Browse > Article
http://dx.doi.org/10.14773/cst.2019.18.5.206

Superhard SiC Thin Films with a Microstructure of Nanocolumnar Crystalline Grains and an Amorphous Intergranular Phase  

Lim, Kwan-Won (Department of Materials Science and Engineering, Korea University)
Sim, Yong-Sub (Department of Materials Science and Engineering, Korea University)
Huh, Joo-Youl (Department of Materials Science and Engineering, Korea University)
Park, Jong-Keuk (Center for Electronic Materials, Korea institute of Science and Technology)
Lee, Wook-Seong (Center for Electronic Materials, Korea institute of Science and Technology)
Baik, Young-Joon (Center for Electronic Materials, Korea institute of Science and Technology)
Publication Information
Corrosion Science and Technology / v.18, no.5, 2019 , pp. 206-211 More about this Journal
Abstract
Silicon carbide (SiC) thin films become superhard when they have microstructures of nanocolumnar crystalline grains (NCCG) with an intergranular amorphous SiC matrix. We investigated the role of ion bombardment and deposition temperature in forming the NCCG in SiC thin films. A direct-current (DC) unbalanced magnetron sputtering method was used with pure Ar as sputtering gas to deposit the SiC thin films at fixed target power of 200 W and chamber pressure of 0.4 Pa. The Ar ion bombardment of the deposited films was conducted by applying a negative DC bias voltage 0-100 V to the substrate during deposition. The deposition temperature was varied between room temperature and $450^{\circ}C$. Above a critical bias voltage of -80 V, the NCCG formed, whereas, below it, the SiC films were amorphous. Additionally, a minimum thermal energy (corresponding to a deposition temperature of $450^{\circ}C$ in this study) was required for the NCCG formation. Transmission electron microscopy, Raman spectroscopy, and glancing angle X-ray diffraction analysis (GAXRD) were conducted to probe the samples' structural characteristics. Of those methods, Raman spectroscopy was a particularly efficient non-destructive tool to analyze the formation of the SiC NCCG in the film, whereas GAXRD was insufficiently sensitive.
Keywords
Silicon carbide; Nanocomposite structure; Hardness; Nanocolumnar crystalline grain; Amorphous matrix phase;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. V. Singh, S. Chandra, S. Kumar, and G. Bose, J. Micromech. Microeng., 22, 025010 (2012).   DOI
2 J. Trevino, X.-A. Fu, M. Mehregany, and C. A. Zorman, J. Micromech. Microeng., 24, 065001 (2014).   DOI
3 M. Chaker, S. Boily, Y. Diawara, M. El Khakani, E. Gat, A. Jean, H. Lafontaine, and H. Pepin, J. Voyer, J. Kieffer, J. Vac. Sci. Technol. B, 10, 3191 (1992).   DOI
4 S.-I. Han, P. Mangat, S. Smith, W. Dauksher, D. Convey, and R. Gregory, J. Vac. Sci. Technol. A, 18, 1225 (2000).   DOI
5 M. P. Schmidt, I. Solomon, H. Tran-Quoc, and J. Bullot, J. Non.Cryst. Solids, 77, 849 (1985).
6 A. Mahan, D. Williamson, M. Ruth, and P. Raboisson, J. Non.Cryst. Solids, 77, 861 (1985).
7 Z. Yu, I. Pereyra, and M. Carreno, Sol. Energy Mater. Sol. Cells, 66, 155 (2001).   DOI
8 X.-A. Fu, J.L. Dunning, M. Mehregany, and C.A. Zorman, J. Electrochem. Soc., 158, H675 (2011).   DOI
9 G. Foti, Appl. Surf. Sci., 184, 20 (2001).   DOI
10 P. T. Shaffer, J. Am. Ceram. Soc., 47, 466 (1964).   DOI
11 A. Costa, S. Camargo Jr, C. Achete, and R. Carius, Thin Solid Films, 377, 243 (2000).   DOI
12 M. El Khakani, M. Chaker, M. O'Hern, and W. Oliver, J. Appl. Phys., 82, 4310 (1997).   DOI
13 M. El Khakani, M. Chaker, A. Jean, S. Boily, J. Kieffer, M. O'hern, M. Ravet, and F. Rousseaux, J. Mater. Res., 9, 96 (1994).   DOI
14 V. Kulikovsky, P. Bohac, J. Zemek, V. Vorlicek, A. Kurdyumov, and L. Jastrabik, Diam. Relat. Mater., 16, 167 (2007).   DOI
15 V. Kulikovsky, V. Vorlicek, P. Bohac, M. Stranyanek, R. Ctvrtlik, A. Kurdyumov, and L. Jastrabik, Surf. Coat. Technol., 202, 1738 (2008).   DOI
16 S. Veprek and A.S. Argon, J. Vac. Sci. Technol. B, 20, 650 (2002).   DOI
17 F. Liao, S. Girshick, W. Mook, W. Gerberich, and M. Zachariah, Appl. Phys. Lett., 86, 171913 (2005).   DOI
18 K. E. Bae, K. W. Chae, J. K. Park, W. S. Lee, and Y. J. Baik, Adv. Eng. Mater., 18, 1123 (2016).   DOI
19 K.-E. Bae, J.-K. Park, W.-S. Lee, Y.-J. Baik, and K.-W. Chae, Korean J. Met. Mater., 53, 541 (2015).   DOI
20 S. Veprek, S. Mukherjee, P. Karvankova, H.-D. Mannling, J. He, K. Moto, J. Prochazka, and A. Argon, J. Vac. Sci. Technol. A, 21, 532 (2003).
21 S. Veprek, M.G. Veprek-Heijman, P. Karvankova, and J. Prochazka, Thin Solid Films, 476, 1 (2005).   DOI
22 R. Messier, A. Giri, and R. Roy, J. Vac. Sci. Technol. A, 2, 500 (1984).   DOI
23 J. Musil, Physical and mechanical properties of hard nanocomposite films prepared by reactive magnetron sputtering, in: Nanostructured coatings, p. 407, Springer (2006).
24 J. Musil and M. Jirout, Surf. Coat. Technol., 201, 5148 (2007).   DOI
25 P. Musumeci, R. Reitano, L. Calcagno, F. Roccaforte, A. Makhtari, and M. Grimaldi, Philos. Mag. B, 76, 323 (1997).   DOI
26 M. Lattemann, E. Nold, S. Ulrich, H. Leiste, and H. Holleck, Surf. Coat. Technol., 174, 365 (2003).   DOI
27 Y. Inoue, S. Nakashima, A. Mitsuishi, S. Tabata, and S. Tsuboi, Solid State Commun., 48, 1071 (1983).   DOI
28 R. Hillel, M. Maline, F. Gourbilleau, G. Nouet, R. Carles, and A. Mlayah, Mater. Sci. Eng. A, 168, 183 (1993).   DOI
29 V. Kulikovsky, V. Vorli'cek, P. Bohac, A. Kurdyumov, and L. Jastrabi'k, Diam. Relat. Mater., 13, 1350 (2004).   DOI
30 H. Hobert, H. Dunken, S. Urban, F. Falk, and H. Stafast, Vib. Spectrosc., 29, 177 (2002).   DOI
31 A. C. Ferrari and J. Robertson, Phys. Rev. B, 61, 14095 (2000).   DOI