Browse > Article
http://dx.doi.org/10.4313/JKEM.2022.35.2.13

Effect of Working Pressure Conditions during Sputtering on the Electrical Performance in Te Thin-Film Transistors  

Lee, Kyu Ri (Department of Materials Science and Engineering, Chungnam National University)
Kim, Hyun-Suk (Department of Materials Science and Engineering, Chungnam National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.35, no.2, 2022 , pp. 190-193 More about this Journal
Abstract
In this work, the effect of sputtering working pressure for the tellurium film and its thin-film transistor was investigated. The transfer characteristics of tellurium thin-film transistors were improved by increasing the working pressure during sputtering process. As increasing working pressure, physical and optical properties of Te films such as crystallinity, transmittance, and surface roughness were improved. Therefore, the improved transfer characteristics of Te thin-film transistors may originate from both improved interface properties between the silicon oxide gate dielectric layer and the tellurium active layer with an improved quality of Te film. In conclusion, the control of working pressure during sputtering would be important for obtaining high-performance tellurium-based thin film transistor
Keywords
Tellurium; Thin-film transistors; Surface roughness; Sputtering; P-type semiconductor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. S. Park, W. J. Maeng, H. S. Kim, and J. S. Park, Thin Solid Films, 520, 1679 (2012). [DOI: https://doi.org/10.1016/j.tsf.2011.07.018]   DOI
2 M. Naqi, K. H. Choi, H. Yoo, S. Chae, B. J. Kim, S. Oh, J. Jeon, C. Wang, N. Liu, S. Kim, and J. Y. Choi, NPG Asia Mater., 13, 46 (2021). [DOI: https://doi.org/10.1038/s41427-021-00314-y]   DOI
3 Z. Wang, P. K. Nayak, J. A. Caraveo-Frescas, and H. N. Alshareef, Adv. Mater., 28, 3831 (2016). [DOI: https://doi.org/10.1002/adma.201503080]   DOI
4 M. Mayilmurugan, S. Kaipannan, M. Sathish, and S. Dhanuskodi RSC Adv., 10, 13632 (2020). [DOI: https://doi.org/10.1039/C9RA08692G]   DOI
5 B. Kumar, B. K. Kaushik, and Y. S. Negi, Polym Rev, 54, 33 (2014). [DOI: https://doi.org/10.1080/15583724.2013.848455]   DOI
6 F. H. Chen, M. N. Hung, J. F. Yang, S. Y. Kuo, J. L. Her, Y. H. Matsuda, and T. M. Pan, J Phys Chem Solids, 74, 570 (2013). [DOI: https://doi.org/10.1016/j.jpcs.2012.12.006]   DOI
7 H. Matsui, Y. Takeda, and S. Tokito, Org. Electron, 75, 105432 (2019). [DOI: https://doi.org/10.1016/j.orgel.2019.105432]   DOI
8 K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, 432, 488 (2004). [DOI: https://doi.org/10.1038/nature03090]   DOI
9 H. Hosono, J Non Cryst Solids, 352, 851 (2006). [DOI: https://doi.org/10.1016/j.jnoncrysol.2006.01.073]   DOI
10 C. Zhao, C. Tan, D. H. Lien, X. Song, M. Amani, M. Hettick, H. Y. Y. Nyein, Z. Yuan, L. Li, M. C. Scott, and A. Javey, Nat. Nanotechnol., 15, 53 (2020). [DOI: https://doi.org/10.1038/s41565-019-0585-9]   DOI
11 H. D. Kim, J. H. Kim, K. Park, J. H. Kim, J. Park, Y. J. Kim, and H. S. Kim, ACS Appl. Mater. Interfaces, 9, 24688 (2017). [DOI: https://doi.org/10.1021/acsami.7b03385]   DOI
12 D. G. Yang, H. D. Kim, J. H. Kim, S. W. Lee, J. Park, Y. J. Kim, and H. S. Kim, Thin Solid Films, 638, 361 (2017). [DOI : https://doi.org/10.1016/j.tsf.2017.08.008]   DOI
13 U. Zschieschang and H. Klauk, J. Mater. Chem. C, 7, 5522 (2019). [DOI: https://doi.org/10.1039/C9TC00793H]   DOI
14 G. Zhou, R. Addou, Q. Wang, S. Honari, C. R. Cormier, L. Cheng, R. Yue, C. M. Smyth, A. Laturia, J. Kim, W. G. Vandenberghe, M. J. Kim, R. M. Wallace, and C. L. Hinkle, Adv. Mater., 30, 1803109 (2018). [DOI: https://doi.org/10.1002/adma.201803109]   DOI