DOI QR코드

DOI QR Code

Production of $\beta$-Carotene-Enriched Rice Bran Using Solid-State Fermentation of Rhodotorula glutinis

  • Roadjanakamolson, M. (Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi) ;
  • Suntornsuk, W. (Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi)
  • Received : 2008.09.26
  • Accepted : 2009.01.16
  • Published : 2010.03.31

Abstract

This work was aimed at utilizing rice bran as a substrate for $\beta$-carotene production by Rhodotorula glutinis DM 28 under optimized conditions of solid-state fermentation. The biomass and $\beta$-carotene content of Rhodotorula glutinis DM 28 grown on rice bran as a sole substrate under solid-state fermentation were 54 g/kg rice bran and 1.65 mg/kg rice bran, respectively. Its biomass and $\beta$-carotene content, however, could be improved by 60% and 30%, respectively, using the Central Composite Design for the optimization of its cultivation conditions. The optimized conditions obtained were a pH of 5, a moisture content of 70% (w/w), and a carbon-to-nitrogen ratio of 4. Under these conditions, rice bran containing R. glutinis DM 28 had nutritional values of $\beta$-carotene, protein, and fat higher than those of rice bran alone. Yeast-grown rice bran could be suitable, therefore, to use as a $\beta$-carotene-enriched supplement in animal feeds.

Keywords

References

  1. Aksu, Z. and A. T. Eren. 2005. Carotenoids production by the yeast Rhodotorula mucilaginosa: Use of agricultural wastes as a carbon source. Process Biochem. 40: 2985-2991. https://doi.org/10.1016/j.procbio.2005.01.011
  2. Association of Official Analytical Chemists (AOAC). 1995. Official Methods of Analysis of AOAC International, 16th Ed. AOAC International, Arlington.
  3. Astorg, P. 1997. Food carotenoids and cancer prevention: An overview of current research. Trends Food Sci. Technol. 8: 406-412. https://doi.org/10.1016/S0924-2244(97)01092-3
  4. Atkinson, B. and F. Mavituna. 1991. Biochemical Engineering and Biotechnology Handbook, 2nd Ed. Stockton Press, New York.
  5. Bhosale, P. and R. V. Gadre. 2001. $\beta$-Carotene production in sugarcane molasses by Rhodotorula glutinis mutant. J. Ind. Microbiol. Biotechnol. 26: 327-332. https://doi.org/10.1038/sj.jim.7000138
  6. Buzzini, P. 2000. An optimization study of carotenoid production by Rhodotorula glutinis DBVPG 3853 from substrates containing concentrated rectified grape must as the sole carbohydrate source. J. Ind. Microbiol. Biotechnol. 24: 41-45. https://doi.org/10.1038/sj.jim.2900765
  7. Buzzini, P. and A. Martini. 1999. Production of carotenoids by strains of Rhodotorula glutinis cultured in raw materials of agro-industrial origin. Bioresour. Technol. 71: 41-44.
  8. Buzzini, P., A. Martini, M. Gaetani, B. Turchetti, U. Pagnoni, and P. Davoli. 2005. Optimization of carotenoid production by Rhodotorula graminis DBVPG 7021 as a function of trace element concentration by means of response surface analysis. Enzyme Microb. Technol. 36: 687-692. https://doi.org/10.1016/j.enzmictec.2004.12.028
  9. Calo, P., J. B. Velazquez, C. Sieiro, P. Blanco, E. Longo, and T. G. Villa. 1995. Analysis of astaxanthin and other carotenoids from several Phaffia rhodozyma mutants. J. Agric. Food Chem. 43: 1396-1399. https://doi.org/10.1021/jf00053a049
  10. Dufosse, L. 2006. Microbial production of food-grade pigments. Food Technol. Biotechnol. 44: 313-321.
  11. Frengova, G., E. Simova, K. Pavlov, D. Beshkova, and D. Grigorova. 1994. Formation of carotenoids by Rhodotorula glutinis in whey ultrafiltrate. Biotechnol. Bioeng. 44: 888-894. https://doi.org/10.1002/bit.260440804
  12. Goksungur, Y., F. Mantzouridou, and T. Roukas. 2002. Optimization of the production of $\beta$-carotene from molasses by Blakeslea trispora: A statistical approach. J. Chem. Technol. Biotechnol. 77: 933-943. https://doi.org/10.1002/jctb.662
  13. Goodwin, T. W. 1992. Distribution of carotenoids. Methods Enzymol. 213: 167-172. https://doi.org/10.1016/0076-6879(92)13119-I
  14. Kockova-Kratochvilova, A. 1990. Yeasts and Yeast-Like Organisms. VCH, Weinheim.
  15. Koutsos, E. A. and K. C. Klasing. 2005. Vitamin A nutrition of growing cockatiel chicks (Nymphicus hollandicus). J. Anim. Physiol. Anim. Nutr. 89: 379-387. https://doi.org/10.1111/j.1439-0396.2005.00526.x
  16. Malisorn, C. and W. Suntornsuk. 2008. Optimization of $\beta$-carotene production by Rhodotorula glutinis DM28 in fermented radish brine. Biores. Technol. 99: 2281-2287. https://doi.org/10.1016/j.biortech.2007.05.019
  17. Maneewatthana, D., T. Rapeesak, and W. Suntornsuk. 2000. Isolation and identification of yeasts from fermented vegetable brine. KMUTT Res. Dev. J. 23: 47-62.
  18. Martelli, H. L., D. I. M. Silva, N. O. Souza, and D. Pomeroy. 1990. Production of $\beta$-carotene by a Rhodotorula strain grown on sugar cane juice. Biotechnol. Lett. 12: 207-208. https://doi.org/10.1007/BF01026800
  19. Martin, A. M., L. Chun, and T. Patal. 1993. Growth parameters for the yeasts Rhodotorula rubra grown in peat extracts. J. Ferment. Bioeng. 76: 321-325. https://doi.org/10.1016/0922-338X(93)90202-J
  20. Montgomery, D. C. 2001. Design and Analysis of Experiments, 5th Ed. John Wiley, New York.
  21. Nam, H. S., S. Y. Cho, and J. S. Rhee. 1988. High-performance liquid chromatographic analysis of major carotenoids from Rhodotorula glutinis. J. Chromatogr. 448: 445-447. https://doi.org/10.1016/S0021-9673(01)84610-0
  22. NRC. 1994. Nutrient Requirements of Poultry. National Academy Press, Washington, D.C.
  23. Paredes-Lopez, O. and A. Alpuche-Solis. 1991. Solid substrate fermentation - A biotechnological approach to bioconversion of wastes, pp. 117-145. In A. M. Martin (ed.). Bioconversion of Waste Materials to Industrial Products. Elsevier Applied Science, New York.
  24. Park, P. K., D. H. Cho, E. Y. Kim, and K. H. Chu. 2005. Optimization of carotenoid production by Rhodotorula glutinis using statistical experimental design. World J. Microbiol. Biotechnol. 21: 429-434. https://doi.org/10.1007/s11274-004-1891-3
  25. Ramires, J., H. Gutierrez, and A. Gschaedler. 2001. Optimization of astaxanthin production by Phaffia rhodozyma through factorial design and response surface methodology. J. Biotechnol. 88: 259-268. https://doi.org/10.1016/S0168-1656(01)00279-6
  26. Rose, A. H. and J. S. Harrison. 1971. The Yeasts. Vol. 2. Physiology and Biochemistry of Yeasts. Academic Press, London.
  27. Salunkne, D., J. K. Chavan, R. N. Adsule, and S. S. Kadam. 1992. World Oilseeds: Chemistry, Technology and Utilization. Van Nostrand Reinhold, New York.
  28. Sedmak, J. J., D. K. Weerasinghe, and S. O. Jolly. 1990. Extraction and quantification of astaxanthin from Phaffia rhodozyma. Biotechnol. Techniq. 4: 107-112. https://doi.org/10.1007/BF00163282
  29. Shih, C. T., and Y. D. Hang. 1996. Production of carotenoids by Rhodotorula rubra from sauerkraut brine. Lebensm. Wiss Technol. 29: 570-572. https://doi.org/10.1006/fstl.1996.0087
  30. Somashekar, D. and R. Joseph. 2000. Inverse relationship between carotenoid and lipid formation in Rhodotorula gracilis according to the C/N ratio of the growth medium. World J. Microbiol. Biotechnol. 16: 491-493. https://doi.org/10.1023/A:1008917612616
  31. Vajang, R. and W. Suntornsuk. 2001. $\beta$-Carotene production by Rhodotorula glutinis DM 28 in lettuce brine. Thai J. Biotechnol. 3: 38-46.
  32. Vijayalakshmi, G., B. Shobha, V. Vanajakshi, S. Divakar, and B. Manohar. 2001. Response surface methodology for optimization of growth parameters for the production of carotenoids by a mutant strain of Rhodotorula gracillis. Eur. Food Res. Technol. 213: 234-239. https://doi.org/10.1007/s002170100356

Cited by

  1. Evaluation of lipid biosynthesis ability by Rhodotorula and Sporobolomyces strains in medium with glycerol vol.243, pp.2, 2010, https://doi.org/10.1007/s00217-016-2742-9
  2. β-Carotene from Yeasts Enhances Laccase Production of Pleurotus eryngii var. ferulae in Co-culture vol.8, pp.None, 2017, https://doi.org/10.3389/fmicb.2017.01101
  3. Optimization of β-Carotene Production from Rhodotorula glutinis ATCC 4054 Growing on Agro-industrial Substrate Using Plackett-Burman Design vol.88, pp.4, 2018, https://doi.org/10.1007/s40011-017-0908-2
  4. Agro-Industrial Residues: Eco-Friendly and Inexpensive Substrates for Microbial Pigments Production vol.5, pp.None, 2010, https://doi.org/10.3389/fsufs.2021.589414