Browse > Article
http://dx.doi.org/10.4014/jmb.0809.0550

Production of $\beta$-Carotene-Enriched Rice Bran Using Solid-State Fermentation of Rhodotorula glutinis  

Roadjanakamolson, M. (Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi)
Suntornsuk, W. (Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.3, 2010 , pp. 525-531 More about this Journal
Abstract
This work was aimed at utilizing rice bran as a substrate for $\beta$-carotene production by Rhodotorula glutinis DM 28 under optimized conditions of solid-state fermentation. The biomass and $\beta$-carotene content of Rhodotorula glutinis DM 28 grown on rice bran as a sole substrate under solid-state fermentation were 54 g/kg rice bran and 1.65 mg/kg rice bran, respectively. Its biomass and $\beta$-carotene content, however, could be improved by 60% and 30%, respectively, using the Central Composite Design for the optimization of its cultivation conditions. The optimized conditions obtained were a pH of 5, a moisture content of 70% (w/w), and a carbon-to-nitrogen ratio of 4. Under these conditions, rice bran containing R. glutinis DM 28 had nutritional values of $\beta$-carotene, protein, and fat higher than those of rice bran alone. Yeast-grown rice bran could be suitable, therefore, to use as a $\beta$-carotene-enriched supplement in animal feeds.
Keywords
$\beta$-Carotene; Rhodotorula glutinis; rice bran; animal feed; optimization;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Malisorn, C. and W. Suntornsuk. 2008. Optimization of $\beta$-carotene production by Rhodotorula glutinis DM28 in fermented radish brine. Biores. Technol. 99: 2281-2287.   DOI   ScienceOn
2 Goksungur, Y., F. Mantzouridou, and T. Roukas. 2002. Optimization of the production of $\beta$-carotene from molasses by Blakeslea trispora: A statistical approach. J. Chem. Technol. Biotechnol. 77: 933-943.   DOI   ScienceOn
3 Kockova-Kratochvilova, A. 1990. Yeasts and Yeast-Like Organisms. VCH, Weinheim.
4 Martin, A. M., L. Chun, and T. Patal. 1993. Growth parameters for the yeasts Rhodotorula rubra grown in peat extracts. J. Ferment. Bioeng. 76: 321-325.   DOI   ScienceOn
5 Montgomery, D. C. 2001. Design and Analysis of Experiments, 5th Ed. John Wiley, New York.
6 NRC. 1994. Nutrient Requirements of Poultry. National Academy Press, Washington, D.C.
7 Park, P. K., D. H. Cho, E. Y. Kim, and K. H. Chu. 2005. Optimization of carotenoid production by Rhodotorula glutinis using statistical experimental design. World J. Microbiol. Biotechnol. 21: 429-434.   DOI   ScienceOn
8 Ramires, J., H. Gutierrez, and A. Gschaedler. 2001. Optimization of astaxanthin production by Phaffia rhodozyma through factorial design and response surface methodology. J. Biotechnol. 88: 259-268.   DOI   ScienceOn
9 Rose, A. H. and J. S. Harrison. 1971. The Yeasts. Vol. 2. Physiology and Biochemistry of Yeasts. Academic Press, London.
10 Somashekar, D. and R. Joseph. 2000. Inverse relationship between carotenoid and lipid formation in Rhodotorula gracilis according to the C/N ratio of the growth medium. World J. Microbiol. Biotechnol. 16: 491-493.   DOI   ScienceOn
11 Martelli, H. L., D. I. M. Silva, N. O. Souza, and D. Pomeroy. 1990. Production of $\beta$-carotene by a Rhodotorula strain grown on sugar cane juice. Biotechnol. Lett. 12: 207-208.   DOI
12 Association of Official Analytical Chemists (AOAC). 1995. Official Methods of Analysis of AOAC International, 16th Ed. AOAC International, Arlington.
13 Frengova, G., E. Simova, K. Pavlov, D. Beshkova, and D. Grigorova. 1994. Formation of carotenoids by Rhodotorula glutinis in whey ultrafiltrate. Biotechnol. Bioeng. 44: 888-894.   DOI   ScienceOn
14 Goodwin, T. W. 1992. Distribution of carotenoids. Methods Enzymol. 213: 167-172.   DOI
15 Aksu, Z. and A. T. Eren. 2005. Carotenoids production by the yeast Rhodotorula mucilaginosa: Use of agricultural wastes as a carbon source. Process Biochem. 40: 2985-2991.   DOI   ScienceOn
16 Salunkne, D., J. K. Chavan, R. N. Adsule, and S. S. Kadam. 1992. World Oilseeds: Chemistry, Technology and Utilization. Van Nostrand Reinhold, New York.
17 Paredes-Lopez, O. and A. Alpuche-Solis. 1991. Solid substrate fermentation - A biotechnological approach to bioconversion of wastes, pp. 117-145. In A. M. Martin (ed.). Bioconversion of Waste Materials to Industrial Products. Elsevier Applied Science, New York.
18 Calo, P., J. B. Velazquez, C. Sieiro, P. Blanco, E. Longo, and T. G. Villa. 1995. Analysis of astaxanthin and other carotenoids from several Phaffia rhodozyma mutants. J. Agric. Food Chem. 43: 1396-1399.   DOI   ScienceOn
19 Sedmak, J. J., D. K. Weerasinghe, and S. O. Jolly. 1990. Extraction and quantification of astaxanthin from Phaffia rhodozyma. Biotechnol. Techniq. 4: 107-112.   DOI
20 Vajang, R. and W. Suntornsuk. 2001. $\beta$-Carotene production by Rhodotorula glutinis DM 28 in lettuce brine. Thai J. Biotechnol. 3: 38-46.
21 Maneewatthana, D., T. Rapeesak, and W. Suntornsuk. 2000. Isolation and identification of yeasts from fermented vegetable brine. KMUTT Res. Dev. J. 23: 47-62.
22 Nam, H. S., S. Y. Cho, and J. S. Rhee. 1988. High-performance liquid chromatographic analysis of major carotenoids from Rhodotorula glutinis. J. Chromatogr. 448: 445-447.   DOI
23 Dufosse, L. 2006. Microbial production of food-grade pigments. Food Technol. Biotechnol. 44: 313-321.
24 Buzzini, P. and A. Martini. 1999. Production of carotenoids by strains of Rhodotorula glutinis cultured in raw materials of agro-industrial origin. Bioresour. Technol. 71: 41-44.
25 Buzzini, P., A. Martini, M. Gaetani, B. Turchetti, U. Pagnoni, and P. Davoli. 2005. Optimization of carotenoid production by Rhodotorula graminis DBVPG 7021 as a function of trace element concentration by means of response surface analysis. Enzyme Microb. Technol. 36: 687-692.   DOI
26 Koutsos, E. A. and K. C. Klasing. 2005. Vitamin A nutrition of growing cockatiel chicks (Nymphicus hollandicus). J. Anim. Physiol. Anim. Nutr. 89: 379-387.   DOI   ScienceOn
27 Shih, C. T., and Y. D. Hang. 1996. Production of carotenoids by Rhodotorula rubra from sauerkraut brine. Lebensm. Wiss Technol. 29: 570-572.   DOI   ScienceOn
28 Buzzini, P. 2000. An optimization study of carotenoid production by Rhodotorula glutinis DBVPG 3853 from substrates containing concentrated rectified grape must as the sole carbohydrate source. J. Ind. Microbiol. Biotechnol. 24: 41-45.   DOI   ScienceOn
29 Vijayalakshmi, G., B. Shobha, V. Vanajakshi, S. Divakar, and B. Manohar. 2001. Response surface methodology for optimization of growth parameters for the production of carotenoids by a mutant strain of Rhodotorula gracillis. Eur. Food Res. Technol. 213: 234-239.   DOI   ScienceOn
30 Bhosale, P. and R. V. Gadre. 2001. $\beta$-Carotene production in sugarcane molasses by Rhodotorula glutinis mutant. J. Ind. Microbiol. Biotechnol. 26: 327-332.   DOI   ScienceOn
31 Atkinson, B. and F. Mavituna. 1991. Biochemical Engineering and Biotechnology Handbook, 2nd Ed. Stockton Press, New York.
32 Astorg, P. 1997. Food carotenoids and cancer prevention: An overview of current research. Trends Food Sci. Technol. 8: 406-412.   DOI   ScienceOn