• 제목/요약/키워드: f-generalized derivation

Search Result 38, Processing Time 0.021 seconds

ON SYMMETRIC BI-GENERALIZED DERIVATIONS OF LATTICE IMPLICATION ALGEBRAS

  • Kim, Kyung Ho
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.179-189
    • /
    • 2019
  • In this paper, we introduce the notion of symmetric bi-generalized derivation of lattice implication algebra L and investigated some related properties. Also, we prove that a map $F:L{\times}L{\rightarrow}L$ is a symmetric bi-generalized derivation associated with symmetric bi-derivation D on L if and only if F is a symmetric map and it satisfies $F(x{\rightarrow}y,z)=x{\rightarrow}F(y,z)$ for all $x,y,z{\in}L$.

b-GENERALIZED DERIVATIONS ON MULTILINEAR POLYNOMIALS IN PRIME RINGS

  • Dhara, Basudeb
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.573-586
    • /
    • 2018
  • Let R be a noncommutative prime ring of characteristic different from 2, Q be its maximal right ring of quotients and C be its extended centroid. Suppose that $f(x_1,{\ldots},x_n)$ be a noncentral multilinear polynomial over $C,b{\in}Q,F$ a b-generalized derivation of R and d is a nonzero derivation of R such that d([F(f(r)), f(r)]) = 0 for all $r=(r_1,{\ldots},r_n){\in}R^n$. Then one of the following holds: (1) there exists ${\lambda}{\in}C$ such that $F(x)={\lambda}x$ for all $x{\in}R$; (2) there exist ${\lambda}{\in}C$ and $p{\in}Q$ such that $F(x)={\lambda}x+px+xp$ for all $x{\in}R$ with $f(x_1,{\ldots},x_n)^2$ is central valued in R.

Generalized Derivations on ∗-prime Rings

  • Ashraf, Mohammad;Jamal, Malik Rashid
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.3
    • /
    • pp.481-488
    • /
    • 2018
  • Let I be a ${\ast}$-ideal on a 2-torsion free ${\ast}$-prime ring and $F:R{\rightarrow}R$ a generalized derivation with an associated derivation $d:R{\rightarrow}R$. The aim of this paper is to explore the condition under which generalized derivation F becomes a left centralizer i.e., associated derivation d becomes a trivial map (i.e., zero map) on R.

APPROXIMATELY QUADRATIC DERIVATIONS AND GENERALIZED HOMOMORPHISMS

  • Park, Kyoo-Hong;Jung, Yong-Soo
    • The Pure and Applied Mathematics
    • /
    • v.17 no.2
    • /
    • pp.115-130
    • /
    • 2010
  • Let $\cal{A}$ be a unital Banach algebra. If f : $\cal{A}{\rightarrow}\cal{A}$ is an approximately quadratic derivation in the sense of Hyers-Ulam-J.M. Rassias, then f : $\cal{A}{\rightarrow}\cal{A}$ is anexactly quadratic derivation. On the other hands, let $\cal{A}$ and $\cal{B}$ be Banach algebras.Any approximately generalized homomorphism f : $\cal{A}{\rightarrow}\cal{B}$ corresponding to Cauchy, Jensen functional equation can be estimated by a generalized homomorphism.

ON GENERALIZED RIGHT f-DERIVATIONS OF 𝚪-INCLINE ALGEBRAS

  • Kim, Kyung Ho
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.119-129
    • /
    • 2021
  • In this paper, we introduce the concept of a generalized right f-derivation associated with a derivation d and a function f in 𝚪-incline algebras and give some properties of 𝚪-incline algebras. Also, the concept of d-ideal is introduced in a 𝚪-incline algebra with respect to right f-derivations.

POSNER'S THEOREM FOR GENERALIZED DERIVATIONS ASSOCIATED WITH A MULTIPLICATIVE DERIVATION

  • UZMA NAAZ;MALIK RASHID JAMAL
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.3
    • /
    • pp.539-548
    • /
    • 2024
  • Let R be a ring and P be a prime ideal of R. A mapping d : R → R is called a multiplicative derivation if d(xy) = d(x)y + xd(y) for all x, y ∈ R. In this paper, our main motive is to obtain the well-known theorem due to Posner in the ring R/P for generalized derivations associated with a multiplicative derivation defined by an additive mapping F : R → R such that F(xy) = F(x)y + xd(y), where d : R → R is a multiplicative derivation not necessarily additive. This article discusses the use of generalized derivations associated with a multiplicative derivation to investigate the commutativity of the quotient ring R/P.

GENERALIZED DERIVATIONS ON PRIME RINGS SATISFYING CERTAIN IDENTITIES

  • Al-Omary, Radwan Mohammed;Nauman, Syed Khalid
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.229-238
    • /
    • 2021
  • Let R be a ring with characteristic different from 2. An additive mapping F : R → R is called a generalized derivation on R if there exists a derivation d : R → R such that F(xy) = F(x)y + xd(y) holds for all x, y ∈ R. In the present paper, we show that if R is a prime ring satisfying certain identities involving a generalized derivation F associated with a derivation d, then R becomes commutative and in some cases d comes out to be zero (i.e., F becomes a left centralizer). We provide some counter examples to justify that the restrictions imposed in the hypotheses of our theorems are not superfluous.