• Title/Summary/Keyword: fermentation optimization

Search Result 333, Processing Time 0.031 seconds

Response Surface Optimization of Fermentation Parameters for Citric Acid Production in Solid Substrate Fermentation (고체발효에서 반응표면분석법을 이용한 구연산 생산 최적화)

  • Kim, Jin-Woo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.879-884
    • /
    • 2012
  • In this present study, Aspergillus niger NRRL 567 was cultivated on an inert support material and the effects of various fermentation parameters including temperature, nutrient solution pH, inoculation level, and moisture content were observed and optimized by one-factor-at-a-time (OFAT) and response surface methodology (RSM), sequentially. It was found that the incubation temperature of $30^{\circ}C$ with 75% moisture content, nutrient solution pH of 7.1 and inoculation level of $4.0{\times}10^6$ spores/ml were the most favorable. Again, fermentation parameters were optimized using RSM. The determined optimum condition is $26.5^{\circ}C$, pH 9.9, 75.1%, and $6.0{\times}10^6$ spores/ml. Under this optimized condition, A. niger NRRL 567 produced 118.8 g citric acid/kg dry peat moss at 72 hr. Maximum citric acid production of optimized condition by RSM represented a 1.6-fold increase compared to that obtained from control experiment.

Optimization of Fermentation Conditions for the Ethanol Production from Sweet Sorghum Juice by Saccharomyces cerevisiae using Response Surface Methodolgy (단수수 착즙액으로부터 에탄올 생산을 위한 반응표면분석법을 이용한 효모 발효조건 최적화)

  • Cha, Young-Lok;Park, Yu-Ri;Kim, Jung-Kon;Choi, Yong-Hwan;Moon, Youn-Ho;Bark, Surn-Teh;An, Gi-Hong;Koo, Bon-Cheol;Park, Kwang-Geun
    • New & Renewable Energy
    • /
    • v.7 no.4
    • /
    • pp.3-9
    • /
    • 2011
  • Optimization of initial total sugar concentration of sweet sorghum juice, aeration time and aeration rate on ethanol production was performed by response surface methodology (RSM). The optimum conditions for ethanol production from concentrated sweet sorghum juice were determined as follows: initial total sugar concentration, 21.2 Brix; aeration time, 7.66h; aeration rate, 1.22 vvm. At the optimum conditions, the maximum ethanol yield was predicted to be 91.65% by model prediction. Similarly, 92.98% of ethanol yield was obtained by verification experiment using optimum conditions after 48 h of fermentation. This result was in agreement with the model prediction.

Optimization of Fed-Batch Fermentation for Production of Poly-$\beta$-Hydroxybutyrate in Alcaligenes eutrophus

  • Lee, In-Young;Choi, Eun-Soo;Kim, Guk-Jin;Nam, Soo-Wan;Shin, Yong-Cheol;Chang, Ho-Nam;Park, Young-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.2
    • /
    • pp.146-150
    • /
    • 1994
  • Production of poly-$\beta$-hydroxybutyrate (PHB) in fed-batch fermentation was studied. Utilization of carbon for PHB biosynthesis was investigated by using feeding solutions with different ratios of carbon to nitrogen (C/N). It was observed that at a high C/N ratio carbon source was more preferably utilized for PHB accumulation while its consumption for cellular metabolism appeared to be more favored at a low C/N value. A high cell concentration (184 g/l) was achieved when ammonium hydroxide solution was fed to control the pH, which was also utilized as the sole nitrogen source. For the mass production of PHB, two-stage fed-batch operations were carried out where PHB accumulation was observed to be stimulated by switching the ammonium feeding mode to the nitrogen limiting condition. A large amount of PHB (108 g/l) was obtained with cellular content of 80% within 50 hrs of operation.

  • PDF

Improvement of Fungal Cellulase Production by Mutation and Optimization of Solid State Fermentation

  • Vu, Van Hanh;Pham, Tuan Anh;Kim, Keun
    • Mycobiology
    • /
    • v.39 no.1
    • /
    • pp.20-25
    • /
    • 2011
  • Spores of Aspergillus sp. SU14 were treated repeatedly and sequentially with $Co^{60}$ ${\gamma}$-rays, ultraviolet irradiation, and N-methyl-N'-nitro-N-nitrosoguanidine. One selected mutant strain, Aspergillus sp. SU14-M15, produced cellulase in a yield 2.2-fold exceeding that of the wild type. Optimal conditions for the production of cellulase by the mutant fungal strain using solid-state fermentation were examined. The medium consisted of wheat-bran supplemented with 1% (w/w) urea or $NH_4Cl$, 1% (w/w) rice starch, 2.5 mM $MgCl_2$, and 0.05% (v/w) Tween 80. Optimal moisture content and initial pH was 50% (v/w) and 3.5, respectively, and optimal aeration area was 3/100 (inoculated wheat bran/container). The medium was inoculated with 25% 48 hr seeding culture and fermented at $35^{\circ}C$ for 3 days. The resulting cellulase yield was 8.5-fold more than that of the wild type strain grown on the basal wheat bran medium.

Optimization and Scale-Up of Succinic Acid Production by Mannheimia succiniciproducens LPK7

  • Oh, In-Jae;Kim, Dong-Hyun;Oh, Eun-Kyoung;Lee, Sang-Yup;Lee, Jin-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.2
    • /
    • pp.167-171
    • /
    • 2009
  • The effects of culture conditions on succinic acid production and its possible scale-up have been studied. Mannheimia succiniciproducens LPK7, engineered for enhanced production of succinic acid and reduced by-product secretion, was used for the experiments. Mannheimia succiniciproducens LPK7 is a knock-out strain of wild type deficient in the ldhA, pflB, and pta-ackA genes, and is derived from Mannheimia succiniciproducens MBEL55E. Process optimization of factors including optimal temperature, pH, carbon source, and nitrogen source was performed to enhance the production of succinic acid in flasks. To observe scale-up effects, batch fermentation was carried out at various working volumes. At a working volume of 7.0 l, the final succinic acid concentration and yield were 15.4g/l and 0.86g/g. This result shows similar amount of succinic acid obtained in lab-scale fermentation, and it is possible to scale up to larger fermentors without major problems.

Isolation, Optimization, and Partial Purification of Amylase from Chrysosporium asperatum by Submerged Fermentation

  • Sanghvi, Gaurav V.;Koyani, Rina D.;Rajput, Kishore S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.5
    • /
    • pp.470-476
    • /
    • 2011
  • A potent fungus for amylase production, Chrysosporium asperatum, was isolated from among 30 different cultures obtained from wood samples collected in the Junagadh forest, India. All of the isolated cultures were screened for their ability to produce amylase by submerged fermentation. Among the selected cultures, C. asperatum (Class Euascomycetes; Onygenales; Onygenaceae) gave maximum amylase production. In all of the different media tested, potato starch was found to be a good substrate for production of amylase enzyme at $30^{\circ}C$ and pH 5.0. Production of enzyme reached the maximum when a combination of starch and 2% xylose, and organic nitrogen (1% yeast extract) and ammonium sulfate were used as carbon and nitrogen sources, respectively. There was no significant effect of metal ions on enzyme activity. The enzyme was relatively stable at $30^{\circ}C$ for 20 min, and no inhibitory effect of $Ca^{+2}$ ions on amylase production was observed.

The Optimization of Biohydrogen Production Medium by Dark Fermentation with Enterobacter aerogenes (Enterobacter aerogenes의 혐기발효에 의한 바이오 수소 생산 배지의 최적화)

  • Kim, Kyu-Ho;Choi, Young-Jin;Kim, Eui-Yong
    • KSBB Journal
    • /
    • v.23 no.1
    • /
    • pp.54-58
    • /
    • 2008
  • Hydrogen is considered as an energy source for the future due to its environmentally friendly use in fuel cells. A promising way is the biological production of hydrogen by fermentation. In this study, the optimization of medium conditions which maximize hydrogen production from Enterobacter aerogenes KCCM 40146 were determined. As a result, the maximum attainable cumulative volume of hydrogen was 431 $m{\ell}$ under the conditions of 0.5M potassium phosphate buffer, pH 6.5 medium containing 30 g/L glucose. The best nitrogen sources were peptone and tryptone for the cell growth as well as hydrogen production. The control of cell growth rate was found to be a important experimental parameter for effective hydrogen production

Production of $\beta$-Carotene-Enriched Rice Bran Using Solid-State Fermentation of Rhodotorula glutinis

  • Roadjanakamolson, M.;Suntornsuk, W.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.525-531
    • /
    • 2010
  • This work was aimed at utilizing rice bran as a substrate for $\beta$-carotene production by Rhodotorula glutinis DM 28 under optimized conditions of solid-state fermentation. The biomass and $\beta$-carotene content of Rhodotorula glutinis DM 28 grown on rice bran as a sole substrate under solid-state fermentation were 54 g/kg rice bran and 1.65 mg/kg rice bran, respectively. Its biomass and $\beta$-carotene content, however, could be improved by 60% and 30%, respectively, using the Central Composite Design for the optimization of its cultivation conditions. The optimized conditions obtained were a pH of 5, a moisture content of 70% (w/w), and a carbon-to-nitrogen ratio of 4. Under these conditions, rice bran containing R. glutinis DM 28 had nutritional values of $\beta$-carotene, protein, and fat higher than those of rice bran alone. Yeast-grown rice bran could be suitable, therefore, to use as a $\beta$-carotene-enriched supplement in animal feeds.

Optimization of Peach Wine Fermentation by Response Surface Methodology (반응표면분석에 의한 복숭아주 발효 최적화)

  • Lee, Gee-Dong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.4
    • /
    • pp.586-591
    • /
    • 2015
  • To prepare peach wine using peach juice, fermentation properties were monitored, and fermentation conditions (initial sugar concentration, temperature, and time) were optimized by a response surface methodology. Alcohol content for peach wine fermentation ranged from 3.4~9.2% [$R^2=0.9229$ (P<0.01)] and 8.54% (maximum value) at $18.73^{\circ}Brix$, $16.81^{\circ}C$, and 12.99 day. Acidity ranged from 0.30~0.74%, and 0.25% (minimum value) at $15.11^{\circ}Brix$, $17.09^{\circ}C$, and 13.61 day. Residual sugar concentration was $6.67^{\circ}Brix$ (maximum residual sugar content) at $17.79^{\circ}Brix$, $20.63^{\circ}C$, and 3.37 day. Yellow color intensity was 18.92 (maximum Hunter's color b value) at $13.19^{\circ}Brix$, $20.81^{\circ}C$, and 12.81 day. Based on the above study results, optimization conditions for peach wine fermentation were 9 days, below $20^{\circ}C$, and $19^{\circ}Brix$ peach juice.

The Optimization of Fermentation Parameters for Heterologous Protein Productivity Enhancement with Pichia pastoris (Methylotrophic Yeast를 이용한 외래단백질 발현에서의 발효 변수 최적화)

  • 강환구;이문원;전희진
    • KSBB Journal
    • /
    • v.13 no.3
    • /
    • pp.325-330
    • /
    • 1998
  • The methylotrophic yeast, Pichia pastoris, is known to be a potential host to offer many advantages for production of recombinant proteins. Fermentation parameters were optimized to enhance the heterologous ${\beta}$-galactosidase productivity with P. pastoris. Optimum concentration of methanol, used as inducer, was observed to be 8 g/L and the extent of repression of AOX1 promoter by glycerol was lower than by glucose. The degradation of the gene product ${\beta}$-galactosidase by protease was inhibited as the pH increased from 5 to 8 and the yeast extract(1%) as nitrogen source increased expression level 4 times higher compared to yeast nitrogen base(1%) as nitrogen source increased expression level 4 times higher compared to yeast nitrogen base(1%). Induction method, in which methanol is just added to fermentation medium without centrifugation, was found to be as much effective as the one with centrifugation.

  • PDF