• Title/Summary/Keyword: film pressure

Search Result 2,485, Processing Time 0.025 seconds

A Study on the Measurement of Oil-Film Pressure in Engine Connecting Rod Bearing and Piston Pin-Boss by Thin-Film Sensor

  • Mihara, Yuji;Someya, Tsuneo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.409-410
    • /
    • 2002
  • In order to measure the oil-film pressure in sliding surface of machinery, we have developed a piezo-resistive type thin-film pressure sensor. To reduce the measurement error due to temperature and strain, the constituent of the pressure sensitive alloy was optimized and a new sensor shape was devised. In this study, we present the measurement results of the oil-film pressure distribution in engine connecting rod big-end bearing and piston pin- bosses with 3 different pin-boss shapes using the newly developed thin-film pressure sensor.

  • PDF

Measurement of the Film Cooling Effectiveness on a Flat Plate using Pressure Sensitive Paint

  • Park, S.D.;Lee, K.S.;Kwak, J.S.;Cha, B.J.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.53-58
    • /
    • 2008
  • Film cooling effectiveness on a flat plate was measured with pressure sensitive paint. The pressure sensitive paint(PSP) changes the intensity of its emissive light with pressure and the characteristic was used in film cooling effectiveness measurement. The film coolants were air and nitrogen, and by comparing the intensity of PSP coated surface with each coolant, the film cooling effectiveness was calculated. Three blowing ratio of 0.5, 1, and 2 were tested with two mainstream turbulence intensities. Results clearly showed the effect of blowing ratio and mainstream turbulence intensity. As the blowing ratio increases, the film cooling effectiveness was decreased near the film cooling holes. However, the film cooling effectiveness far downstream from the injection hole was higher for higher blowing ratio. As the mainstream turbulence intensity increased, the film cooling effectiveness was decreased at far downstream from the injection hole.

  • PDF

Effects of Distance between Pads on the Film Pressure in Pad Bearings (패드 베어링에서 패드사이의 거리가 유막압력에 미치는 영향)

  • Kim, Jong-Soo;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.13 no.1
    • /
    • pp.53-61
    • /
    • 1997
  • Experiments are conducted to investigate the effects of distance between pads on the film pressure and the inlet pressure build-up at the entrance of pad bearings. The inlet pressure and the film pressure are measured by manometers in several cases of the distance between pads. The experimental results are also compared with the theoretical results which are calculated using the several methods for the estimation of the inlet pressure. In the experimental results , the distance between pads has a large influence on the film pressure and the inlet pressure build-up a bearing entrance. It is also shown that the effects of the inlet pressure on the film pressure are remarkable, although inertia parameter is a little higher (${\ge}0.05$).

The Effect of Oil Supply Pressure on the Performance of Vapor Cavitated Short Squeeze Film Dampers (증기 공동현상이 발생하는 무한 소폭 스퀴즈 필름 댐퍼 성능과 오일 공급압력의 영향)

  • Jung, Si-Young
    • Tribology and Lubricants
    • /
    • v.24 no.3
    • /
    • pp.147-153
    • /
    • 2008
  • The effect of oil supply pressure on the performance of vapor cavitated short squeeze film dampers is examined. Vapor cavitation is characterized by film rupture occurring as a result of evaporating oils. The pressure of vapor cavity in the film is almost zero in absolute pressure and nearly constant. Pan's model about the shape of vapor cavity is utilized for studying the effect of vapor cavitation on the damping capability of a short squeeze film damper. As the level of oil supply pressure is increasing, vapor cavitation is suppressed so that the direct damping coefficient increases and the cross coupled damping coefficient decreases. Futhermore, the analysis of the unbalance responses of a rigid rotor supported on cavitated squeeze film dampers shows that a significant reduction in rotor amplitude and force transmissibility is possible by controlling the oil supply pressure into short squeeze film dampers.

Orientation Characteristics of AIN Thin Film using RF Magnetron Sputtering wish Incident Angle (입사각을 가진 RF 마그네트론 스퍼터링법으로 증착한 AIN 박막의 배향 특성)

  • 박영순;김덕규;송민종;박춘배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.395-398
    • /
    • 2000
  • Reactive radio frequency (RF)magnetron sputter with incident angle has been used to deposit AlN thin film on a crystalline Si substrate. (002)Preferred orientation of AlN thin film has been obtained at low sputtering pressure. Also it has been shown that depostion rate of AIN thin film is affected by fraction Ar and $N_2$ partial pressure. But substrate temperature didn't affect depostion rate of AIN thin film . As sputtering pressure increased preferred orientation degraded. The internal stress changed from tensile stress to compressive stress as fraction of $N_2$ partial pressure increased. At low nitrogen partial pressure cermet$^{[1]}$ AIN thin film is obtained.

  • PDF

A Study on Appearances of Desensitized Phenomenon in Chest Roentgenography (흉부X선사진(胸部X線寫眞)에 나타나는 감감현상(減感現象)에 관(關)한 연구(硏究))

  • Kyong, Kwang-Hyon;Huh, Joon
    • Journal of radiological science and technology
    • /
    • v.2 no.1
    • /
    • pp.23-29
    • /
    • 1979
  • Roentgenographic film has to be handled with greatest care during removal from the packing, loading of the cassettes and loading of the hanger. In the case of prior to or after exposed film is handled with mechanical pressure in darkroom, the most common phenomena are desensitization or sensitization on roentgenographic film. In order to observe these defect occurring on, it, the author studied on change of the densities where the mechanical pressure reached to the roentgenographic film. 1. The optimal minimum and maximum densities in routine chest x-ray film are from 0.25 to 1.47 2. The dependence of the desensitization occurring on film upon the bent degree of film is in the portion to bent degree over $10^{\circ}$ 3. Appearances of the desensitization on film by the curved degree of film is inverse proportion to it's degree below intervals of 3cm. 4. The more unexposed film is bent with nail tip and is pressured with palm, the more desensitization it was appeared upon film size and pressure weight. 5. The most serious area of desensitization produced by many types of mechanical pressure is in the portion of lung apex and outside lung fields. 6. The tendency of desensitization due to mechanical pressure on unexposed film is more serious than sensitization on exposed film in the view of radiologic diagnosis.

  • PDF

Effect of Working Pressure Conditions during Sputtering on the Electrical Performance in Te Thin-Film Transistors (RF Sputtering 공정 법을 이용해 증착한 Te 기반 박막 및 박막 트랜지스터의 공정 변수에 따른 전기적 특성 평가)

  • Lee, Kyu Ri;Kim, Hyun-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.2
    • /
    • pp.190-193
    • /
    • 2022
  • In this work, the effect of sputtering working pressure for the tellurium film and its thin-film transistor was investigated. The transfer characteristics of tellurium thin-film transistors were improved by increasing the working pressure during sputtering process. As increasing working pressure, physical and optical properties of Te films such as crystallinity, transmittance, and surface roughness were improved. Therefore, the improved transfer characteristics of Te thin-film transistors may originate from both improved interface properties between the silicon oxide gate dielectric layer and the tellurium active layer with an improved quality of Te film. In conclusion, the control of working pressure during sputtering would be important for obtaining high-performance tellurium-based thin film transistor

Effects of Deposition Conditions on the Properties of Amorphous Carbon Nitride Thin Films by PECVD (PECVD로 제조된 비정질 질화탄소 박막의 특성에 미치는 증착변수의 영향)

  • Moon, Hyung-Mo;Kim, Sang-Sub
    • Korean Journal of Materials Research
    • /
    • v.13 no.3
    • /
    • pp.150-154
    • /
    • 2003
  • Amorphous carbon nitride films were deposited on Si(001) substrates by a plasma enhanced chemical vapor deposition technique (PECVD) using $CH_4$and $N_2$as reaction gases. The growth and film properties were investigated while the gas ratio and the working pressure were changed systematically. At 1 Torr working pressure, an increase in the $N_2$partial pressure results in a significant increase of the deposition rate as well as an apparent presence of C ≡N bonding, while little affecting the microstructure and amorphus nature of the films. In the case of changing the working pressure at a fixed $N_2$partial pressure of 98%, a film grown at a medium pressure of $1${\times}$10^{-2}$ Torr shows the most prominent C=N bonding nature and photoluminescent property.

Atomization Using a Pressure-Gas-Atomizer

  • Achelis, Lydia;Uhlenwinkel, Volker;Lagutkin, S.;Sheikhaliev, Sh.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.4-5
    • /
    • 2006
  • An update and the latest results on molten metal atomization using a Pressure-Gas-Atomizer will be given. This atomizer combines a swirl-pressure atomizer, to generate a liquid hollow cone film and a gas atomizer to atomize the film and/or the fragments of the film. The paper is focused on powder production, but this atomization system is also applicable for deposition purposes. Different alloys (Sn, SnCu) were atomized to study the characteristics of the Pressure-Gas-Atomizer.

  • PDF

Effects of inlet pressure build-up on the running characteristics of tilting pad thrust bearing (선단압력이 틸팅 패드 추력베어링의 운전특성에 미치는 영향)

  • 이경우;김종수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.85-91
    • /
    • 1998
  • In this paper, an influence of inlet pressure on the running characteristics of tilting pad thrust bearing is studied by a numerical analysis. The inlet pressure is obtained from the extended Bernoulli equation including the loss coefficient which is varied with the operating conditions. The running characteristic parameters such as the minimum film thickness, the film pressure and the film thickness ratios are calculated for various runner speeds with constant load in particular two pivot positions. The results are shown that the inlet pressure has a large influence on the minimum film thickness and other running characteristic parameters.

  • PDF