b-GENERALIZED DERIVATIONS ON MULTILINEAR POLYNOMIALS IN PRIME RINGS

Basudeb Dhara

Abstract

Let R be a noncommutative prime ring of characteristic different from $2, Q$ be its maximal right ring of quotients and C be its extended centroid. Suppose that $f\left(x_{1}, \ldots, x_{n}\right)$ be a noncentral multilinear polynomial over $C, b \in Q, F$ a b-generalized derivation of R and d is a nonzero derivation of R such that $$
d([F(f(r)), f(r)])=0
$$

for all $r=\left(r_{1}, \ldots, r_{n}\right) \in R^{n}$. Then one of the following holds:
(1) there exists $\lambda \in C$ such that $F(x)=\lambda x$ for all $x \in R$;
(2) there exist $\lambda \in C$ and $p \in Q$ such that $F(x)=\lambda x+p x+x p$ for all $x \in R$ with $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued in R.

1. Introduction

Throughout this paper R always denotes an associative prime ring with center $Z(R)$. A ring R is said to be a prime ring if for any $a, b \in R, a R b=0$ implies $a=0$ or $b=0$. Q denotes the maximal right ring of quotients of R. Then $C=Z(Q)$ is called the extended centroid of R. It is well known that when R is a prime ring, then Q is also a prime ring and C is a field. We refer the reader to the book [1] for details. The commutator of x and y is denoted by $[x, y]$ and defined by $[x, y]=x y-y x$ for $x, y \in R$. An additive mapping $d: R \rightarrow R$ is called a derivation if $d(x y)=d(x) y+x d(y)$ holds for all $x, y \in R$. An additive mapping $F: R \rightarrow R$ is called a generalized derivation if there exists a derivation $d: R \rightarrow R$ such that $F(x y)=F(x) y+x d(y)$ holds for all $x, y \in R$. Evidently, for some $a, b \in R$, the map $F(x)=a x+x b$ for all $x \in R$ is an example of generalized derivation which is called as inner generalized derivation of R.

For a subset S of R, a mapping $f: S \rightarrow R$ is called commuting (centralizing) on S if $[f(x), x]=0$ (resp. $[f(x), x] \in Z(R))$ for all $x \in S$. Posner [19] initiated

[^0]the study of commuting and centralizing maps. Posner [19] proved that a prime ring must be commutative, if it possesses a nonzero centralizing derivation. Since then many authors investigated commuting and centralizing maps in different directions.

In [13], Lee and Lee proved that if R is a prime ring, I a nonzero ideal of R and d is a nonzero derivation of R such that $[d(f(r)), f(r)] \in Z(R)$ for all $r=\left(r_{1}, \ldots, r_{n}\right) \in I^{n}$, then $f\left(x_{1}, \ldots, x_{n}\right)$ is central-valued on R, except when $\operatorname{char}(R)=2$ and R satisfies $s_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$.

Recently, De Filippis and Di Vincenzo (see [5]) studied the situation when $\delta([d(f(r)), f(r)])=0$ for all $r=\left(r_{1}, \ldots, r_{n}\right) \in R^{n}$, where d and δ are two derivations of R. The statement of De Filippis and Di Vincenzo's theorem is the following:

Theorem A ([5, Theorem 1]). Let K be a noncommutative ring with unity, R a prime K-algebra of characteristic different from $2, d$ and δ two nonzero derivations of R and $f\left(r_{1}, \ldots, r_{n}\right)$ a multilinear polynomial over K. If

$$
\delta([d(f(r)), f(r)])=0
$$

for all $r=\left(r_{1}, \ldots, r_{n}\right) \in R^{n}$, then $f\left(r_{1}, \ldots, r_{n}\right)$ is central-valued on R.
Then, De Filippis and Di Vincenzo [6] studied above result replacing derivation d with a generalized derivation F of R. More precisely, authors proved the following:

Theorem B. Let R be a prime algebra over a commutative ring K with unity, and let $f\left(x_{1}, \ldots, x_{n}\right)$ be a multilinear polynomial over K, not central valued on R. Suppose that d is a nonzero derivation of R and F is a nonzero generalized derivation of R such that

$$
d([F(f(r)), f(r)])=0
$$

for all $r=\left(r_{1}, \ldots, r_{n}\right) \in R^{n}$. If the characteristic of R is different from 2 , then one of the following holds:
(1) There exists $\lambda \in C$, the extended centroid of R such that $F(x)=\lambda x$ for all $x \in R$;
(2) There exist $a \in U$, the Utumi quotient ring of R, and $\lambda \in C$ such that $F(x)=a x+x a+\lambda x$ for all $x \in R$, and $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued on R.

Our motivation in the present paper is to consider F as a b-generalized derivation of R. Let $b \in Q$. An additive map $G: R \rightarrow Q$ is called a b generalized derivation of R if $g(x y)=g(x) y+b x d(y)$ holds for all $x, y \in R$, where $d: R \rightarrow Q$ is an additive map. It is proved in [11] that if R is a prime ring and $b \neq 0$, then the associated map d must be a derivation of R. Evidently, a generalized derivation is a 1-generalized derivation. For some $a, b, c \in Q$, the map $F(x)=a x+b x c \in Q$ is an example of b-generalized
derivation of R, which we call as inner b-generalized derivation of R. The $b-$ generalized derivations appeared canonically in [3] and were introduced and studied recently in $[11,15,17]$.

More precisely, we prove the following theorem.
Theorem 1.1. Let R be a noncommutative prime ring of characteristic different from $2, Q$ be its maximal right ring of quotients and C be its extended centroid. Suppose that $f\left(x_{1}, \ldots, x_{n}\right)$ be a noncentral multilinear polynomial over $C, b \in Q, F$ a b-generalized derivation of R and d is a nonzero derivation of R such that

$$
d([F(f(r)), f(r)])=0
$$

for all $r=\left(r_{1}, \ldots, r_{n}\right) \in R^{n}$. Then one of the following holds:
(1) there exists $\lambda \in C$ such that $F(x)=\lambda x$ for all $x \in R$;
(2) there exist $\lambda \in C$ and $p \in Q$ such that $F(x)=\lambda x+p x+x p$ for all $x \in R$ with $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued in R.

As an application of above theorem, we have the following corollary which is a generalization of particular result of [4].

Corollary 1.2. Let R be a noncommutative prime ring of characteristic different from $2, Q$ be its maximal right ring of quotients and C be its extended centroid. Suppose that $f\left(x_{1}, \ldots, x_{n}\right)$ be a noncentral multilinear polynomial over $C, b \in Q, F$ ab-generalized derivation of R and d is a nonzero derivation of R such that

$$
[F(f(r)), f(r)] \in C
$$

for all $r=\left(r_{1}, \ldots, r_{n}\right) \in R^{n}$. Then one of the following holds:
(1) there exists $\lambda \in C$ such that $F(x)=\lambda x$ for all $x \in R$;
(2) there exist $\lambda \in C$ and $p \in Q$ such that $F(x)=\lambda x+p x+x p$ for all $x \in R$ with $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued in R.

Let σ be an automorphism of $R . \sigma$ is said to be inner automorphism of R, if there exists an invertible element $p \in Q$ such that $\sigma(x)=p x p^{-1}$ for all $x \in R$. If σ is not inner, we say σ as an outer automorphism of R. An additive map $d: R \rightarrow R$ is called a σ-derivation, if $d(x y)=d(x) y+\sigma(x) d(y)$ holds for all $x, y \in R$. For some $a \in Q, d(x)=a x-\sigma(x) a$ is an example of σ derivation, which is called as inner σ-derivation. An additive map $G: R \rightarrow R$ is called a generalized σ-derivation, if there exists a σ-derivation d such that $G(x y)=G(x) y+\sigma(x) d(y)$ holds for all $x, y \in R$. Note that generalized $1_{R^{-}}$ derivation is called as generalized derivation, where 1_{R} denotes the identity automorphism of R. Generally, generalized σ-derivation is called as generalized skew derivation. If for some invertible $b \in Q, \sigma(x)=b x b^{-1}$ for all $x \in R$, and d is inner σ-derivation of R, then $G(x y)=G(x) y+\sigma(x) d(y)=G(x) y+$ $b x b^{-1}\left(a y-b y b^{-1} a\right)=G(x) y+b x\left(b^{-1} a y-y b^{-1} a\right)=G(x) y+b x\left[b^{-1} a, y\right]$ for all $x, y \in R$, is nothing but a b-generalized derivation of R with associated derivation $d(x)=\left[b^{-1} a, x\right]$ for all $x \in R$. It is very easy to prove that any
generalized σ-derivation of R with associated σ-derivation d, where $\sigma(x)=$ $b x b^{-1}$ for all $x \in R$ and $b \in Q$ is an inner automorphism, is a b-generalized derivation of R with the associated map $b^{-1} d$.

Thus as an application of Theorem 1.1, we have the following corollary.
Corollary 1.3. Let R be a noncommutative prime ring of characteristic different from $2, Q$ be its maximal right ring of quotients, C be its extended centroid and $f\left(x_{1}, \ldots, x_{n}\right)$ be a noncentral multilinear polynomial over C. Suppose that F is a generalized σ-derivation of R with σ an inner automorphism of R and d is a nonzero derivation of R such that

$$
d([F(f(r)), f(r)])=0
$$

for all $r=\left(r_{1}, \ldots, r_{n}\right) \in R^{n}$. Then one of the following holds:
(1) there exists $\lambda \in C$ such that $F(x)=\lambda x$ for all $x \in R$;
(2) there exist $\lambda \in C$ and $p \in Q$ such that $F(x)=\lambda x+p x+x p$ for all $x \in R$ with $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued in R.

Similarly, following the corollary also holds.
Corollary 1.4. Let R be a noncommutative prime ring of characteristic different from $2, Q$ be its maximal right ring of quotients, C be its extended centroid and $f\left(x_{1}, \ldots, x_{n}\right)$ be a noncentral multilinear polynomial over C. Suppose that F is a generalized σ-derivation of R with σ an inner automorphism of R such that

$$
[F(f(r)), f(r)] \in C
$$

for all $r=\left(r_{1}, \ldots, r_{n}\right) \in R^{n}$. Then one of the following holds:
(1) there exists $\lambda \in C$ such that $F(x)=\lambda x$ for all $x \in R$;
(2) there exist $\lambda \in C$ and $p \in Q$ such that $F(x)=\lambda x+p x+x p$ for all $x \in R$ with $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued in R.

2. The case of inner b-generalized derivation

First we consider the case when F is the inner b-generalized derivation and d is inner derivation of R. Let $F(x)=a x+b x q$ for all $x \in R$ and $d(x)=[c, x]$ for all $x \in R$, for some $a, b, c, q \in Q$. Then by our hypothesis, we have

$$
[c,[a r+b r q, r]]=0
$$

for all $r \in f(R)$. This can be re-written as

$$
c a r^{2}+c b r q r-c r a r-c r b r q-a r^{2} c-b r q r c+r a r c+r b r q c=0
$$

for all $r \in f(R)$.
We investigate this generalized polynomial identity in prime ring. In all that follows, let R be a prime ring with extended centroid $C, \operatorname{char}(R) \neq 2$ and $c \notin C$. Moreover, we assume that $f\left(x_{1}, \ldots, x_{n}\right)$ is a multilinear polynomial over C which is not central valued on R.

Lemma 2.1. If $b \in C$, then either $a, b q \in C$ or $a-b q \in C$ with $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued in R.

Proof. If $b \in C$, then our hypothesis becomes

$$
[c,[a r+r b q, r]]=0
$$

for all $r \in f(R)$. In this case by [6], one of the following holds: (i) $a, b q \in C$; (ii) $a-b q \in C$ with $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued.

Lemma 2.2. If $q \in C$, then $a+b q \in C$.
Proof. If $q \in C$, then our hypothesis becomes

$$
[c,[(a+b q) r, r]]=0
$$

that is,

$$
[c,[a+b q, r] r]=0
$$

for all $r \in f(R)$. In this case by [8, Corollary 2.9], $a+b q \in C$.
Lemma 2.3 ([6, Lemma 1]). Let C be an infinite field and $m \geq 2$. If A_{1}, \ldots, A_{k} are not scalar matrices in $M_{m}(C)$, then there exists some invertible matrix $P \in M_{m}(C)$ such that any matrices $P A_{1} P^{-1}, \ldots, P A_{k} P^{-1}$ have all non-zero entries.

Proposition 2.4. Let $R=M_{m}(C), m \geq 2$, be the ring of all $m \times m$ matrices over the infinite field $C, f\left(x_{1}, \ldots, x_{n}\right)$ a non-central multilinear polynomial over C and $a, b, c, q \in R$. If

$$
c a r^{2}+c b r q r-c r a r-c r b r q-a r^{2} c-b r q r c+\operatorname{rarc}+r b r q c=0
$$

for all $r \in f(R)$, then either b or c or q are central.
Proof. By our assumption R satisfies the generalized polynomial identity

$$
\begin{aligned}
& c a f\left(r_{1}, \ldots, r_{n}\right)^{2}+\operatorname{cbf}\left(r_{1}, \ldots, r_{n}\right) q f\left(r_{1}, \ldots, r_{n}\right) \\
& -c f\left(r_{1}, \ldots, r_{n}\right) a f\left(r_{1}, \ldots, r_{n}\right)-c f\left(r_{1}, \ldots, r_{n}\right) b f\left(r_{1}, \ldots, r_{n}\right) q \\
& -a f\left(r_{1}, \ldots, r_{n}\right)^{2} c-b f\left(r_{1}, \ldots, r_{n}\right) q f\left(r_{1}, \ldots, r_{n}\right) c \\
& +f\left(r_{1}, \ldots, r_{n}\right) a f\left(r_{1}, \ldots, r_{n}\right) c+f\left(r_{1}, \ldots, r_{n}\right) b f\left(r_{1}, \ldots, r_{n}\right) q c=0
\end{aligned}
$$

We assume first that $b \notin Z(R), c \notin Z(R)$ and $q \notin Z(R)$. Now we shall show that this case leads to a contradiction.

Since $b \notin Z(R), c \notin Z(R)$ and $q \notin Z(R)$, by Lemma 2.3 there exists a C-automorphism ϕ of $M_{m}(C)$ such that $\phi(b), \phi(c)$ and $\phi(q)$ have all non-zero entries. Clearly R must satisfies the condition

$$
\begin{aligned}
& \phi(c a) f\left(r_{1}, \ldots, r_{n}\right)^{2}+\phi(c b) f\left(r_{1}, \ldots, r_{n}\right) \phi(q) f\left(r_{1}, \ldots, r_{n}\right) \\
& -\phi(c) f\left(r_{1}, \ldots, r_{n}\right) \phi(a) f\left(r_{1}, \ldots, r_{n}\right) \\
& -\phi(c) f\left(r_{1}, \ldots, r_{n}\right) \phi(b) f\left(r_{1}, \ldots, r_{n}\right) \phi(q) \\
& -\phi(a) f\left(r_{1}, \ldots, r_{n}\right)^{2} \phi(c)-\phi(b) f\left(r_{1}, \ldots, r_{n}\right) \phi(q) f\left(r_{1}, \ldots, r_{n}\right) \phi(c)
\end{aligned}
$$

$$
\begin{align*}
& +f\left(r_{1}, \ldots, r_{n}\right) \phi(a) f\left(r_{1}, \ldots, r_{n}\right) \phi(c) \\
& +f\left(r_{1}, \ldots, r_{n}\right) \phi(b) f\left(r_{1}, \ldots, r_{n}\right) \phi(q c)=0 \tag{2}
\end{align*}
$$

Here $e_{k l}$ denotes the usual matrix unit with 1 in (k, l)-entry and zero elsewhere. Since $f\left(x_{1}, \ldots, x_{n}\right)$ is not central, by [14] (see also [16]), there exist $u_{1}, \ldots, u_{n} \in$ $M_{m}(C)$ and $0 \neq \gamma \in C$ such that $f\left(u_{1}, \ldots, u_{n}\right)=\gamma e_{k l}$, with $k \neq l$. Moreover, since the set $\left\{f\left(r_{1}, \ldots, r_{n}\right): r_{1}, \ldots, r_{n} \in M_{m}(C)\right\}$ is invariant under the action of all C-automorphisms of $M_{m}(C)$, then for any $i \neq j$ there exist $r_{1}, \ldots, r_{n} \in$ $M_{m}(C)$ such that $f\left(r_{1}, \ldots, r_{n}\right)=\gamma e_{i j}$, where $0 \neq \gamma \in C$. Hence by (2) we have

$$
\begin{align*}
& \phi(c b) e_{i j} \phi(q) e_{i j}-\phi(c) e_{i j} \phi(a) e_{i j}-\phi(c) e_{i j} \phi(b) e_{i j} \phi(q) \\
& \quad-\phi(b) e_{i j} \phi(q) e_{i j} \phi(c)+e_{i j} \phi(a) e_{i j} \phi(c)+e_{i j} \phi(b) e_{i j} \phi(q c)=0 \tag{3}
\end{align*}
$$

and then left and right multiplying by $e_{i j}$, it follows $2 e_{i j} \phi(c) e_{i j} \phi(b) e_{i j} \phi(q) e_{i j}=$ 0 , which is a contradiction, since $\phi(b), \phi(c)$ and $\phi(q)$ have all non-zero entries. Thus we conclude that either b or c or q are central.

Proposition 2.5. Let $R=M_{m}(C), m \geq 2$ be the ring of all matrices over the field C with $\operatorname{char}(R) \neq 2$ and $f\left(x_{1}, \ldots, x_{n}\right)$ a non-central multilinear polynomial over C and $a, b, c, q \in R$. If

$$
c a r^{2}+c b r q r-c r a r-c r b r q-a r^{2} c-b r q r c+r a r c+r b r q c=0
$$

for all $r \in f(R)$, then either b or c or q are central.
Proof. If one assumes that C is infinite, then the conclusions follow by Proposition 2.4.

Now let C be finite and K be an infinite field which is an extension of the field C. Let $\bar{R}=M_{m}(K) \cong R \otimes_{C} K$. Notice that the multilinear polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ is central-valued on R if and only if it is central-valued on \bar{R}. Consider the generalized polynomial

$$
\begin{align*}
P\left(r_{1}, \ldots, r_{n}\right)= & \operatorname{caf}\left(r_{1}, \ldots, r_{n}\right)^{2}+c b f\left(r_{1}, \ldots, r_{n}\right) q f\left(r_{1}, \ldots, r_{n}\right) \\
& -c f\left(r_{1}, \ldots, r_{n}\right) a f\left(r_{1}, \ldots, r_{n}\right)-c f\left(r_{1}, \ldots, r_{n}\right) b f\left(r_{1}, \ldots, r_{n}\right) q \\
& -a f\left(r_{1}, \ldots, r_{n}\right)^{2} c-b f\left(r_{1}, \ldots, r_{n}\right) q f\left(r_{1}, \ldots, r_{n}\right) c \\
& +f\left(r_{1}, \ldots, r_{n}\right) a f\left(r_{1}, \ldots, r_{n}\right) c+f\left(r_{1}, \ldots, r_{n}\right) b f\left(r_{1}, \ldots, r_{n}\right) q c \\
\text { (4) } & 0 \tag{4}
\end{align*}
$$

which is a generalized polynomial identity for R.
Moreover, it is a multi-homogeneous of multi-degree $(2, \ldots, 2)$ in the indeterminates x_{1}, \ldots, x_{n}.

Hence the complete linearization of $P\left(x_{1}, \ldots, x_{n}\right)$ is a multilinear generalized polynomial $\Theta\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$ in $2 n$ indeterminates, moreover

$$
\Theta\left(x_{1}, \ldots, x_{n}, x_{1}, \ldots, x_{n}\right)=2^{n} P\left(x_{1}, \ldots, x_{n}\right)
$$

Clearly the multilinear polynomial $\Theta\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$ is a generalized polynomial identity for R and \bar{R} too. Since $\operatorname{char}(C) \neq 2$ we obtain $P\left(r_{1}, \ldots, r_{n}\right)$ $=0$ for all $r_{1}, \ldots, r_{n} \in \bar{R}$ and then conclusion follows from Proposition 2.4.

Corollary 2.6. Let $R=M_{m}(C), m \geq 2$ be the ring of all matrices over the field C with $\operatorname{char}(R) \neq 2$ and $a, b, c, q \in R$. If

$$
c a r^{2}+c b r q r-c r a r-c r b r q-a r^{2} c-b r q r c+r a r c+r b r q c=0
$$

for all $r \in R$, then either b or c or q are central.
Above corollary can be rewritten as:
Corollary 2.7. Let $R=M_{m}(C), m \geq 2$ be the ring of all matrices over the field C with $\operatorname{char}(R) \neq 2$ and $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7} \in R$. If
$a_{1} r^{2}+a_{2} r a_{3} r-a_{5} r a_{4} r-a_{5} r a_{6} r a_{3}-a_{4} r^{2} a_{5}-a_{6} r a_{3} r a_{5}+r a_{4} r a_{5}+r a_{6} r a_{7}=0$
for all $r \in R$, then either a_{3} or a_{5} or a_{6} are central.
Lemma 2.8. Let R be a primitive ring, which is isomorphic to a dense ring of linear transformations of a vector space V over C, such that $\operatorname{dim}_{C} V=\infty$. Let $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7} \in R$. If
$a_{1} r^{2}+a_{2} r a_{3} r-a_{5} r a_{4} r-a_{5} r a_{6} r a_{3}-a_{4} r^{2} a_{5}-a_{6} r a_{3} r a_{5}+r a_{4} r a_{5}+r a_{6} r a_{7}=0$
for all $x \in R$, then either a_{3} or a_{5} or a_{6} are central.
Proof. We assume that a_{3}, a_{5} and a_{6} are noncentral central. Since V is infinite dimensional over C, for any $e=e^{2} \in \operatorname{Soc}(R)$, we have $e R e \cong M_{k}(C)$ with $k=\operatorname{dim}_{C} V e$. Since $a_{3} \notin C, a_{5} \notin C$ and $a_{6} \notin C$, they do not centralize the nonzero ideal $\operatorname{Soc}(R)$ of R, so $a_{3} h_{0} \neq h_{0} a_{3}, a_{5} h_{1} \neq h_{1} a_{5}$ and $a_{6} h_{2} \neq h_{2} a_{6}$ for some $h_{0}, h_{1}, h_{2} \in \operatorname{Soc}(R)$. By Litoff's theorem [12, p. 280] there exists an idempotent $e \in \operatorname{Soc}(R)$ such that $h_{0}, h_{1}, h_{2}, h_{0} a_{3}, a_{3} h_{0}, h_{1} a_{5}, a_{5} h_{1}, h_{2} a_{6}, a_{6} h_{2}$ are all in $e R e$. We have $e R e \cong M_{k}(C)$ where $k=\operatorname{dim}_{C} V e$. Since R satisfies GPI $e\left(a_{1}(\text { ere })^{2}+a_{2}\right.$ erea a_{3} ere $-a_{5}$ erea $_{4}$ ere $-a_{5}$ erea $_{6}$ erea $a_{3}-a_{4}(\text { ere })^{2} a_{5}-$ a_{6} erea $_{3}$ erea ${ }_{5}+$ erea $_{4}$ erea $a_{5}+$ erea $_{6}$ erea $\left.{ }_{7}\right) e=0$, the subring eRe satisfies the GPI

$$
\begin{aligned}
& e a_{1} e r^{2}+e a_{2} \text { erea } a_{3} e r-e a_{5} \text { erea } a_{4} e r-e a_{5} \text { erea } a_{6} \text { erea }{ }_{3} e-e a_{4} e r^{2} e a_{5} e \\
& -e a_{6} \text { erea }_{3} \text { erea }
\end{aligned}
$$

Then by above finite dimensional case, we conclude that either $e a_{3} e \in Z(e R e)$ or $e a_{5} e \in Z(e R e)$ or $e a_{6} e \in Z(e R e)$. Then

$$
\begin{aligned}
& a_{3} h_{0}=e a_{3} h_{0}=e a_{3} e h_{0}=h_{0} e a_{3} e=h_{0} a_{3} e=h_{0} a_{3}, \\
& a_{5} h_{1}=e a_{5} h_{1}=e a_{5} e h_{1}=h_{1} e a_{5} e=h_{1} a_{5} e=h_{1} a_{5},
\end{aligned}
$$

and

$$
a_{6} h_{2}=e a_{6} h_{2}=e a_{6} e h_{2}=h_{2} e a_{6} e=h_{2} a_{6} e=h_{2} a_{6} .
$$

All the cases lead to the contradiction.
Lemma 2.9. Let R be a noncommutative prime ring of characteristic different from $2, Q$ be its maximal right ring of quotients, C be its extended centroid and $f\left(x_{1}, \ldots, x_{n}\right)$ be a noncentral multilinear polynomial over C. Suppose for some
$a, b, c, q \in Q$ that $F(x)=a x+b x q$ for all $x \in R$ and $d(x)=[c, x]$ for all $x \in R$ with $c \notin C$. If

$$
d([F(f(r)), f(r)])=0
$$

for all $r=\left(r_{1}, \ldots, r_{n}\right) \in R^{n}$, then one of the following holds:
(i) $b \in C$ and $a, b q \in C$;
(ii) $b \in C, a-b q \in C$ with $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued in R;
(iii) $q \in C, a+b q \in C$.

Proof. If $b \in C$ or $q \in C$, then result follows by Lemma 2.1 and Lemma 2.2 respectively. Thus we assume that $b \notin C$ and $q \notin C$.

By hypothesis, we have
(5) $\Psi\left(x_{1}, \ldots, x_{n}\right)=\left[c,\left[a f\left(x_{1}, \ldots, x_{n}\right)+b f\left(x_{1}, \ldots, x_{n}\right) q, f\left(x_{1}, \ldots, x_{n}\right)\right]\right]=0$
for all $x_{1}, \ldots, x_{n} \in R$. Since R and Q satisfy same generalized polynomial identities (see [2]), Q satisfies $\Psi\left(x_{1}, \ldots, x_{n}\right)=0$. Since $c \notin C, b \notin C$ and $q \notin C, \Psi\left(x_{1}, \ldots, x_{n}\right)$ is a non-trivial GPI for Q. By the well known Martindale's theorem [18], Q is then a primitive ring with nonzero socle and with C as its associated division ring. Then, by Jacobson's theorem [9, p. 75], Q is isomorphic to a dense ring of linear transformations of a vector space V over C. Assume first that V is finite dimensional over C, that is, $\operatorname{dim}_{C} V=m$. By density of R, we have $R \cong M_{m}(C)$. Since $f\left(r_{1}, \ldots, r_{n}\right)$ is not central valued on R, R must be noncommutative and so $m \geq 2$. In this case, by Proposition 2.5, we get that b or q or c are in C, a contradiction.

If V is infinite dimensional over C, then by Lemma 2 in [20], the set $f(Q)$ is dense on R. Then by hypothesis, Q satisfies

$$
\begin{equation*}
[c,[a r+b r q, r]]=0 \tag{6}
\end{equation*}
$$

which gives

$$
c a r^{2}+c b r q r-c r a r-c r b r q-a r^{2} c-b r q r c+r a r c+r b r q c=0 .
$$

Then by Lemma 2.8, we conclude that either $b \in C$ or $q \in C$ or $c \in C$, which leads to a contradiction.

3. Result on b-generalized derivations

Lemma 3.1. Let R be a noncommutative prime ring of characteristic different from $2, Q$ be its maximal right ring of quotients and C be its extended centroid. Suppose that $f\left(x_{1}, \ldots, x_{n}\right)$ be a noncentral multilinear polynomial over $C, b \in$ Q, F a b-generalized derivation of R and $c \in R-C$ such that

$$
[c,[F(f(r)), f(r)]]=0
$$

for all $r=\left(r_{1}, \ldots, r_{n}\right) \in R^{n}$. Then one of the following holds:
(i) there exists $\lambda \in C$ such that $F(x)=\lambda x$ for all $x \in R$;
(ii) there exist $\lambda \in C$ and $p \in Q$ such that $F(x)=\lambda x+p x+x p$ for all $x \in R$ with $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued in R.

Proof. By [11, Theorem 2.3], there exist a derivation $d: R \rightarrow Q$ and $a \in Q$ such that $F(x)=a x+b d(x)$ for all $x \in R$. By assumption,

$$
[c,[a f(r)+b d(f(r)), f(r)]]=0
$$

for all $r=\left(r_{1}, \ldots, r_{n}\right) \in R^{n}$.
If d is an inner derivation, that is $d(x)=[p, x]$ for all $x \in R$ and for some $p \in Q$, then $F(x)=(a+b p) x-b x p$ for all $x \in R$ and hence by Lemma 2.9, we have:
(i) $a+b p, b, b p \in C$. In this case $F(x)=a x$ for all $x \in R$, where $a \in C$.
(ii) $b \in C, a+2 b p \in C$ and $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued in R. Let $a+2 b p=\lambda \in C$. Then $F(x)=\lambda x-b p x-x b p$ for all $x \in R$.
(iii) $p \in C$ and $a \in C$. In this case also $F(x)=a x$ for all $x \in R$, where $a \in C$.
Next assume that d is an outer derivation of R. It is well know that any derivation of R can be uniquely extended to a derivation of Q (see [14, Lemma 2]). By hypothesis, we have

$$
[c,[a f(r)+b d(f(r)), f(r)]]=0
$$

for all $r=\left(r_{1}, \ldots, r_{n}\right) \in R^{n}$, which gives

$$
\begin{aligned}
& {\left[c,\left[a f\left(r_{1}, \ldots, r_{n}\right)+b f^{d}\left(r_{1}, \ldots, r_{n}\right)\right.\right.} \\
& \left.\left.+b \sum_{i} f\left(r_{1}, \ldots, d\left(r_{i}\right), \ldots, r_{n}\right), f\left(r_{1}, \ldots, r_{n}\right)\right]\right]=0
\end{aligned}
$$

for all $r_{1}, \ldots, r_{n} \in Q$ by [1, Theorem 6.4.4]. By Kharchenko's Theorem [10], Q satisfies

$$
\begin{aligned}
& {\left[c,\left[a f\left(r_{1}, \ldots, r_{n}\right)+b f^{d}\left(r_{1}, \ldots, r_{n}\right)\right.\right.} \\
& \left.\left.+b \sum_{i} f\left(r_{1}, \ldots, s_{i}, \ldots, r_{n}\right), f\left(r_{1}, \ldots, r_{n}\right)\right]\right]=0
\end{aligned}
$$

In particular, Q satisfies the blended component

$$
\begin{equation*}
\left[c,\left[b \sum_{i} f\left(r_{1}, \ldots, s_{i}, \ldots, r_{n}\right), f\left(r_{1}, \ldots, r_{n}\right)\right]\right]=0 \tag{7}
\end{equation*}
$$

Assuming $s_{1}=r_{1}$ and $s_{2}=\cdots=s_{n}=0, Q$ satisfies

$$
\begin{equation*}
\left[c,\left[b f\left(r_{1}, \ldots, r_{n}\right), f\left(r_{1}, \ldots, r_{n}\right)\right]\right]=0 \tag{8}
\end{equation*}
$$

that is

$$
\begin{equation*}
\left[c,\left[b, f\left(r_{1}, \ldots, r_{n}\right)\right] f\left(r_{1}, \ldots, r_{n}\right)\right]=0 \tag{9}
\end{equation*}
$$

By [8, Corollary 2.9], since $f\left(r_{1}, \ldots, r_{n}\right)$ is noncentral valued in R and $c \notin C$, we have $b \in C$. Then (7) yields

$$
\begin{equation*}
\left[c,\left[\sum_{i} f\left(r_{1}, \ldots, s_{i}, \ldots, r_{n}\right), f\left(r_{1}, \ldots, r_{n}\right)\right]\right]=0 . \tag{10}
\end{equation*}
$$

Replacing s_{i} with $\left[q, r_{i}\right]$ for some $q \notin C$, we get from above relation that Q satisfies

$$
\begin{equation*}
\left[c,\left[\left[q, f\left(r_{1}, \ldots, \ldots, r_{n}\right)\right], f\left(r_{1}, \ldots, r_{n}\right)\right]\right]=0 \tag{11}
\end{equation*}
$$

By [5, Theorem 1], either $c \in C$ or $q \in C$, a contradiction.
Theorem 3.2. Let R be a noncommutative prime ring of characteristic different from $2, Q$ be its maximal right ring of quotients and C be its extended centroid. Suppose that $f\left(x_{1}, \ldots, x_{n}\right)$ be a noncentral multilinear polynomial over $C, b \in Q, F$ ab-generalized derivation of R and d is a nonzero derivation of R such that

$$
d([F(f(r)), f(r)])=0
$$

for all $r=\left(r_{1}, \ldots, r_{n}\right) \in R^{n}$. Then one of the following holds:
(i) there exists $\lambda \in C$ such that $F(x)=\lambda x$ for all $x \in R$;
(ii) there exist $\lambda \in C$ and $p \in Q$ such that $F(x)=\lambda x+p x+x p$ for all $x \in R$ with $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued in R.

Proof. By [11, Theorem 2.3], there exist a derivation $\delta: R \rightarrow Q$ and $a \in Q$ such that $F(x)=a x+b \delta(x)$ for all $x \in R$. If d is inner derivation of R, then result follows by Lemma 3.1. Thus we assume that d is outer derivation of R. By hypothesis R satisfies

$$
\begin{equation*}
d\left(\left[a f\left(r_{1}, \ldots, r_{n}\right)+b \delta\left(f\left(r_{1}, \ldots, r_{n}\right)\right), f\left(r_{1}, \ldots, r_{n}\right)\right]\right)=0 \tag{12}
\end{equation*}
$$

Since any derivation of R can be uniquely extended to a derivation of Q (see [14, Lemma 2]), by [14] this differential identity is also satisfied by Q.
Case-I: Assume that d and δ are C-dependent modulo inner derivations of Q, say $\alpha d+\beta \delta=a d_{q}$, where $\alpha, \beta \in C, q \in Q$ and $a d_{q}(x)=[q, x]$ for all $x \in Q$.

Subcase-i: Let $\alpha \neq 0$.
Then $d(x)=\lambda \delta(x)+[c, x]$ for all $x \in Q$, where $\lambda=-\beta \alpha^{-1}$ and $c=\alpha^{-1} q$.
Then d can not be inner derivation of Q. From (12), we obtain

$$
\begin{equation*}
\lambda \delta([a f(r)+b \delta(f(r)), f(r)])+[c,[a f(r)+b \delta(f(r)), f(r)]]=0 \tag{13}
\end{equation*}
$$

that is,

$$
\begin{align*}
& \lambda[a f(r)+b \delta(f(r)), \delta(f(r))] \\
& +\lambda\left[\delta(a) f(r)+a \delta(f(r))+\delta(b) \delta(f(r))+b \delta^{2}(f(r)), f(r)\right] \\
& +[c,[a f(r)+b \delta(f(r)), f(r)]]=0 \tag{14}
\end{align*}
$$

for all $r=\left(r_{1}, \ldots, r_{n}\right) \in Q^{n}$. Let $f^{\delta}\left(r_{1}, \ldots, r_{n}\right)$ and $f^{\delta^{2}}\left(r_{1}, \ldots, r_{n}\right)$ be the polynomials obtained from $f\left(r_{1}, \ldots, r_{n}\right)$ replacing each coefficients α_{σ} with $\delta\left(\alpha_{\sigma}\right)$ and $\delta^{2}\left(\alpha_{\sigma}\right)$ respectively. Then we have

$$
\delta\left(f\left(r_{1}, \ldots, r_{n}\right)\right)=f^{\delta}\left(r_{1}, \ldots, r_{n}\right)+\sum_{i} f\left(r_{1}, \ldots, \delta\left(r_{i}\right), \ldots, r_{n}\right)
$$

and

$$
\begin{aligned}
\delta^{2}\left(f\left(r_{1}, \ldots, r_{n}\right)\right)= & f^{\delta^{2}}\left(r_{1}, \ldots, r_{n}\right)+2 \sum_{i} f^{\delta}\left(r_{1}, \ldots, \delta\left(r_{i}\right), \ldots, r_{n}\right) \\
& +\sum_{i} f\left(r_{1}, \ldots, \delta^{2}\left(r_{i}\right), \ldots, r_{n}\right) \\
& +\sum_{i \neq j} f\left(r_{1}, \ldots, \delta\left(r_{i}\right), \ldots, \delta\left(r_{j}\right), \ldots, r_{n}\right) .
\end{aligned}
$$

By applying Kharchenko's Theorem [10] to (14), we can replace $\delta\left(f\left(r_{1}, \ldots, r_{n}\right)\right)$ with $f^{\delta}\left(r_{1}, \ldots, r_{n}\right)+\sum_{i} f\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right)$ and $\delta^{2}\left(f\left(r_{1}, \ldots, r_{n}\right)\right)$ with

$$
\begin{aligned}
& f^{\delta^{2}}\left(r_{1}, \ldots, r_{n}\right)+2 \sum_{i} f^{\delta}\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right) \\
& +\sum_{i} f\left(r_{1}, \ldots, t_{i}, \ldots, r_{n}\right)+\sum_{i \neq j} f\left(r_{1}, \ldots, y_{i}, \ldots, y_{j}, \ldots, r_{n}\right)
\end{aligned}
$$

in (14) and then Q satisfies blended component

$$
\begin{equation*}
\lambda\left[b \sum_{i} f\left(r_{1}, \ldots, t_{i}, \ldots, r_{n}\right), f\left(r_{1}, \ldots, r_{n}\right)\right]=0 . \tag{15}
\end{equation*}
$$

In particular, for $t_{2}=\cdots=t_{n}=0$ and $t_{1}=r_{1}, Q$ satisfies

$$
\begin{equation*}
\lambda\left[b f\left(r_{1}, \ldots, r_{n}\right), f\left(r_{1}, \ldots, r_{n}\right)\right]=0 \tag{16}
\end{equation*}
$$

which is

$$
\begin{equation*}
\left[\lambda b, f\left(r_{1}, \ldots, r_{n}\right)\right] f\left(r_{1}, \ldots, r_{n}\right)=0 \tag{17}
\end{equation*}
$$

By [7], it yields $\lambda b \in C$.
Replacing t_{i} with $\left[q, r_{i}\right]$ for some $q \notin C$ in (15) and then using $\lambda b \in C$, we have that Q satisfies

$$
\begin{equation*}
\left[\lambda b q, f\left(r_{1}, \ldots, r_{n}\right)\right]_{2}=0 \tag{18}
\end{equation*}
$$

By [13, Theorem], this implies $\lambda b q \in C$. Since $q \notin C$, we conclude that $\lambda b=0$. This implies $\lambda=0$ or $b=0$. Both case leads to a contradiction.

Subcase-ii: Let $\alpha=0$.
$\overline{\text { Then } \delta(x)}=[c, x]$ for all $x \in Q$, where $c=\beta^{-1} q$. From (12), we obtain

$$
\begin{equation*}
d([a f(r)+b[c, f(r)], f(r)])=0 \tag{19}
\end{equation*}
$$

that is

$$
\begin{align*}
& {[a f(r)+b[c, f(r)], d(f(r))]+[d(a) f(r)+a d(f(r)), f(r)]} \\
& +[d(b)[c, f(r)]+b[d(c), f(r)]+b[c, d(f(r))], f(r)]=0 \tag{20}
\end{align*}
$$

for all $r=\left(r_{1}, \ldots, r_{n}\right) \in Q^{n}$.
Since

$$
d\left(f\left(r_{1}, \ldots, r_{n}\right)\right)=f^{d}\left(r_{1}, \ldots, r_{n}\right)+\sum_{i} f\left(r_{1}, \ldots, d\left(r_{i}\right), \ldots, r_{n}\right)
$$

by Kharchenko's Theorem [10], we can replace $d\left(f\left(r_{1}, \ldots, r_{n}\right)\right)$ by $f^{d}\left(r_{1}, \ldots, r_{n}\right)$ $+\sum_{i} f\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right)$ in (20) and then Q satisfies blended component

$$
\begin{align*}
& {\left[a f\left(r_{1}, \ldots, r_{n}\right)+b\left[c, f\left(r_{1}, \ldots, r_{n}\right)\right], \sum_{i} f\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right)\right]} \\
& +\left[a \sum_{i} f\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right), f\left(r_{1}, \ldots, r_{n}\right)\right] \tag{21}\\
& +\left[b\left[c, \sum_{i} f\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right)\right], f\left(r_{1}, \ldots, r_{n}\right)\right]=0
\end{align*}
$$

In particular, for $y_{1}=r_{1}$ and $y_{2}=\cdots=y_{n}=0$, we have

$$
\begin{equation*}
2[a f(r)+b[c, f(r)], f(r)]=0 \tag{22}
\end{equation*}
$$

for all $r=\left(r_{1}, \ldots, r_{n}\right) \in Q^{n}$. Since $\operatorname{char}(R) \neq 2$, this can be written as

$$
\begin{equation*}
[(a+b c) f(r)-b f(r) c, f(r)]=0 \tag{23}
\end{equation*}
$$

for all $r=\left(r_{1}, \ldots, r_{n}\right) \in Q^{n}$.
By Lemma 2.9, one of the following holds: (i) $a+b c, b, b c \in C$, that is $a, b, b c \in C$. In this case $F(x)=a x+b \delta(x)=a x+b[c, x]=a x$ for all $x \in R$, which is our conclusion (1). (ii) $b, a+2 b c \in C$ and $f\left(r_{1}, \ldots, r_{n}\right)^{2}$ is central valued. In this case $F(x)=a x+b \delta(x)=a x+b[c, x]=a x+[b c, x]=$ $(a+b c) x-x(b c)=(a+2 b c) x-b c x-x b c$ for all $x \in R$. This gives conclusion (2). (iii) $c, a \in C$. In this case $F(x)=a x+b \delta(x)=a x+b[c, x]=a x$ for all $x \in R$ which is conclusion (1).
Case-II: Assume next that d and δ are C-independent modulo inner derivations of Q.

From (12) we have

$$
\begin{align*}
& {[a f(r)+b \delta(f(r)), d(f(r))]} \\
& +([d(a) f(r)+a d(f(r))+d(b) \delta(f(r))+b(d \delta)(f(r)), f(r)])=0 \tag{24}
\end{align*}
$$

for all $r=\left(r_{1}, \ldots, r_{n}\right) \in Q^{n}$. By applying Kharchenko's theorem [10] to (24), we can replace $d\left(f\left(r_{1}, \ldots, r_{n}\right)\right)$ with $f^{d}\left(r_{1}, \ldots, r_{n}\right)+\sum_{i} f\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right)$, $\delta\left(f\left(r_{1}, \ldots, r_{n}\right)\right)$ with $f^{\delta}\left(r_{1}, \ldots, r_{n}\right)+\sum_{i} f\left(r_{1}, \ldots, s_{i}, \ldots, r_{n}\right)$ and $d \delta\left(f\left(r_{1}, \ldots, r_{n}\right)\right)$ with

$$
\begin{aligned}
& f^{d \delta}\left(r_{1}, \ldots, r_{n}\right)+\sum_{i} f^{\delta}\left(r_{1}, \ldots, s_{i}, \ldots, r_{n}\right)+\sum_{i} f^{d}\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right) \\
& +\sum_{i} f\left(r_{1}, \ldots, t_{i}, \ldots, r_{n}\right)+\sum_{i} f\left(r_{1}, \ldots, y_{i}, \ldots, s_{j}, \ldots, r_{n}\right)
\end{aligned}
$$

in (24) and then Q satisfies blended component

$$
\begin{equation*}
\left[b \sum_{i} f\left(r_{1}, \ldots, t_{i}, \ldots, r_{n}\right), f\left(r_{1}, \ldots, r_{n}\right)\right]=0 \tag{25}
\end{equation*}
$$

Replacing $t_{1}=r_{1}$ and $t_{2}=\cdots=t_{n}=0$ in (25), we have

$$
\left[b, f\left(r_{1}, \ldots, r_{n}\right)\right] f\left(r_{1}, \ldots, r_{n}\right)=0
$$

for all $r_{1}, \ldots, r_{n} \in Q$. By [7], this yields $b \in C$. Since $b \neq 0$, again (25) yields

$$
\begin{equation*}
\left[\sum_{i} f\left(r_{1}, \ldots, t_{i}, \ldots, r_{n}\right), f\left(r_{1}, \ldots, r_{n}\right)\right]=0 \tag{26}
\end{equation*}
$$

for all $r_{1}, \ldots, r_{n} \in Q$.
Let $q \notin C$ be an element of Q. Then replacing t_{i} with $\left[q, r_{i}\right]$, we have that

$$
\left[\sum_{i=0}^{n} f\left(r_{1}, \ldots,\left[q, r_{i}\right], \ldots, r_{n}\right), f\left(r_{1}, \ldots, r_{n}\right)\right]=0
$$

which gives,

$$
\left[q, f\left(r_{1}, \ldots, r_{n}\right)\right]_{2}=0
$$

for all $r_{1}, \ldots, r_{n} \in R$ implying $f\left(r_{1}, \ldots, r_{n}\right)$ is central-valued on R [13, Theorem], a contradiction.

References

[1] K. I. Beidar, W. S. Martimdale III, and A. V. Mikhalev, Rings with Generalized Identities, Pure Appl. Math., 196, Marcel Dekker, New York, 1996.
[2] C. L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (1988), no. 3, 723-728.
[3] C. L. Chuang and T. K. Lee, Derivations modulo elementary operators, J. Algebra 338 (2011), 56-70.
[4] V. De Filippis, An Engel condition with generalized derivations on multilinear polynomials, Israel J. Math. 162 (2007), 93-108.
[5] V. De Filippis and O. M. Di Vincenzo, Posner's second theorem, multilinear polynomials and vanishing derivations, J. Aust. Math. Soc. 76 (2004), no. 3, 357-368.
[6] , Vanishing derivations and centralizers of generalized derivations on multilinear polynomials, Comm. Algebra 40 (2012), no. 6, 1918-1932.
[7] C. Demir and N. Argac, Prime rings with generalized derivations on right ideals, Algebra Colloq. 18 (2011), no. 1, 987-998.
[8] B. Dhara and N. Argac, Generalized derivations acting on multilinear polynomials in prime rings and Banach algebras, Commun. Math. Stat. 4 (2016), no. 1, 39-54.
[9] N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Pub., 37, Amer. Math. Soc., Providence, RI, 1964.
[10] V. K. Kharchenko, Differential identity of prime rings, Algebra i Logika 17 (1978), no. 2, 220-238, 242-243.
[11] M. T. Košan and T. K. Lee, b-Generalized derivations having nilpotent values, J. Aust. Math. Soc. 96 (2014), no. 3, 326-337.
[12] C. Lanski, Differential identities, Lie ideals, and Posner's theorems, Pacific J. Math. 134 (1988), no. 2, 275-297.
[13] P. H. Lee and T. K. Lee, Derivations with Engel conditions on multilinear polynomials, Proc. Amer. Math. Soc. 124 (1996), no. 9, 2625-2629.
[14] T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica 20 (1992), no. 1, 27-38.
[15] , Additive maps having a generalized derivation expansion, J. Algebra Appl. 14 (2015), no. 4, 1550048, 13 pp.
[16] U. Leron, Nil and power central polynomials in rings, Trans. Amer. Math. Soc. 202 (1975), 97-103.
[17] C.-K. Liu, An Engel condition with b-generalized derivations, Linear Multilinear Algebra 65 (2017), no. 2, 300-312.
[18] W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584.
[19] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
[20] T. L. Wong, Derivations with power central values on multilinear polynomials, Algebra Colloq. 3 (1996), no. 4, 369-478.

Basudeb Dhara
Department of Mathematics
Belda College
Belda, Paschim Medinipur, 721424, W.B., India
Email address: basu_dhara@yahoo.com

[^0]: Received February 19, 2017; Accepted August 18, 2017.
 2010 Mathematics Subject Classification. 16W25, 16N6.
 Key words and phrases. prime ring, derivation, generalized derivation, b-generalized derivation, generalized skew derivation.

 This work is supported by a grant from Science and Engineering Research Board (SERB), DST, New Delhi, India. Grant No. EMR/2016/004043 dated 29-Nov-2016.

