0.622 0.860 0.740 0.634 0.543 0.471
k = 4 0.912 0.834 0.765 0.697 0.626 0.855 0.725 0.623 0.539 0.459

αb = 0.1, βb = 1, αw = 1, βw = 1

k = 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1

k = 2 0.896 0.808 0.726 0.622 0.598 0.875 0.766 0.671 0.592 0.518
k = 3 0.878 0.789 0.710 0.629 0.535 0.855 0.731 0.621 0.525 0.452
k = 4 0.890 0.792 0.703 0.577 0.518 0.850 0.712 0.609 0.526 0.441

αb = 1, βb = 1, αw = 1, βw = 1

k = 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1

k = 2 0.869 0.758 0.660 0.576 0.504 0.858 0.737 0.632 0.544 0.466
k = 3 0.837 0.705 0.593 0.497 0.425 0.830 0.684 0.568 0.443 0.392
k = 4 0.827 0.689 0.570 0.479 0.407 0.813 0.639 0.543 0.444 0.354

αb = 10, βb = 1, αw = 1, βw = 1

k = 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1

k = 2 0.863 0.766 0.666 0.591 0.503 0.880 0.774 0.681 0.602 0.525
k = 3 0.844 0.725 0.613 0.495 0.453 0.845 0.723 0.630 0.529 0.426
k = 4 0.829 0.706 0.574 0.498 0.420 0.813 0.675 0.619 0.493 0.387

αb = 100, βb = 1, αw = 1, βw = 1

k = 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1

k = 2 0.865 0.772 0.675 0.602 0.515 0.886 0.785 0.697 0.620 0.550
k = 3 0.849 0.735 0.626 0.509 0.471 0.855 0.738 0.646 0.552 0.427
k = 4 0.833 0.717 0.590 0.519 0.447 0.810 0.712 0.634 0.529 0.409
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