Browse > Article
http://dx.doi.org/10.9725/kts.2019.35.5.286

Material Transfer of MoS2 Wear Debris to Diamond Probe Tip in Nanoscale Wear test using Friction Force Microscopy  

Song, Hyunjun (Manufacturing Systems and Design Engineering Programme, SeoulTech)
Lim, Hyeongwoo (Manufacturing Systems and Design Engineering Programme, SeoulTech)
Seong, Kwon Il (Manufacturing Systems and Design Engineering Programme, SeoulTech)
Ahn, Hyo Sok (Manufacturing Systems and Design Engineering Programme, SeoulTech)
Publication Information
Tribology and Lubricants / v.35, no.5, 2019 , pp. 286-293 More about this Journal
Abstract
In friction and wear tests that use friction force microscopy (FFM), the wear debris transfer to the tip apex that changes tip radius is a crucial issue that influences the friction and wear performances of films and coatings with nanoscale thicknesses. In this study, FFM tests are performed for bilayer $MoS_2$ film to obtain a better understanding of how geometrical and chemical changes of tip apex influence the friction and wear properties of nanoscale molecular layers. The critical load can be estimated from the test results based on the clear distinction of the failure area. Scanning electron microscopy and energy-dispersive spectroscopy are employed to measure and observe the geometrical and chemical changes of the tip apex. Under normal loads lower than 1000 nN, the reuse of tips enhances the friction and wear performance at the tip-sample interface as the contact pair changes with the increase of tip radius. Therefore, the reduction of contact pressure due to the increase of tip radius by the transfer of $MoS_2$ or Mo-dominant wear debris and the change of contact pairs from diamond/$MoS_2$ to partial $MoS_2$ or Mo/$MoS_2$ can explain the critical load increase that results from tip reuse. We suggest that the wear debris transfer to the tip apex should be considered when used tips are repeatedly employed to identify the tribological properties of ultra-thin films using FFM.
Keywords
friction force microscopy; diamond probe tip; wear debris transfer; friction and wear test; bilayer $MoS_2$;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 LaTorre, C., Bhushan, B., "Investigation of scale effects and directionality dependence on friction and adhesion of human hair using AFM and macroscale friction test apparatus", Ultramicroscopy, 2006, http://doi.org/10.1016/j.ultramic.2005.11.010   DOI
2 Lin, L. Y., Kim, D. E., Kim, W. K., Jun, S.C., "Friction and wear characteristics of multi-layer graphene films investigated by atomic force microscopy", Surf. Coat. Technol., 2011, https://doi.org/10.1016/j.surfcoat.2011.04.092   DOI
3 Cho, D. H., Wang, L., Kim, J. S., Lee, G. H., Kim, E. S., Lee, S. H., Lee, S. Y., J. Hone and C.G. Lee, "Effect of surface morphology on friction of graphene on various substrates", Nanoscale, 2013, doi: 10.1039/ c3nr34181j   DOI
4 Tran-Khac, B.C., Chung, K.H., "Frictional Properties of Two-dimensional Materials against Spherical and Flat AFM Tips", 2019, https://doi.org/10.9725/kts.2019.35.4.199   DOI
5 Kopycinska-Müller, M., Geiss, R.H., Hurley, D.C., "Contact mechanics and tip shape in AFM-based nanomechanical measurements", Ultramicroscopy, 2006, doi:10.1016/j.ultramic.2005.12.006   DOI
6 Liu, J., Notbohm, J. K., Carpick, R. W., Turner, T., "Method for characterizing nanoscale wear of atomic force microscope tips", ACS Nano Vol.4, No.7, pp. 3763-3772, 2010.   DOI
7 Killgore, J.P., Geiss, R.H., Hurley, D.C., "Continuous measurement of atomic force microscope tip wear by contact resonance force microscopy", Small, Vol.7, No.8, pp.1018-1022, 2011.   DOI
8 Chung, K. H., Kim, D. E., "Wear characteristics of diamond-coated atomic force microscope probe", Ultramicroscopy, 2007, doi:10.1016/j.ultramic.2007.01.016   DOI
9 Bhaskaran, H., Gotsmann, B., Sebastian, A., Drechsler, U., Lantz, M. A., Despont, M., Jaroenapibal, P., Carpick, R. W., Chen, Y., Sridharan, K., "Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon", Nature, 2010, doi: 10.1038/NNANO.2010.3   DOI
10 Strahlendorff, T., Dai, G., Bergmann, D., Tutsch, R., "Tip wear and tip breakage in high-speed atomic force microscopes", Ultramicroscopy, 2019, https://doi.org/10.1016/j.ultramic.2019.03.013   DOI
11 Agrawal, R., Moldovan, N., Espinosa, H. D., "An energy-based model to predict wear in nanocrystalline diamond atomic force microscopy tips", J. Appl. Phys., 2009, doi: 10.1063/1.3223316   DOI
12 Kim, K. S., Lee, H. J., Lee, C., Lee, S. K., Jang, H., Ahn, J.H., Kim, J. H., Lee, H. J., "Chemical Vapor Deposition-Grown Graphene: The Thinnest Solid Lubricant", ACS Nano Vol.5, No.6, pp. 5107-5114, 2011.   DOI
13 Miura, K., Kamiya, S., "Observation of the Amontons-Coulomb law on the nanoscale: Frictional forces between MoS2 flakes and $MoS_2$ surfaces", Europhys. Lett., 2002, doi:10.1209/epl/i2002-00439-9   DOI
14 Cho, D., Jung, J., Kim, C., Lee, J., Oh, S., Kim, K., Lee, C., "Comparison of Frictional Properties of CVD-Grown $MoS_2$ and Graphene Films under Dry Sliding Conditions", Nanomaterials, 2019, doi:10.3390/nano9020293   DOI
15 Kim, H. J., Yoo, S. S., Kim, D. E., "Nano-scale wear: A Review", Int. J. Precision Eng. & Manufac. Vol.13, No.9, pp.1709-1718, 2012.   DOI
16 Bhushan, B., Kulkarni, A. V., "Effect of normal load on microscale friction measurements", Thin Solid Films, 1996, https://doi.org/10.1016/0040-6090(95)08138-0   DOI