• Title/Summary/Keyword: film pressure

Search Result 2,482, Processing Time 0.029 seconds

Development of Atomic Nitrogen Source Based on a Dielectric Barrier Discharge and Low Temperature Growth GaN (유전체장벽방전에 의한 질소함유 활성종의 개발 및 저온 GaN 박막 성장)

  • Kim, Joo-Sung;Byun, Dong-Jin;Kim, Jin-Sang;Kum, Dong-Wha
    • Korean Journal of Materials Research
    • /
    • v.9 no.12
    • /
    • pp.1216-1221
    • /
    • 1999
  • GaN films were deposited on sapphire [$Al_2O_3(0001)$] substrates at relatively low temperature by MOCVD using N-atom source based on a Dielectric Barrier Discharged method. Ammonia gas($NH_3$is commonly used as an N-source to grow GaN films in conventional MOCVD process, and heating to high temperature is required to provide sufficient dissociation of $NH_3$. We used a dielectric barrier discharge method instead of $NH_3$ to grow GaN film relatively low temperature. DBD is a type of discharge, which have at least one dielectric material as a barrier between electrode. DBD is a type of controlled microarc that can be operated at relatively high gas pressure. Crystallinity and surface morphology depend on growth temperature and buffer layer growth. With the DBD-MOCVD method, wurtzite GaN which is dominated by the (0001) reflection was successfully grown on sapphire substrate even at $700^{\circ}C$.

  • PDF

Characteristics of AlN Thin Films by Magnetron Sputtering System Using Reactive Gases of N2 and NH3 (N2와 NH3 반응성가스를 사용하여 마그네트론 스퍼터링법으로 제작한 AlN박막의 특성)

  • Han, Chang-Suk
    • Korean Journal of Materials Research
    • /
    • v.25 no.3
    • /
    • pp.138-143
    • /
    • 2015
  • Aluminum nitride, a compound semiconductor, has a Wurtzite structure; good material properties such as high thermal conductivity, great electric conductivity, high dielectric breakdown strength, a wide energy band gap (6.2eV), a fast elastic wave speed; and excellent in thermal and chemical stability. Furthermore, the thermal expansion coefficient of the aluminum nitride is similar to those of Si and GaAs. Due to these characteristics, aluminum nitride can be applied to electric packaging components, dielectric materials, SAW (surface acoustic wave) devices, and photoelectric devices. In this study, we surveyed the crystallization and preferred orientation of AlN thin films with an X-ray diffractometer. To fabricate the AlN thin film, we used the magnetron sputtering method with $N_2$, NH3 and Ar. According to an increase in the partial pressures of $N_2$ and $NH_3$, Al was nitrified and deposited onto a substrate in a molecular form. When AlN was fabricated with $N_2$, it showed a c-axis orientation and tended toward a high orientation with an increase in the temperature. On the other hand, when AlN was fabricated with $NH_3$, it showed a-axis orientation. This result is coincident with the proposed mechanism. We fabricated AlN thin films with an a-axis orientation by controlling the sputtering electric power, $NH_3$ pressure, deposition speed, and substrate temperature. According to the proposed mechanism, we also fabricated AlN thin films which demonstrated high a-axis and c-axis orientations.

Electrical and Optical Properties of Amorphous ITZO Deposited at Room Temperature by RF Magnetron Sputtering (RF 마그네트론 스퍼터링법으로 상온 증착된 비정질 ITZO 산화물의 전기적 및 광학적 특성)

  • Lee, Ki Chang;Jo, Kwang-Min;Lee, Joon-Hyung;Kim, Jeong-Joo;Heo, Young-Woo
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.5
    • /
    • pp.239-243
    • /
    • 2014
  • The electrical and optical properties of amorphous In-Tin-Zinc-Oxide(ITZO) deposited at room temperature using rf-magnetron sputtering were investigated. The amorphous ITZO thin films were obtained at the composition of In:Sn:Zn = 6:2:2, 4:3:3, and 2:4:4, but the ITZO (8:1:1) showed a crystalline phase of bixbyite structure of In2O3. The resistivity of ITZO could be controlled by oxygen pressure in the sputtering ambient. The resistivity of post-annealed ITZO thin films exhibited the dependence on the amount of Indium. Optical energy band gap and transmittance increased as the amount of indium in ITZO increased. For the device application with ITZO, the bottom-gated thin-film transistor using ITZO as a active channel layer was fabricated. It showed a threshold voltage of 1.42V and an on/off ratio of $5.63{\times}10^7$ operated with saturation field-effect mobility of $14.2cm^2/V{\cdot}s$.

Influence of the Solid Solution for Crystalline Phase on the Characterization of $Bi_2Sr_2Ca{_{n-1}}Cu_nO_x$(n=0,1,2) Thin Films (결정상에 대한 고용체가 $Bi_2Sr_2Ca{_{n-1}}Cu_nO_x$(n=0,1,2) 박막의 특성에 미치는 영향)

  • Yang, Seung-Ho;Lee, Ho-Shik;Park, Yong-Pil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1115-1121
    • /
    • 2007
  • [ $Bi_2Sr_2Ca{_{n-1}}Cu_nO_x$ ](n=0,1,2) thin fans have been fabricated by co-deposition at an ultra-low growth rate using ion beam sputtering(IBS) method. Bi 2212 phase appeared in the temperature range of 750 and $795^{\circ}C$ and single phase of Bi 2201 existed in the lower region than $785^{\circ}C$. Whereas, $PO_3$ dependance on structural formation was scarcely observed regardless of the pressure variation. And high quality of c-axis oriented Bi 2212 thin film with $T_c$(onset) of about 90 K and $T_c$(zero) of about 45 K is obtained. Only a small amount of CuO in some films was observed as impurity, and no impurity phase such as $CaCuO_2$ was observed in all of the obtained films.

The Design of a Wind Speed & Direction Module and a DSP Sensor Interface System for the Meteorological System (기상계측시스템을 위한 풍향.풍속모듈 및 DSP 센서 인터페이스시스템 설계)

  • Song, Do-Ho;Joo, Jae-Hun;Ock, Gi-Tae;Kim, Sang-Gab;Choi, Jung-Keyng
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.8
    • /
    • pp.1478-1485
    • /
    • 2007
  • In this paper, a meteorological system including a wind speed & direction module and the DSP(Digital Signal Processor) sensor interface circuit board are proposed. This DSP system accepts and process the informations from a wind speed & direction module, the atmospheric pressure sensor, the ambient air temperature sensor and transfers it to the PC monitoring system. Especially, a wind speed & direction module and a DSP hardware are directly designed and applied. A wind speed & direction module have a construction that it have four film type RID(Resistive Temperature Detectors) resistive sensor adhered around the circular metal body heated constantly by heating coil for obtaining vector informations about wind. By this structure, the module is enabled precise measurement having a robustness about vibration, humidity, corrosion. A sensor signal processing circuit is using TMS320F2812 TI(Texas Instrument) Corporation high speed DSP. An economical meteorological system could be constructed through the data from wind speed & direction module and by the fast processing of DSP interface circuit board.

Thermodynamic Comparison of Silicon Carbide CVD Process between CH3SiCl3-H2 and C3H8-SiCl4-H2 Systems (탄화규소 CVD 공정에서 CH3SiCl3-H2과 C3H8-SiCl4-H2계의 열역학적 비교)

  • Choi, Kyoon;Kim, Jun-Woo
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.8
    • /
    • pp.569-573
    • /
    • 2012
  • In order to understand the difference in SiC deposition between the $CH_3SiCl_3-H_2$ and $C_3H_8-SiCl_4-H_2$ systems, we calculate the phase stability among ${\beta}$-SiC, graphite and silicon. We constructed the phase-diagram of ${\beta}$-SiC over graphite and silicon via computational thermodynamic calculation considering pressure (P), temperature (T) and gas composition (C) as variables. Both P-T-C diagrams showed a very steep phase boundary between the SiC+C and SiC region perpendicular to the H/Si axis, and also showed an SiC+Si region with a H/Si value of up to 6700 in the $C_3H_8-SiCl_4-H_2$, and 5000 in the $CH_3SiCl_3-H_2$ system. This difference in phase boundaries is explained by the ratio of Cl to Si, which is 4 for the $C_3H_8-SiCl_4-H_2$ system and 3 for the $C_3H_8-SiCl_4-H_2$ system. Because the C/Si ratio is fixed at 1 in the $CH_3SiCl_3-H_2$ system while it can be variable in the $C_3H_8-SiCl_4-H_2$ system, the functionally graded material is applicable for better mechanical bonding during SiC coating on graphite substrate in the $C_3H_8-SiCl_4-H_2$ system.

Fabrication and Evaluation Properties of Titanium Sintered-body for a Sputtering Target by Spark Plasma Sintering Process (방전플라즈마 소결 공정을 이용한 스퍼터링 타겟용 타이타늄 소결체 제조 및 특성 평가)

  • Lee, Seung-Min;Park, Hyun-Kuk;Youn, Hee-Jun;Yang, Jun-Mo;Woo, Kee-Do;Oh, Ik-Hyun
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.845-852
    • /
    • 2011
  • The Spark Plasma Sintering(SPS) method offers a means of fabricating a sintered-body having high density without grain growth through short sintering time and a one-step process. A titanium compact having high density and purity was fabricated by the SPS process. It can be used to fabricate a Ti sputtering target with controlled parameters such as sintering temperature, heating rate, and pressure to establish the optimized processing conditions. The compact/target(?) has a diameter of ${\Phi}150{\times}6.35mm$. The density, purity, phase transformation, and microstructure of the Ti compact were analyzed by Archimedes, ICP, XRD and FE-SEM. A Ti thin-film fabricated on a $Si/SiO_2$ substrate by a sputtering device (SRN-100) was analyzed by XRD, TEM, and SIMS. Density and grain size were up to 99% and below $40{\mu}m$, respectively. The specific resistivity of the optimized Ti target was $8.63{\times}10^{-6}{\Omega}{\cdot}cm$.

Superhard SiC Thin Films with a Microstructure of Nanocolumnar Crystalline Grains and an Amorphous Intergranular Phase

  • Lim, Kwan-Won;Sim, Yong-Sub;Huh, Joo-Youl;Park, Jong-Keuk;Lee, Wook-Seong;Baik, Young-Joon
    • Corrosion Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.206-211
    • /
    • 2019
  • Silicon carbide (SiC) thin films become superhard when they have microstructures of nanocolumnar crystalline grains (NCCG) with an intergranular amorphous SiC matrix. We investigated the role of ion bombardment and deposition temperature in forming the NCCG in SiC thin films. A direct-current (DC) unbalanced magnetron sputtering method was used with pure Ar as sputtering gas to deposit the SiC thin films at fixed target power of 200 W and chamber pressure of 0.4 Pa. The Ar ion bombardment of the deposited films was conducted by applying a negative DC bias voltage 0-100 V to the substrate during deposition. The deposition temperature was varied between room temperature and $450^{\circ}C$. Above a critical bias voltage of -80 V, the NCCG formed, whereas, below it, the SiC films were amorphous. Additionally, a minimum thermal energy (corresponding to a deposition temperature of $450^{\circ}C$ in this study) was required for the NCCG formation. Transmission electron microscopy, Raman spectroscopy, and glancing angle X-ray diffraction analysis (GAXRD) were conducted to probe the samples' structural characteristics. Of those methods, Raman spectroscopy was a particularly efficient non-destructive tool to analyze the formation of the SiC NCCG in the film, whereas GAXRD was insufficiently sensitive.

Material Transfer of MoS2 Wear Debris to Diamond Probe Tip in Nanoscale Wear test using Friction Force Microscopy (마찰력현미경을 이용한 나노스케일 마멸시험 시 다이아몬드 탐침으로의 MoS2 마멸입자 전이현상)

  • Song, Hyunjun;Lim, Hyeongwoo;Seong, Kwon Il;Ahn, Hyo Sok
    • Tribology and Lubricants
    • /
    • v.35 no.5
    • /
    • pp.286-293
    • /
    • 2019
  • In friction and wear tests that use friction force microscopy (FFM), the wear debris transfer to the tip apex that changes tip radius is a crucial issue that influences the friction and wear performances of films and coatings with nanoscale thicknesses. In this study, FFM tests are performed for bilayer $MoS_2$ film to obtain a better understanding of how geometrical and chemical changes of tip apex influence the friction and wear properties of nanoscale molecular layers. The critical load can be estimated from the test results based on the clear distinction of the failure area. Scanning electron microscopy and energy-dispersive spectroscopy are employed to measure and observe the geometrical and chemical changes of the tip apex. Under normal loads lower than 1000 nN, the reuse of tips enhances the friction and wear performance at the tip-sample interface as the contact pair changes with the increase of tip radius. Therefore, the reduction of contact pressure due to the increase of tip radius by the transfer of $MoS_2$ or Mo-dominant wear debris and the change of contact pairs from diamond/$MoS_2$ to partial $MoS_2$ or Mo/$MoS_2$ can explain the critical load increase that results from tip reuse. We suggest that the wear debris transfer to the tip apex should be considered when used tips are repeatedly employed to identify the tribological properties of ultra-thin films using FFM.

Flow-Accelerated Corrosion Analysis for Heat Recovery Steam Generator in District Heating System (지역난방 배열 회수 보일러의 유동 가속 부식 원인 고찰)

  • Hong, Minki;Chae, Hobyung;Kim, Youngsu;Song, Min Ji;Cho, Jeongmin;Kim, Woo Cheol;Ha, Tae Baek;Lee, Soo Yeol
    • Korean Journal of Materials Research
    • /
    • v.29 no.1
    • /
    • pp.11-15
    • /
    • 2019
  • Severe wall thinning is found on the tube of a low-pressure evaporator(LPEVA) module that is used for a heat recovery steam generator(HRSG) of a district heating system. Since wall thinning can lead to sudden failure or accidents that lead to shutdown of the operation, it is very important to investigate the main mechanism of the wall thinning. In this study, corrosion analysis associated with a typical flow-accelerated corrosion(FAC) is performed using the corroded tube connected to an upper header of the LPEVA. To investigate factors triggering the FAC, the morphology, composition, and phase of the corroded product of the tube are examined using optical microscopy, scanning electron microscopy combined with energy dispersive spectroscopy, and x-ray diffraction. The results show that the thinnest part of the tube is in the region where gas directly contacts, revealing the typical orange peel type of morphology frequently found in the FAC. The discovery of oxide scales containing phosphate indicates that phosphate corrosion is the main mechanism that weakens the stability of the protective magnetite film and the FAC accelerates the corrosion by generating the orange peel type of morphology.