ON GENERALIZED RIGHT f-DERIVATIONS OF Γ-INCLINE ALGEBRAS

Kyung Ho Kim

Abstract

In this paper, we introduce the concept of a generalized right f-derivation associated with a derivation d and a function f in Γ-incline algebras and give some properties of Γ-incline algebras. Also, the concept of d-ideal is introduced in a Γ-incline algebra with respect to right f-derivations.

1. Introduction

Incline algebra is a generalization of both Boolean and fuzzy algebra and it is a special type of semiring. It has both a semiring structure and a poset structure. It can also be used to represent automata and other mathematical systems, to study inequalities for non-negative matrices of polynomials. Z. Q. Cao, K. H. Kim and F. W. Roush [4] introduced the notion of incline algebras in their book and later it was developed by some authors $[1,2,3,5]$. Ahn et al [1] introduced the notion of quotient incline and obtained the structure of incline algebras. N. O. Alshehri [3] introduced the notion of derivation in incline algebra. Kim[5, 6] studied right derivation and generalized derivation of incline algebras and obtained some results. M. K. Rao etc introduced the concept of generalized right derivation of Γ-incline and obtain some results. In this paper, we introduce the concept of a generalized right f-derivation in Γ-incline algebras and give some properties of Γ-incline algebras. Also, the concept of d-ideal is introduced in a Γ-incline algebra with respect to right f-derivations.

[^0]
2. Preliminaries

An incline algebra is a set K with two binary operations denoted by " + " and "*" satisfying the following axioms, for all $x, y, z \in K$,
(K1) $x+y=y+x$,
(K2) $x+(y+z)=(x+y)+z$,
(K3) $x *(y * z)=(x * y) * z$,
(K4) $x *(y+z)=(x * y)+(x * z)$,
(K5) $(y+z) * x=(y * x)+(z * x)$,
(K6) $x+x=x$,
(K7) $x+(x * y)=x$,
(K8) $y+(x * y)=y$,
for all $x, y, z \in K$.
Definition 2.1. Let $(K,+)$ and $(\Gamma,+)$ be commutative semigroups. If there exists a mapping $K \times \Gamma \times K \rightarrow K((x, \alpha, y)=x \alpha y)$ such that it satisfies the following axioms, for all $x, y \in K$ and $\alpha, \beta \in \Gamma$,
(K9) $x \alpha(y+z)=x \alpha y+x \alpha z$
(K10) $(x+y) \alpha z=x \alpha z+y \alpha z$
(K11) $x(\alpha+\beta) y=x \alpha y+x \beta y$
(K12) $x \alpha(y \beta z)=(x \alpha y) \beta z$
(K13) $x+x=x$
(K14) $x+x \alpha y=x$
(K15) $y+x \alpha y=y$
Then K is called a Γ-incline algebra(see[7]).
Example 2.2. Let $K=[0,1]$ and $\Gamma=N$. Define + by $x+y=$ $\max \{x, y\}$ and ternary operation is defined as $x \alpha y=\min \{x, \alpha, y\}$ for all $x, y \in K$ and $\alpha \in \Gamma$. Then K is a Γ-incline algebra(see [7]).

Note that $x \leq y \Leftrightarrow x+y=y$ for all $x, y \in K$. It is easy to see that " \leq " is a partial order on K and that for any $x, y \in K$, the element $x+y$ is the least upper bound of $\{x, y\}$. We say that \leq is induced by operation + .

In a Γ-incline algebra K, the following properties hold.
(K16) $x \alpha y \leq x$ and $y \alpha x \leq x$ for all $x, y \in K$ and $\alpha \in \Gamma$
(K17) $y \leq z$ implies $x \alpha y \leq x \alpha z$ and $y \alpha x \leq z \alpha x$, for all $x, y, z \in K$ and $\alpha \in \Gamma$
(K18) If $x \leq y$ and $a \leq b$, then $x+a \leq y+b$, and $x \alpha \leq y \alpha b$ for all $x, y, a, b \in K$ and $\alpha \in \Gamma$.

Furthermore, a Γ-incline algebra K is said to be commutative if $x \alpha y=$ $y \alpha x$ for all $x, y \in K$ for all $\alpha \in \Gamma$.

A Γ-subincline of a Γ-incline algebra K is a non-empty subset I of K which is closed under the addition and multiplication. A Γ-subincline I is called an ideal if $x \in I$ and $y \leq x$ then $y \in I$. An element " 0 " in an Γ-incline algebra K is a zero element if $x+0=x=0+x$ and $x \alpha 0=0=0 \alpha x$ for any $x \in K$ and $\alpha \in \Gamma$. An non-zero element " 1 " is called a multiplicative identity if $x \alpha 1=1 \alpha x=x$ for any $x \in K$ and $\alpha \in \Gamma$. A non-zero element $a \in K$ is said to be a left (resp. right) zero divisor if there exists a non-zero $b \in K$ such hat $a \alpha b=0$ (resp. $b \alpha a=0$) for all $\alpha \in \Gamma$. A zero divisor is an element of K which is both a left zero divisor and a right zero divisor. An incline algebra K with multiplicative identity 1 and zero element 0 is called an integral incline if it has no zero divisors. By a homomorphism of Γ-incline algebras, we mean a mapping f from a Γ-incline algebra K into a Γ-incline algebra L such that $f(x+y)=f(x)+f(y)$ and $f(x \alpha y)=f(x) \alpha f(y)$ for all $x, y \in K$ for all $\alpha \in \Gamma$.

Definition 2.3. Let K be a Γ-incline algebra. An element $a \in K$ is said to be idempotent of K if there exists $\alpha \in \Gamma$ such that $a=a \alpha a$.

Let K be a Γ-incline algebra. If every element of K is idempotent, then K is said to be idempotent Γ-incline algebra. A Γ-incline algebra K with unity 1 and zero element 0 is called an integral Γ-incline if it has no zero divisors.

Definition 2.4. Let K be a Γ-incline algebra. By a right derivation of K, we mean a self map d of K satisfying the identities

$$
d(x+y)=d(x)+d(y) \text { and } d(x \alpha y)=(d(x) \alpha y)+(d(y) \alpha x)
$$

for all $x, y \in K$ and $\alpha \in \Gamma$.

3. Generalized right f-derivations of Γ-incline algebras

In what follows, let K denote a Γ-incline algebra with a zero-element unless otherwise specified.

Definition 3.1. Let K be a Γ-incline algebra. A mapping $D: K \rightarrow$ K is called a generalized right f-derivation of K if there exists a right derivation d and a function f of K such that

$$
D(x+y)=D(x)+D(y) \text { and } D(x \alpha y)=(D(x) \alpha f(y))+(d(y) \alpha f(x))
$$

for all $x, y \in K$ and $\alpha \in \Gamma$.
Example 3.2. Let $K=\{0, a, b, 1\}$ be a set in which " + " and " α " is defined by

+	0	a	b	1
0	0	a	b	1
a	a	a	b	1
b	b	b	b	1
1	1	1	1	1

α	0	a	b	1
0	0	0	0	0
a	0	a	a	a
b	0	a	b	b
1	0	a	b	1

Then it is easy to check that $(K,+, \alpha)$ is a Γ-incline algebra. Define a map $d: K \rightarrow K$ by

$$
d(x)= \begin{cases}a & \text { if } x=a, b, 1 \\ 0 & \text { if } x=0\end{cases}
$$

and define a function $f: K \rightarrow K$ by

$$
f(x)= \begin{cases}a & \text { if } x=b \\ b & \text { if } x=a \\ 1 & \text { if } x=1 \\ 0 & \text { if } x=0\end{cases}
$$

Also, define a map $D: K \rightarrow K$ by

$$
D(x)= \begin{cases}a & \text { if } x=a, b \\ 1 & \text { if } x=1 \\ 0 & \text { if } x=0\end{cases}
$$

Then we can see that D is a generalized right f-derivation associated with a derivation d and a function f of K.

Proposition 3.3. Let K be a Γ-incline algebra and let D be a generalized f derivation associated with a derivation d and a function f of K. Then the following conditions hold for all $x, y \in K$ and $\alpha \in \Gamma$.
(1) If K is idempotent, then $d(x) \leq D(x) \leq x$ for all $x \in K$
(2) $D(x \alpha y) \leq D(x)+d(y)$
(3) If $x \leq y$ and f is an order preserving mapping, then $D(x \alpha y) \leq$ $f(y)$.
Proof. (1) Let D be a generalized right f derivation associated with a derivation d and a function f of K. If K is idempotent, then we get $D(x)=D(x \alpha x)=(D(x) \alpha x)+(d(x) \alpha x) \leq d(x) \alpha f(x) \leq d(x)$ for all $x, y \in K$ and $\alpha \in \Gamma$. (2) Let $x, y \in K$ and $\alpha \in \Gamma$. Then we have
$D(x) \alpha(y) \leq D(x)$ and $d(y) \alpha f(x) \leq d(y)$. Hence $D(x \alpha y)=D(x) \alpha f(y)+$ $d(y) \alpha f(x) \leq D(x)+d(y)$. So, we find $D(x \alpha y) \leq D(x)+d(y)$. Also, since $D(x)=D(x \alpha x)=D(x) \alpha x+d(x) \alpha x$, we get from (K15) and (K16),

$$
\begin{aligned}
D(x)+x & =((D(x) \alpha x)+(d(x) \alpha x))+x \\
& =(D(x) \alpha x)+(x+d(x) \alpha x) \\
& =(D(x) \alpha x)+x=x+(D(x) \alpha x) \\
& =x
\end{aligned}
$$

which implies $D(x) \leq x$ for all $x \in K$ and $\alpha \in \Gamma$. (3) Let $x \leq y$ and let f be an order preserving mapping. Then we by using (K16) and (K18), we have $d(y) \alpha f(x) \leq d(y) \alpha f(y) \leq f(y)$. Similarly, we get $D(x) \alpha f(y) \leq$ $f(y)$. Then we obtain $D(x \alpha y)=(D(x) \alpha f(y))+(d(y) \alpha f(x)) \leq f(y)+$ $f(y)=f(y)$ for all $\alpha \in \Gamma$. Hence we have $D(x \alpha y) \leq f(y)$.

Proposition 3.4. Let D be a generalized right f-derivation associated with a derivation d and a function f of K. If $f(0)=0$, then we have $D(0)=0$.

Proof. Let D be a generalized right f-derivation associated with a derivation d and a function f of K Then we have for all $\alpha \in \Gamma$,

$$
\begin{aligned}
D(0) & =D(0 \alpha 0)=D(0) \alpha f(0)+d(0) \alpha f(0) \\
& =D(0) \alpha 0+d(0) \alpha 0=0+0 \\
& =0 .
\end{aligned}
$$

Proposition 3.5. Let D be a generalized right f-derivation associated with a derivation d and a function f of K. If K is idempotent, then $D(x) \leq f(x)$ for all $x \in K$.

Proof. Let D be a generalized right f-derivation associated with a derivation d and a function f of K. If K is idempotent, then

$$
\begin{aligned}
D(x) & =D(x \alpha x)=D(x) \alpha f(x)+d(x) \alpha f(x) \\
& \leq f(x)+f(x)=f(x)
\end{aligned}
$$

from (K9) for all $x \in K$ and $\alpha \in \Gamma$.
Proposition 3.6. Let K be an incline algebra and let D be a generalized right f-derivation associated with a derivation d and a function f of K. Then for all $x, y \in K$ and $\alpha \in \Gamma, D(x \alpha y) \leq D(x)$ and $D(x \alpha y) \leq D(y)$.

Proof. Let $x, y \in K$ and $\alpha \in \Gamma$, Then by using (K14), we obtain

$$
D(x)=D(x+x \alpha y)=D(x)+D(x \alpha y)
$$

Hence we get $D(x \alpha y) \leq D(x)$. Also, $D(y)=D(y+(x \alpha y))=D(y)+$ $D(x \alpha y)$, and so $D(x \alpha y) \leq D(y)$.

Proposition 3.7. Let K be an incline algebra. A mapping $D: K \rightarrow$ K is isotone if $x \leq y$ implies $D(x) \leq D(y)$ for all $x, y \in K$.

Proposition 3.8. Let D be a generalized right f-derivation associated with a derivation d and a function f of K. Then D is isotone.

Proof. Let $x, y \in K$ be such that $x \leq y$. Then $x+y=y$. Hence we have $D(y)=D(x+y)=D(x)+D(y)$, which implies $D(x) \leq D(y)$. This completes the proof.

Proposition 3.9. Let K is an Γ-incline algebra. Then a sum of two generalized f-right derivations associated with a function f of K is again a generalized right f-derivation associated with a function f of K.

Proof. Let D_{1} and D_{2} be two generalized right f-derivations associated with derivations d_{1} and d_{2}, respectively. Then we have for all $a, b \in K$ and $\alpha \in \Gamma$,

$$
\begin{aligned}
\left(D_{1}+D_{2}\right)(a \alpha b) & =D_{1}(a \alpha b)+D_{2}(a \alpha b) \\
& =D_{1}(a) \alpha f(b)+d_{1}(b) \alpha f(a)+D_{2}(a) \alpha f(b)+d_{2}(b) \alpha f(a) \\
& =D_{1}(a) \alpha f(b)+D_{2}(a) \alpha f(b)+d_{1}(b) \alpha f(a)+d_{2}(b) \alpha f(a) \\
& =\left(D_{1}+D_{2}\right)(a) \alpha f(b)+\left(d_{1}+d_{2}\right)(b) \alpha f(a) .
\end{aligned}
$$

Clearly, $\left(D_{1}+D_{2}\right)(a+b)=\left(D_{1}+D_{2}\right)(a)+\left(D_{1}+D_{2}\right)(b)$ for all $a, b \in K$ and $\alpha \in \Gamma$. This completes the proof.

Proposition 3.10. Let K be an integral Γ-incline and let D be a generalized right f-derivation associated with a derivation d and a function f of K. If $f(1)=1$ and $a \in K$, then $a \alpha D(x)=0$ implies $a=0$ or $d=0$ for all $a \in K$ and $\alpha \in \Gamma$.

Proof. Let $a \alpha D(x)=0$ for all $x \in K$ and $\alpha \in \Gamma$. Putting x on $x \alpha y$, for all $y \in K$, we get

$$
\begin{aligned}
0 & =a \alpha D(x)=a \alpha D(x \alpha y) \\
& =a \alpha[(D(x) \alpha f(y))+(d(y) \alpha f(x))] \\
& =(a \alpha(D(x) \alpha f(y))+(a \alpha(d(y) \alpha f(x))) \\
& =a \alpha(d(y) \alpha f(x)) .
\end{aligned}
$$

In this equation, by taking $x=1$, we have $a \alpha d(y)=0$ for any $y \in K$. Since K is an integral Γ-incline algebra, we have $a=0$ or $d=0$.

THEOREM 3.11. Let I be a nonzero ideal of integral Γ-incline K and let D be a nonzero generalized right f-derivation associated with a nonzero derivation d and a function f of K. Then D is nonzero on I.

Proof. Suppose that D is a nonzero generalized right f-derivation of K associated with a nonzero derivation d and a function f of K but D is zero generalized right f-derivation on I. Let $x \in I$. Then we have $D(x)=0$. Let $y \in K$. Then by (K16), we get $x \alpha y \leq x$ for all $\alpha \in \Gamma$. Since I is an ideal of K, we have $x \alpha y \in L$. Hence $D(x \alpha y)=0$, which implies

$$
0=D(x \alpha y)=(D(x) \alpha f(y))+(d(y) \alpha f(x))=d(y) \alpha f(x)
$$

By hypothesis, K has no zero divisors. Hence $f(x)=0$ for all $x \in I$ or $d(y)=0$ for all $y \in K$. Since f is a nonzero function of K, we get $d(y)=0$ for all $y \in K$. This contradicts with our assumption that is d is a nonzero derivation on K. Hence D is nonzero on I.

Theorem 3.12. Let I be a nonzero ideal of integral Γ-incline K and let D be a nonzero generalized right f-derivation associated with a nonzero derivation d and a function f of K. Then D is nonzero on I. If $a \alpha D(x)=0$ for $a \in K$ and $\alpha \in \Gamma$, then $a=0$.

Proof. By Theorem 3.11, we know that there exists $m \in I$ such that $D(m) \neq 0$. Let I be a Let $a \alpha D(I)=0 a \in K$ and $\alpha \in \Gamma$. Then for $m, n \in I$ we can write

$$
\begin{aligned}
0 & =a \alpha D(m \alpha n) \\
& =a \alpha(D(m) \alpha f(n)+d(n) \alpha f(m)) \\
& =a \alpha D(m) \alpha f(n)+a \alpha d(n) \alpha f(m) \\
& =a \alpha d(n) \alpha f(m)
\end{aligned}
$$

Since K is an integral Γ-incline algebra and let d is a nonzero right f-derivation of K and f is a nonzero function on I, we get $a=0$.

THEOREM 3.13. Let K be a Γ-incline with a multiplicative identity element and let D be a generalized right f-derivation associated with a derivation d and a function f of K. If $f(1)=1$, then we have $D(x)=$ $D(1) \alpha f(x))+d(x)$ for all $x \in K$.

Proof. Since $D(x)=D(1 \alpha x)=(D(1) \alpha f(x))+(d(x) \alpha f(1)$ for all $x \in K$ and by using $f(1)=1$, we have $D(x)=(D(1) \alpha f(x))+d(x)$.

Definition 3.14. Let K be a Γ-incline algebra and let d be a nontrivial generalized right f-derivation associated with a derivation d and a function f of K. An ideal I of K is called a d-ideal if $d(I)=I$.

Since $d(0)=0$, it can be easily observed that the zero ideal $\{0\}$ is a d-ideal of K. If d is onto, then $d(K)=K$, which implies K is a d-ideal of K.

Example 3.15. In Example 3.2, let $I=\{0, a\}$. Then I is an ideal of K. It can be verified that $d(I)=I$. Therefore, I is a d-ideal of K.

LEMMA 3.16. Let d be a generalized right f-derivation associated with a derivation d and a function f of K and let I, J be any two d ideals of K. Then we have $I \subseteq J$ implies $d(I) \subseteq d(J)$.

Proof. Let $I \subseteq J$ and $x \in d(I)$. Then we have $x=d(y)$ for some $y \in I \subseteq J$. Hence we get $x=d(y) \in d(J)$. Therefore, $d(I) \subseteq d(J)$.

Proposition 3.17. Let K be a Γ-incline algebra. Then, a sum of any two d-ideals is also a d-ideal of K.

Proof. Let I and J be d-ideals of K. Then $I+J=d(I)+d(J)=$ $d(I+J)$. Hence $I+J$ is a d-ideal of K.

Let d be a generalized right f-derivation associated with a derivation d and a function f of K. Define a set Kerd by

$$
\text { Kerd }:=\{x \in K \mid d(x)=0\}
$$

for all $x \in K$.
Proposition 3.18. Let d be a generalized right f-derivation associated with a derivation d and a function f of K. Then Kerd is a subincline of K.

Proof. Let $x, y \in \operatorname{Kerd}$. Then $d(x)=0, d(y)=0$ and

$$
\begin{aligned}
d(x \alpha y) & =(d(x) \alpha f(y))+(d(y) \alpha f(x)) \\
& =(0 \alpha f(y))+(0 \alpha f(x)) \\
& =0+0=0,
\end{aligned}
$$

and

$$
\begin{aligned}
d(x+y) & =d(x)+d(y) \\
& =0+0=0
\end{aligned}
$$

Therefore, $x \alpha y, x+y \in K e r d$. This completes the proof.
Proposition 3.19. Let d be a generalized right f-derivation associated with a derivation d and a function f of an integral Γ-incline algebra K. If f is an one to one function, then Kerd is an ideal of K.

Proof. By Proposition 3.18, Kerd is a subincline of K. Now let $x \in K$ and $y \in$ Kerd such that $x \leq y$. Then $d(y)=0$ and

$$
0=d(y)=d(y+x \alpha y)=d(y)+d(x \alpha y)=0+d(x \alpha y),
$$

which $d(x \alpha y)=0$. Hence we have

$$
0=d(x \alpha y)=(d(x) \alpha f(y))+(d(y) \alpha f(x))=d(x) \alpha f(y) .
$$

Since K has no zero divisors, either $d(x)=0$ or $f(y)=0$. If $d(x)=0$, then $x \in \operatorname{Kerd}$. If $f(y)=0$, then $y=0$ and so $x \leq y=0$, i.e., $x=0$, which implies $x \in$ Kerd.

Let d be a generalized right f-derivation associated with a derivation d and a function f of K. Define a set $F i x_{d}(K)$ by

$$
\operatorname{Fix}_{d}(K):=\{x \in K \mid d(x)=f(x)\}
$$

for all $x \in K$.
Proposition 3.20. Let K be a commutative Γ-incline algebra and let d be a generalized right f-derivation associated with a derivation d and a function f of K. Then Fix $_{d}(K)$ is a subincline of K.

Proof. Let $x, y \in \operatorname{Fix}_{d}(K)$. Then we have $d(x)=f(x)$ and $d(y)=$ $f(y)$, and so

$$
\begin{aligned}
d(x \alpha y) & =d(x) \alpha f(y)+d(y) \alpha f(x)=f(x) \alpha f(y)+f(y) \alpha f(x) \\
& =f(x) \alpha f(y)+f(x) \alpha f(y)=f(x) \alpha f(y)=f(x \alpha y) .
\end{aligned}
$$

Now

$$
d(x+y)=d(x)+d(y)=f(x)+f(y)=f(x+y),
$$

which implies $x+y, x \alpha y \in \operatorname{Fix}_{d}(K)$. This completes the proof.
Definition 3.21. Let K be an Γ-incline algebra. An element $a \in K$ is said to be additively left cancellative if for all $a, b \in K, a+b=a+c \Rightarrow$ $b=c$. An element $a \in K$ is said to be additively right cancellative if for all $a, b \in K, b+a=c+a \Rightarrow b=c$. It is said to be additively cancellative if
it is both left and right cancellative. If every element of K is additively left cancellative, it is said to be additively left cancellative. If every element of K is additively right cancellative, it is said to be additively right cancellative.

Definition 3.22. A subincline I of an Γ-incline algebra K is called a k-ideal if $x+y \in I$ and $y \in I$, then $x \in I$.

Example 3.23. In Example 3.2, $I=\{0, a, b\}$ is an k-ideal of K.
Theorem 3.24. Let K be a commutative Γ-incline algebra and additively right cancellative. If d is a generalized right f-derivation associated with a derivation d and a function f of K, then $\operatorname{Fix}_{d}(K)$ is a k-ideal of K.

Proof. By Proposition 3.20, $\operatorname{Fix}_{d}(K)$ is a subincline of K. Let $x+$ $y, y \in \operatorname{Fix}_{d}(K)$. Then $d(y)=f(y)$ and $f(x+y)=d(x+y)$. Hence $f(x)+f(y)=d(x+y)=d(x)+d(y)=d(x)+f(y)$, which implies $x \in \operatorname{Fix}_{d}(K)$. Hence $\mathrm{Fix}_{d}(K)$ is a k-ideal of K.

Proposition 3.25. Let K be an Γ-incline algebra and let d be a generalized right f-derivation associated with a derivation d and a function f of K. Then Kerd is a k-ideal of K.

Proof. From Proposition 3.18, Kerd is a subincline of K. Let $x+y \in$ K and $y \in \operatorname{Kerd}$. Then we have $d(x+y)=0$ and $d(y)=0$, and so

$$
0=d(x+y)=d(x)+d(y)=d(x)+0=d(x) .
$$

This implies $x \in$ Kerd.

References

[1] S. S. Ahn, Y. B. Jun and H. S. Kim, Ideals and quotients of incline algebras, Commun. Korean Math. Soc., 16 (2001), 573-583.
[2] S. S. Ahn and H. S. Kim, On r-ideals in incline algebras, Commun. Korean Math. Soc., 17 (2002), 229-235.
[3] N. O. Alshehri. On derivations of incline algebras, Sci. Math. Jpn. online, e-2010 (2010), 199-205.
[4] Z. Q. Cao, K. H. Kim and F. W. Roush, Incline algebra and applications, John Wiley and Sons, New York, 1984.
[5] K. H. Kim On right derivations of incline algebras, J. Chungcheong Math Soc., 26 (2013), 683-690.
[6] K. H. Kim, On generalized right derivations of incline algebras, Gulf J. Math., $\mathbf{3}$ (2015), 127-132.
[7] M. M. K. Rao and B. Venkateswarlu, On generalized right derivations of Γ incline, J. Int. Math. Virtual Inst., 6 (2016), 31-47.
[8] W. Yao and S. Han, On ideals, filters and congruences in inclines, Bull. Korean Math., 46 (2009), no. 3, 591-598.

Department of Mathematics,
Korea National University of Transportation
Chungju 27469, Republic of Korea
E-mail: ghkim@ut.ac.kr

[^0]: Received April 27, 2021; Accepted May 08, 2021.
 2010 Mathematics Subject Classification: Primary 16Y30, 03G25.
 Key words and phrases: Incline algebra, Γ-incline algebra, generalized right f derivation, idempotent, isotone, d-ideal, k-ideal.

