DOI QR코드

DOI QR Code

Thermodynamic Comparison of Silicon Carbide CVD Process between CH3SiCl3-H2 and C3H8-SiCl4-H2 Systems

탄화규소 CVD 공정에서 CH3SiCl3-H2과 C3H8-SiCl4-H2계의 열역학적 비교

  • Choi, Kyoon (KICET Icheon Branch, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Jun-Woo (KICET Icheon Branch, Korea Institute of Ceramic Engineering and Technology)
  • 최균 (한국세라믹기술원 이천분원) ;
  • 김준우 (한국세라믹기술원 이천분원)
  • Received : 2012.03.07
  • Published : 2012.08.25

Abstract

In order to understand the difference in SiC deposition between the $CH_3SiCl_3-H_2$ and $C_3H_8-SiCl_4-H_2$ systems, we calculate the phase stability among ${\beta}$-SiC, graphite and silicon. We constructed the phase-diagram of ${\beta}$-SiC over graphite and silicon via computational thermodynamic calculation considering pressure (P), temperature (T) and gas composition (C) as variables. Both P-T-C diagrams showed a very steep phase boundary between the SiC+C and SiC region perpendicular to the H/Si axis, and also showed an SiC+Si region with a H/Si value of up to 6700 in the $C_3H_8-SiCl_4-H_2$, and 5000 in the $CH_3SiCl_3-H_2$ system. This difference in phase boundaries is explained by the ratio of Cl to Si, which is 4 for the $C_3H_8-SiCl_4-H_2$ system and 3 for the $C_3H_8-SiCl_4-H_2$ system. Because the C/Si ratio is fixed at 1 in the $CH_3SiCl_3-H_2$ system while it can be variable in the $C_3H_8-SiCl_4-H_2$ system, the functionally graded material is applicable for better mechanical bonding during SiC coating on graphite substrate in the $C_3H_8-SiCl_4-H_2$ system.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. K. S. Cho, S. H. Yoon, H. Chung, S. H. Chae, K. Y. Lim, Y. W. Kim, and S. H. Park, Ceramist 10, 33 (2007).
  2. J. W. Kim, S. M. Jeong, H. T. Kim, K. J. Kim, J. H. Lee, and K. Choi, J. Kor. Ceram. Soc. 48, 236 (2011). https://doi.org/10.4191/KCERS.2011.48.3.236
  3. Y. Yan and Z. Weigang, Chin. J. Chem. Eng. 17, 419 (2009). https://doi.org/10.1016/S1004-9541(08)60226-8
  4. R. Wang and R. Ma, J. Crystal Growth 308, 189 (2007). https://doi.org/10.1016/j.jcrysgro.2007.07.038
  5. G. Chichignoud, M. Ucar-Morais, M. Pons, and E. Blanquet, Surf. Coat. Tech. 201, 8888 (2007). https://doi.org/10.1016/j.surfcoat.2007.04.113
  6. O. Danielsson, U. Forsberg, A. Henry, and E. Janzen, J. Crystal Growth 235, 352 (2002). https://doi.org/10.1016/S0022-0248(01)01831-0
  7. R. Wang and R. Ma, Crystal Growth 308, 189 (2007). https://doi.org/10.1016/j.jcrysgro.2007.07.038
  8. J. W. Kim, H. T. Kim, K. J. Kim, J. H. Lee, and K. Choi, J. Kor. Ceram. Soc. 48, 621 (2011). https://doi.org/10.4191/kcers.2011.48.6.621
  9. Y. G. Jung, S. W. Park, and S. C. Choi, Mater. Lett. 30, 339 (1997). https://doi.org/10.1016/S0167-577X(96)00221-2
  10. M. Sasaki and T. Hirai, J. Europ. Ceram. Soc. 14, 257 (1994). https://doi.org/10.1016/0955-2219(94)90094-9