• Title/Summary/Keyword: finite difference time domain

Search Result 462, Processing Time 0.026 seconds

A Study on the Electromagnetic wave properties of microstrip antenna using finite difference time domain method (FDTD법을 이용한 마이크로스트립 안테나의 전자파 특성에 관한 연구)

  • 홍용인;정명덕;홍성일;이흥기
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.4
    • /
    • pp.653-660
    • /
    • 1998
  • The purpose of this paper is to analyze the electromagnetic field characteristics of microstrip array antenna with the FDTD(finite difference-time domain method). Finite difference equations of Maxwell's equations are defined in rectangular coordinate systems. To simulate the unbounded problem like a free space, the Mur's absorbing boundary condition is also used. After modeling the microstrip array antenna with the grid structure, the transient response of the field distribution is depicted in the time domain.

  • PDF

Finite Difference Time Domain Analysis for Film Bulk Acoustic Wave Resonator used in Microwave Region (시간 영역 유한 차분법(FDTD)을 이용한 마이크로파 대역의 압전 박막 공진기 해석)

  • 송영민;정재호;이용현;이정희;최현철
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.489-492
    • /
    • 2000
  • Film Bulk Acoustic Wave Resonator(FBAR) used in microwave region was analyzed with Finite Difference Time-Domain Methods(FDTD) in this paper. FBAR have been analyzed with one dimensional Mason model analysis or Finite Element methods(FEM), but the first couldn't analyze effect of area variation and spurious characteristics, the second had difficulty in element separation because of thin electrode. So in this paper FBAR was analyzed by Finite Difference Time-Domain Methods and it's results were transformed to frequency domain using Discrete Fourier Transform.

  • PDF

2D Finite Difference Time Domain Method Using the Domain Decomposition Method (영역분할법을 이용한 2차원 유한차분 시간영역법 해석)

  • Hong, Ic-Pyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.5
    • /
    • pp.1049-1054
    • /
    • 2013
  • In this paper, two-dimensional(2-D) Finite Difference Time Domain(FDTD) method using the domain decomposition method is proposed. We calculated the electromagnetic scattering field of a two dimensional rectangular Perfect Electric Conductor(PEC) structure using the 2-D FDTD method with Schur complement method as a domain decomposition method. Four domain decomposition and eight domain decomposition are applied for the analysis of the proposed structure. To validate the simulation results, the general 2-D FDTD algorithm for the total domain are applied to the same structure and the results show good agreement with the 2-D FDTD using the domain decomposition method.

Three-dimensional Finite Difference Modeling of Time-domain Electromagnetic Method Using Staggered Grid (엇갈린 격자를 이용한 3차원 유한차분 시간영역 전자탐사 모델링)

  • Jang, Hangilro;Nam, Myung Jin;Cho, Sung Oh;Kim, Hee Joon
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.3
    • /
    • pp.121-128
    • /
    • 2017
  • Interpretation of time-domain electromagnetic (TEM) data has been made mostly based on one-dimensional (1-D) inversion scheme in Korea. A proper interpretation of TEM data should employ 3-D TEM forward and inverse modeling algorithms. This study developed a 3-D TEM modeling algorithm using a finite difference time-domain (FDTD) method with staggered grid. In numerically solving Maxwell equations, fictitious displacement current is included based on an explicit FDTD method using a central difference approximation scheme. The developed modeling algorithm simulated a small-coil source configuration to be verified against analytic solutions for homogeneous half-space models. Further, TEM responses for a 3-D anomaly are modeled and analyzed. We expect that it will contribute greatly to the precise interpretation of TEM data.

Reconstruction of the Electron Density Profile in O-mode Ultrashort Pulse Reflectometry using a Two-dimensional Finite Difference Time Domain

  • Roh, Young-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.7
    • /
    • pp.52-58
    • /
    • 2013
  • The two-dimensional finite difference time domain algorithm is used to numerically reconstruct the electron density profile in O-mode ultrashort pulse reflectometry. A Gaussian pulse is employed as the source of a probing electromagnetic wave. The Gaussian pulse duration is chosen in such a manner as to have its frequency spectrum cover the whole range of the plasma frequency. By using a number of numerical band-pass filters, it is possible to compute the time delays of the frequency components of the reflected signal from the plasma. The electron density profile is reconstructed by substituting the time delays into the Abel integral equation. As a result of simulation, the reconstructed electron density profile agrees well with the assumed profile.

Analysis of Coaxial Line Transmission Charactristics and Shielding Effectiveness Using by Finite Difference Time Domain Method (시간영역 유한차분법을 이용한 동축선로의 전송특성 및 차폐효과 해석)

  • 남상식;윤현보;김정렬;백낙준;우종우
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.6 no.4
    • /
    • pp.11-19
    • /
    • 1995
  • In this paper, the Finite Difference Time Domain (FDTD) method is used to analyse the characteristics of the coaxial line transmission coefficent, shielding effectiveness, and compared to results of the moment method. The excitation mode of the Gaussian pulse is assumed to be a TEM-mode instead of the TE or TM-mode and in order to eliminate the reflected wave with in short length of the line. Calculated value of shielding effectiveness of the coaxial line by the FDTD are in good agreement with the results of the moment method.

  • PDF

Generation of Non-uniform Meshes for Finite-Difference Time-Domain Simulations

  • Kim, Hyeong-Seok;Ihm, In-Sung;Choi, Kyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.128-132
    • /
    • 2011
  • In this paper, two automatic mesh generation algorithms are presented. The methods seek to optimize mesh density with regard to geometries exhibiting both fine and coarse physical structures. When generating meshes, the algorithms attempt to satisfy the conditions on the maximum mesh spacing and the maximum grading ratio simultaneously. Both algorithms successfully produce non-uniform meshes that satisfy the requirements for finite-difference time-domain simulations of microwave components. Additionally, an algorithm successfully generates a minimum number of grid points while maintaining the simulation accuracy.

Application of Modeling of Electromagnetic Wave Propagation for Thickness Determination Using Finite Difference-Time Domain (유한차분 시간영역법을 이용한 콘크리트 두께측정 전자파 모델링의 적용)

  • 임홍철;남국광
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.341-349
    • /
    • 2002
  • The radar method is becoming one of the major nondestructive testing(NDT) techniques lot concrete structures. Numerical modeling of electromagnetic wane is needed to analyze radar measurement results. Finite difference-time domain(FD-TD) method can be used to simulate electromagnetic wave propagation through concrete specimens. Five concrete specimens with different thickness are modeled in 3-dimension. Radar modeling results compare measurement results to find backface of the concrete specimens and measure thickness of the concrete specimens.

A study on the electromagnetic wave properties of the leaky coaxial cable with the finite difference time domain (FDTD) algorithm (유한차분 시간영역 알고리듬을 이용한 누설 동축 케이블의 전자파 특성에 관한 연구)

  • 홍용인;김정기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.11
    • /
    • pp.2954-2965
    • /
    • 1996
  • In this paper, the electromagnetic field characteristics of leaky caxial cable are anlyzed by using the finite difference-time domain(FDTD) technique. Finite difference equations of Maxwell's equations are definedin cylindrical coordinate systems. To simulate the open boundary problem like a free space, the Mur's Absorbing Boundary condition(Mur-ABC) is also used. After modeling the leaky coaxial cable with the three dimensional grid structure, the transient response of the field distribution and the current distribution, the field pattern, the coupling effect are depicted in the time domain.

  • PDF

Finite-difference Time-domain Study on Birefringence Changes of the Axon During Neural Activation

  • Lee, Jong-Hwan;Kim, Sung-June
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.272-278
    • /
    • 2009
  • Recently, there has been a growing interest in optical imaging of neural activity because the optical neuroimaging has considerable advantages over conventional imaging. Birefringence of the axon has been reported to change during neural activation, but the neurophysiological origin of the change is still unresolved. This study hypothesizes that the birefringence signal is at least partially attributed to the transient cellular volume change associated with nerve excitation. To examine this hypothesis, we investigated how the intensity of cross-polarized light transmitting through the axon would change as the size of the axon changes. For this purpose, a two-dimensional finite-difference time-domain program was developed with the improvement of the total-field/scattered-field method which reduces numerical noise. The results support our hypothesis in that the computed cross-polarized signals exhibit some agreement with previously-reported birefringence signals.