DOI QR코드

DOI QR Code

Response Surface Optimization of Fermentation Parameters for Citric Acid Production in Solid Substrate Fermentation

고체발효에서 반응표면분석법을 이용한 구연산 생산 최적화

  • Kim, Jin-Woo (Department of Biosystems Engineering, McGill University)
  • 김진우 (맥길대학교 바이오시스템공학과)
  • Received : 2012.03.10
  • Accepted : 2012.04.20
  • Published : 2012.10.01

Abstract

In this present study, Aspergillus niger NRRL 567 was cultivated on an inert support material and the effects of various fermentation parameters including temperature, nutrient solution pH, inoculation level, and moisture content were observed and optimized by one-factor-at-a-time (OFAT) and response surface methodology (RSM), sequentially. It was found that the incubation temperature of $30^{\circ}C$ with 75% moisture content, nutrient solution pH of 7.1 and inoculation level of $4.0{\times}10^6$ spores/ml were the most favorable. Again, fermentation parameters were optimized using RSM. The determined optimum condition is $26.5^{\circ}C$, pH 9.9, 75.1%, and $6.0{\times}10^6$ spores/ml. Under this optimized condition, A. niger NRRL 567 produced 118.8 g citric acid/kg dry peat moss at 72 hr. Maximum citric acid production of optimized condition by RSM represented a 1.6-fold increase compared to that obtained from control experiment.

본 실험에서는 Aspergillus niger NRRL 567의 고체배양을 이용한 구연산 생산 시, 물리/화학적 발효 조건인 배양 온도, 배지 pH, 접종 농도 및 수분 함량이 구연산 생산에 미치는 영향을 단일변수(one-factor-at-a-time)와 반응표면 분석법(surface response methodology)을 이용하여 순차적 최적화를 수행하였다. 단일변수 최적화의 경우, A. niger에 의한 구연산 생산은 물리/화학적 발효 조건에 의해 영향을 받으며, 발효 온도 $30^{\circ}C$, 영양 배지 pH 7.1, 수분 함량 75%와 접종 농도 $4.0{\times}10^6$ spores/ml에서 최대 구연산 생산인 98.2 g/kg DPM (dry peat moss)을 보였다. 단일변수 최적화에 근거하여 반응표면 분석법을 도입하여 2차 최적화를 수행했을 경우, 배지 pH와 수분 함량이 구연산 생산에 유의한 영향을 주었으며 온도 $26.5^{\circ}C$, 영양 배지 pH 9.9, 수분 함량 75.1%와 접종 농도 $6.0{\times}10^6$ spores/ml에서 최대 구연산 생산인 118.8 g/kg DPM가 얻어졌다. 이는 최적화 이전의 대조군에 비해 구연산 생산이 1.6배 증가한 결과이다.

Keywords

References

  1. Haq, I., Khurshid, S., Ali, K., Ashraf, H., Qadeer, M. A. and Rajoka, I., "Mutation of Aspergillus niger for Hyperproduction of Citric Acid from Black Strap Molasses," World J. Microbiol. Biotechnol., 17, 35(2001). https://doi.org/10.1023/A:1016625130070
  2. Pazouki, M., Felse, P. A., Sinha, J. and Panda, T., "Comparative Studies on Citric Acid Production by Aspergillus niger and Candida Lipolytica Using Molasses and Glucose," Bioprocess Eng., 22, 353(2000). https://doi.org/10.1007/PL00009115
  3. Vandenberghe, L. P. S., Soccol, C. R., Pandey, A. and Lebeault, J. M., "Solid-state Fermentation for the Synthesis of Citric Acid by Aspergillus niger," Bioresour. Technol., 74, 175(2000). https://doi.org/10.1016/S0960-8524(99)00107-8
  4. Hang, Y. D., Luh, B. S. and Woodams, E. E., "Microbial Production of Citric Acid by Solid State Fermentation of Kiwifruit Peel," J. Food Sci., 52, 226, 175(1987).
  5. Alvarez-Vasquez, F., Gonzalez-Alco, C. and Torres, N. V., "Metabolism of Citric Acid Production by Aspergillus niger," Biotechnol. Bioeng., 70, 82(2000). https://doi.org/10.1002/1097-0290(20001005)70:1<82::AID-BIT10>3.0.CO;2-V
  6. Wasay, S. A., Barrington, S. F. and Tokunaga, S., "Efficiency of GAC Treatment of Leachate from Soil Washing Process," Water Air Soil Pollut., 116, 449(1999). https://doi.org/10.1023/A:1005115820429
  7. Barrington, S., Kim, J. S., Wang, L. and Kim, J. W., "Optimization of Citric Acid Production by Aspergillus niger NRRL 567 Grown in a Column Bioreactor," Korean J. Chem. Eng., 26, 422 (2008).
  8. Xu, D. B., Kubicek, C. P. and Roch, M., "Comparison of Factors Influencing Citric Acid Production by Aspergillus niger Grown in Submerged Culture and on Filter Paper," App. Microbiol. Biotechnol., 30, 444(1989).
  9. Prado, F. C., Vandenberghe, L. P. and Soccol, C. R., "Citric Acid Production by Solid-state Fermentation on a Semi-pilot Scale Using Different Percentages of Treated Cassava Bagasse," Braz. Arch. Biol. Technol., 48, 29(2005). https://doi.org/10.1590/S1516-89132005000700004
  10. Kim, J. W. and Barrington, S., "Response Surface Optimization of Medium Components for Citric Acid Production by Aspergillus niger NRRL 567 Grown in Peat Moss," Bioresour. Technol., 99, 368(2008). https://doi.org/10.1016/j.biortech.2006.12.007
  11. Battaglin, R. A., Huergo, M., Pilodof, A. M. R. and Bartholomai, G. B., "Culture Requirements for the Production of Protease by Aspergillus Oryzae in Solid States Fermentation," Appl. Microbiol. Biotechnol., 35, 292(1991).
  12. Wen, Z. Y. and Chen, F., "Application of Statistically-based Experimental Designs for the Optimization of Eicosapentaenoic Acid Production by the Diatom Nitzschia laevis," Biotechnol. Bioeng., 75, 159(2001). https://doi.org/10.1002/bit.1175
  13. Pintado, J., Torrado, A., González, M. P. and Murado, M. A., "Optimization of Nutrient Concentration for Citric Acid Production by Solid-state Culture of Aspergillus niger on Polyurethane Foams," Enzym. Microb. Tech., 23, 149(1998). https://doi.org/10.1016/S0141-0229(98)00042-8
  14. Ellaiah, P., Srinivasulu, B. and Adinarayana, K., "Optimization Studies on Neomycin Production by Mutant Strain Streptomyces Marinesis in Solid State Fermentation," Process Biochem., 30, 529(2004).
  15. Dhillon, G. S., Brar, S. K., Verma, M. and Tyagi1, R. D., "Enhanced Solid-state Citric Acid Bio-production Using Apple Pomace Waste Through Surface Response Methodology," J. Appl. Microbiol., 110, 1045(2011). https://doi.org/10.1111/j.1365-2672.2011.04962.x
  16. Roukas, T. J., "Citric and Gluconic Acid Production from Fig by Aspergillus niger Using Solid-state Fermentation," Ind. Microbol. Biotechnol., 25, 298(2000). https://doi.org/10.1038/sj.jim.7000101
  17. Javed, S., Asgher, M., Sheikh, M. A., Nawaz, H. and Jamil, A., Bioresour. Technol., 74, 175(2000). https://doi.org/10.1016/S0960-8524(99)00107-8
  18. Mahadik, N. D., Puntambekar, U. S., Bastawde, K. B., Khire, J. M. and Gokhale, D. V., "Production of Acidic Lipase by Culture Requirements for the Production of Protease by Aspergillus niger NCIM 1207 in Solid State Fermentation," Process Biochem., 38, 715(2002). https://doi.org/10.1016/S0032-9592(02)00194-2
  19. Kumar, D., Verma, R. and Bhalla, T. C., "Citric Acid Production by Aspergillus niger van. Tieghem MTCC 281 Using Waste Apple Pomace as a Substrate," J. Food Sci Technol, 47, 458(2010). https://doi.org/10.1007/s13197-010-0077-2
  20. Nampoothiri, M. K., Baiju, T. V., Sandhya, C., Sabu, A., Szakacs, G. and Pandey, A., Process Biochem., 11, 1583(2003).
  21. Bari, N., Alam, Z., Muyibi, S. A., Jamal, P. and Mamuna, A., Bioresour. Technol., 100, 3113(2009). https://doi.org/10.1016/j.biortech.2009.01.005
  22. Tengerdy, Solid state fermentation, R. P., Trends Biotechnol., 3, 96(1985). https://doi.org/10.1016/0167-7799(85)90092-7
  23. Reid, I. D., "Solid State Fermentation for Biological Delignification," Enz. Microbiol. Technol., 11, 786(1989). https://doi.org/10.1016/0141-0229(89)90052-5
  24. Rezaei, P., Darzi, G., Shafaghat, H., Optimization of the Fermentation Condition and Partial Characterization for Acido-thermophilic $\alpha$-amylase from Aspergillus niger NCIM 548," Korean J. Chem. Eng., 27, 919(2010). https://doi.org/10.1007/s11814-010-0138-2
  25. Kamini, N. R., Mala, J. G. S., Puvanakrishnan, R., "Lipase Production from Aspergillus niger, by Solid-state Fermentation Using Gingelly Oil Cake," Process. Biochem., 28, 505(1998).
  26. Fawole, O. B. and Odunfa, "Some Factors Affecting Production of Pectin Enzymes by Aspergillus niger," S.A., Int. Biodeterior., 51, 223(2003).
  27. Goes, A. P. and Sheppard, J. D., "Effect of Surfactant on $\alpha$-amylase Production in a Solid Substrate Fermentation Process, J. Chem. Technol. Biotechnol., 73, 709(1999).
  28. Hang, Y. D. and Woodams, E. E., "Production of Citric Acid from Corncobs by Aspergillus niger," Bioresour. Technol., 65, 251(1998). https://doi.org/10.1016/S0960-8524(98)00015-7
  29. Kim, K. S. and Kim, J. S., "Opimization of Ammonia Percolation Process for Ethanol Production from Miscanthus Sinensis," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 48, 704(2010).
  30. Kim, J. W., Barrington, S., Sheppard, J. and Lee, B., "Nutrient Optimization for the Production of Citric Acid by Aspergillus niger NRRL 567 Grown on Peat Moss Enriched with Glucose," Process Biochem., 41, 1253(2006). https://doi.org/10.1016/j.procbio.2005.12.021

Cited by

  1. Effects of Fermentation Parameters on Cellulolytic Enzyme Production under Solid Substrate Fermentation vol.52, pp.3, 2014, https://doi.org/10.9713/kcer.2014.52.3.302
  2. Optimization of Fermentation Conditions for the Production of Citric Acid by Aspergillus niger NRRL 567 Grown on Agricultural by Products vol.52, pp.3, 2014, https://doi.org/10.9713/kcer.2014.52.3.402
  3. BTEX-contaminated Groundwater Remediation with Modified Fenton Reaction using Environmental Friendly Chelating Agent vol.52, pp.5, 2014, https://doi.org/10.9713/kcer.2014.52.5.638
  4. Optimization of Medium for Protease Production by Enterobacteriaceae sp. PAMC 25617 by Response Surface Methodology vol.53, pp.4, 2015, https://doi.org/10.9713/kcer.2015.53.4.524
  5. 통계학적 최적화를 이용한 아마란스 잎으로부터 폴리페놀 열수추출조건 최적화 vol.54, pp.3, 2012, https://doi.org/10.9713/kcer.2016.54.3.315