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APPROXIMATELY QUADRATIC DERIVATIONS AND
GENERALIZED HOMOMORPHISMS

Kyoo-Hong Park a and Yong-Soo Jung b, ∗

Abstract. Let A be a unital Banach algebra. If f : A → A is an approximately
quadratic derivation in the sense of Hyers-Ulam-J.M. Rassias, then f : A → A is an
exactly quadratic derivation. On the other hands, let A and B be Banach algebras.
Any approximately generalized homomorphism f : A → B corresponding to Cauchy,
Jensen functional equation can be estimated by a generalized homomorphism.

1. Introduction

In 1940, S. M. Ulam [26] proposed the following question concerning the stability
of group homomorphisms:

Let G1 be a group and let G2 be a metric group with the metric d(·, ·). Given ε > 0,

does there exist a δ > 0 such that if a function h : G1 → G2 satisfies the inequality
d(h(xy), h(x)h(y)) < δ for all x, y ∈ G1, then there exists a homomorphism H :
G1 → G2 with d(h(x),H(x)) < ε for all x ∈ G1?

In next year, D.H. Hyers [10] answers the problem of Ulam under the assumption
that the groups are Banach spaces: if ε > 0 and f : X → Y is a mapping with X a
normed space, Y a Banach space such that

||f(x + y)− f(x)− f(y)|| ≤ ε

for all x, y ∈ X , then there exists a unique additive mapping T : X → Y such that

||f(x)− T (x)|| ≤ ε

for all x ∈ X .
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A generalized version of the theorem of Hyers for approximately linear mappings
was given by Th.M. Rassias [21] by introducing the unbounded Cauchy difference.
Since then, the stability problems of several functional equation have been exten-
sively investigated by a number of authors (for instance, [1, 3, 6, 23]).

On the other hand, J.M. Rassias [19] generalized the Hyers’ stability result by
presenting a weaker condition controlled by (or involving) a product of different
powers of norms (from the right-hand side of assumed conditions). That is, assume
that there exist constants ε ≥ 0 and p1, p2 ∈ R such that p = p1 + p2 6= 1, and
f : X → Y is a mapping with X a normed space, Y a Banach space such that the
inequality

‖f(x + y)− f(x)− f(y)‖ ≤ ε‖x‖p1‖y‖p2

for all x, y ∈ X, then there exist a unique additive mapping T : X → Y such that

‖f(x)− T (x)‖ ≤ ε

2− 2p
‖x‖p

for all x ∈ X. If, in addition, f(tx) is continuous in t ∈ R for each fixed x in X,
then T is linear.

A counter-example for a singular case of this result was given by P. Găvrută [7].
Particularly, one of the important functional equations studied is the following

functional equation:

f(x + y) + f(x− y) = 2f(x) + 2f(y).

The quadratic function f(x) = ax2 is a solution of this functional equation, and so
one usually is said the above functional equation to be quadratic [1, 13, 20].

The Hyers-Ulam stability problem of the quadratic functional equation was first
proved by F. Skof [25] for functions between a normed space and a Banach space.
Afterwards, her result was extended by P.W. Cholewa [4] and S. Czerwik [5]:

If p 6= 2 and f : X → Y is a mapping with X a normed space, Y a Banach space
such that

‖f(x + y) + f(x− y)− 2f(x)− 2f(y)‖ ≤ ε(‖x‖p + ‖y‖p)

for all x, y ∈ A, then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ c + kε‖x‖p

for all x ∈ X if p ≥ 0 and for all x ∈ X \{0} if p < 0, where: when p < 2, c = ‖f(0‖
3 ,

k = 2
4−2p and when p > 2, c = 0, k = 2

2p−4 .



APPROXIMATELY QUADRATIC DERIVATIONS AND GENERALIZED HOMOMORPHISMS117

Let A be an algebra over the real or complex field F. An additive mapping d :
A → A is said to be a ring derivation if the functional equation d(xy) = xd(y)+d(x)y
holds for all x, y ∈ A.

T. Miura et al. [18] investigated the stability of ring derivations on Banach
algebras:

Suppose that A is a Banach algebra, p ≥ 0 and ε ≥ 0. If p 6= 1 and f : A → A is
a mapping such that

‖f(x + y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p)

for all x, y ∈ A and

‖f(xy)− xf(y)− f(x)y‖ ≤ ε‖x‖p‖y‖p

for all x, y ∈ A, then there exists a unique ring derivation d : A → A such that

‖f(x)− d(x)‖ ≤ 2ε

|2− 2p|‖x‖
p

for all x ∈ A. In particular, if A is a Banach algebra without order, then f is an
ring derivation.

Several results for the stability of derivations have been obtained by many authors
(for instances, [2, 16, 17, 24]).

We here introduce the following mapping:
A quadratic mapping D : A → A is said to be a quadratic derivation if the

functional equation D(xy) = x2D(y) + D(x)y2 holds for all x, y ∈ A. As a simple
example, let us consider the algebra of 2× 2 matrices

A =
{[

a b

0 0

]
: a, b ∈ C

}
,

where C is a complex field. Then it is easy to see that the mapping D : A → A
defined by

D

([
a b

0 0

])
=

[
0 a2

0 0

]

is a quadratic derivation. Here it is natural to ask that there exists an approximately
quadratic derivation which is not an exactly quadratic derivation. The following
example is a slight modification of an example due to [18].

Example. Let X be a compact Hausdorff space and let C(X) be the commutative
Banach algebra of real-valued continuous functions on X under pointwise operations
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and the supremum norm ‖ · ‖∞. We define f : C(X) → C(X) by

f(a)(x) =
{

a(x)2 log | a(x)| if a(x) 6= 0,
0 if a(x) = 0

for all a ∈ C(X) and x ∈ X. It is easy to see that

f(ab) = a2f(b) + f(a)b2

for all a, b ∈ C(X).
Note that the following inequality holds for all u, v ∈ R \ {0} with u + v 6= 0,

where R is a real field,
∣∣(u + v)2 log |u + v|+ (u− v)2 log |u− v| − 2u2 log |u| − 2v2 log |v|∣∣ ≤ 4|u| |v|

In fact, fix u, v ∈ R \ {0}, u + v 6= 0 arbitrarily. Since log(1 + x) ≤ x for all x ≥ 0,
∣∣(u + v)2 log |u + v|+ (u− v)2 log |u− v| − 2u2 log |u| − 2v2 log |v|∣∣
≤ ∣∣(u + v)2 log(|u|+ |v|) + (u− v)2 log(|u|+ |v|)− 2u2 log |u| − 2v2 log |v|∣∣
=

∣∣2(u2 + v2) log(|u|+ |v|)− 2u2 log |u| − 2v2 log |v|∣∣

≤ 2|u|2
∣∣∣∣ log

|u|+ |v|
|u|

∣∣∣∣ + 2|v|2
∣∣∣∣ log

|u|+ |v|
|v|

∣∣∣∣

≤ 2|u|2 log
(

1 +
|v|
|u|

)
+ 2|v|2 log

(
1 +

|u|
|v|

)

≤ 2|u|2 |v||u| + 2|v|2 |u||v| = 4|uv|

which gives

‖f(a + b) + f(a− b)− 2f(a)− 2f(b)‖∞ ≤ 4‖ab‖∞
for all a, b ∈ C(X). Hence we may regard f as an approximately quadratic derivation
on C(X).

Let A and B be Banach algebras and let h : A → B be a linear mapping. Define
the bilinear mapping H by H(x, y) = h(xy)−h(x)h(y) for all x, y ∈ A. We say that
h is a generalized homomorphism if H is continuous in x ∈ A for each fixed y ∈ A
and in y ∈ A for each fixed x ∈ A, respectively. The mapping was introduced by
B.E. Johnson [12].

By an approximately generalized homomorphism corresponding to a functional
equation E(f) = 0, we mean a mapping f : A → B such that

‖E(f)‖ ≤ ε
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and the mapping F : A×A → B defined by

(1) F (x, y) = f(xy)− f(x)f(y)

for all x, y ∈ A, is continuous in x ∈ A for each fixed y ∈ A and in y ∈ A for each
fixed x ∈ A, respectively.

In Section 2, we prove the stability in the sense of Hyers-Ulam-J.M. Rassias and
the superstability of quadratic derivations on Banach algebras as in the case of ring
derivations. In Section 3 and 4, the stability of generalized homomorphisms on
Banach algebras via Cauchy, Jensen equations is established, respectively.

2. Stability of Quadratic Derivations

In this section, Q and N will denote the set of the rational and the natural
numbers, respectively.

Lemma 2.1. Suppose that A is a Banach algebra. Let δ, ε ≥ 0 and let p, q ≥ 0 with
either p < 1, q < 2 or p > 1, q > 2. If f : A → A is a mapping such that

(2) ‖f(x + y) + f(x− y)− 2f(x)− 2f(y)‖ ≤ δ‖x‖p‖y‖p

for all x, y ∈ A and

(3) ‖f(xy)− x2f(y)− f(x)y2‖ ≤ ε‖x‖q‖y‖q

for all x, y ∈ A, then there exists a unique quadratic derivation D : A → A such
that

(4) ‖f(x)−D(x)‖ ≤ kδ‖x‖2p

for all x ∈ A, where k = 1
4−4p if p < 1 and k = 1

4p−4 if p > 1.

Proof. Assume that either p < 1, q < 2 or p > 1, q > 2. Set τ = 1 if p < 1, q < 2
and τ = −1 if p > 1, q > 2. In (2), put x = y = 0 to see that f(0) = 0. Hence,
following Czerwik’s process [5] using the direct method, we obtain from (2)

‖4−nf(2nx)− f(x)‖ ≤ ε‖x‖2p
n∑

k=1

22(k−1)p 4−k

for all x ∈ A and all n ∈ N if p < 1, and

‖f(x)− 4nf(2−nx)‖ ≤
(ε

4

)
‖x‖2p

n∑

k=1

2−2k(p−1)
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for all x ∈ A and all n ∈ N if p > 1. Using these inequalities and Czerwik’s
process, we see that there exists a unique quadratic mapping D : A → A defined by
D(x) = limn→∞ 4−τnf(2τnx) for all x ∈ A such that

‖f(x)−D(x)‖ ≤ kδ‖x‖2p

for all x ∈ A, where k = 1
4−4p if p < 1 and k = 1

4p−4 if p > 1.
We claim that

D(xy) = x2D(y) + D(x)y2

for all x, y ∈ A. Since D is quadratic, we see that D(x) = 4−τnD(2τnx) for all x ∈ A
and all n ∈ N. First, it follows from (4) that

‖4−τnf(2τnx)−D(x)‖ = 4−τn‖f(2τnx)−D(2τnx)‖
≤ 4−τnkδ‖2τnx‖2p

= 4τ(p−1)nkδ‖x‖2p

for all x ∈ A and all n ∈ N. Since τ(p− 1) < 0, we have

(5) ‖4−τnf(2τnx)−D(x)‖ → 0 as n →∞.

Following the similar argument as the above, we obtain

‖4−2τnf(22τnxy)−D(xy)‖ ≤ 4τ(p−1)nkδ‖xy‖2p

for all x, y ∈ A and all n ∈ N, and so

(6) ‖4−2τnf(22τnxy)−D(xy)‖ → 0 as n →∞.

Since f satisfies (3), we get

‖4−2τnf(22τnxy)− 4−τnx2f(2τny)− f(2τnx)4−τny2‖
= 4−2τn‖f((2τnx)(2τny))− (2τnx)2f(2τny)− f(2τnx)(2τny)2‖
≤ 4−2τnε‖2τnx‖q‖2τny‖q = 2τn(q−2)ε‖x‖q‖y‖q

for all x, y ∈ A and all n ∈ N. Invoking τ(q − 2) < 0, we obtain

(7) ‖4−2τnf(22τnxy)− 4−τnx2f(2τny)− f(2τnx)4−τny2‖ → 0 as n →∞.

Using (5), (6) and (7), we now see that

‖D(xy)− x2D(y)−D(x)y2‖
≤ ‖D(xy)− 4−2τnf(22τnxy)‖
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+ ‖4−2τnf(22τnxy)− 4−τnx2f(2τny)− 4−τnf(2τnx)y2‖
+ ‖4−τnx2f(2τny)− x2D(y)‖+ ‖4−τnf(2τnx)y2 −D(x)y2‖

≤ ‖D(xy)− 4−2τnf(22τnxy)‖
+ ‖4−2τnf(22τnxy)− 4−τnx2f(2τny)− 4−τnf(2τnx)y2‖
+ ‖x2‖‖4−τnf(2τny)−D(y)‖+ ‖f(2τnx)4−τn −D(x)‖‖y2‖ → 0 as n →∞

which implies that D(xy) = x2D(y)+D(x)y2 for all x ∈ A. Namely, D is a quadratic
derivation, as claimed and the proof is complete. ¤

Lemma 2.2. Suppose that A is a unital Banach algebra. Let δ, ε ≥ 0 and let p, q ≥ 0
with either p < 1, q < 2 or p > 1, q > 2. If f : A → A is a mapping satisfying (2)
and (3), then we have we have

f(rx) = r2f(x)

for all x ∈ A and all r ∈ Q.

Proof. In the case when r = 0, it is trivial since f(0) = 0. Let e be a unit element
of A and r ∈ Q \ {0} arbitrarily. Put τ = 1 if p < 1, q < 2 and τ = −1 if p > 1,
q > 2. Hence it follows that τ(p − 1) < 0 and τ(q − 2) < 0. By Lemma 2.1, there
exists a unique quadratic derivation D : A → A such that (4) is true. Recall that D

is quadratic, and hence it is easy to see that D(rx) = r2D(x) for all x ∈ A. Then
we get

‖D((2τne)(rx))− r222τnef(x)− f(2τne)r2x2‖
≤ r2‖D(2τnex)− f(2τnex)‖+ r2‖f(2τnex)− 4τnef(x)− f(2τne)x2‖(8)

for all x ∈ A and all n ∈ N. Now the inequalities (3), (4) and (8) yields that

‖D((2τne)(rx))− r222τnef(x)− f(2τne)r2x2‖
≤ r24τnpkδ‖x‖2p + r22τnqε‖x‖q(9)

for all x ∈ A and all n ∈ N.
It follows from (4) and (9) that

‖f((2τne)(rx))− r222τnef(x)− f(2τne)r2x2‖
≤ ‖f((2τne)(rx))−D((2τne)(rx))‖

+ ‖D((2τne)(rx))− r222τnef(x)− f(2τne)r2x2‖
≤ kδ4τnp(r2p + r2)‖x‖2p + r22τnqε‖x‖q
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for all x ∈ A and all n ∈ N. That is, we have

‖f((2τne)(rx))− r222τnef(x)− f(2τne)r2x2‖
≤ kδ4τnp(r2p + r2)‖x‖2p + r22τnqε‖x‖q(10)

for all x ∈ A and all n ∈ N. From (3) and (10), we obtain

‖4τn{f(rx)− r2f(x)}‖
= ‖4τne{f(rx)− r2f(x)}‖
≤ ‖22τnef(rx) + f(2τne)r2x2 − f((2τne)(rx))‖

+ ‖f((2τne)(rx))− r222τnef(x)− f(2τne)r2x2‖
≤ ε‖2τne‖q‖rx‖q + kδ4τnp(r2p + r2)‖x‖2p + r22τnqε‖x‖q

= 2τnq(rq + r2)ε‖x‖q + kδ4τnp(r2p + r2)‖x‖2p

for all x ∈ A and all n ∈ N. This means that

‖f(rx)− r2f(x)‖
≤ 2τ(q−2)n(rq + r2)ε‖x‖q + kδ4τ(p−1)n(r2p + r2)‖x‖2p(11)

for all x ∈ A and all n ∈ N. If we take n →∞ in (11), then we arrive at

f(rx) = r2f(x)

for all x ∈ A. This completes the proof since r ∈ Q \ {0} was arbitrary. ¤

Now we are ready to prove the main result in this section.

Theorem 2.3. Suppose that A is a unital Banach algebra. Let δ, ε ≥ 0 and let
p, q ≥ 0 with either p < 1, q < 2 or p > 1, q > 2. If f : A → A is a mapping
satisfying (2) and (3), then f : A → A is a quadratic derivation.

Proof. Let D be a unique quadratic derivation as in Lemma 2.2. Put τ = 1 if p < 1,
q < 2 and τ = −1 if p > 1, q > 2. Since f(2τnx) = 4τnf(x) for all x ∈ A and all
n ∈ N by Lemma 2.2, it follows from (4) that

‖f(x)−D(x)‖ = ‖4−τnf(2τnx)− 4−τnD(2τnx)‖
≤ 4−τnkδ‖2τnx‖2p

= 4τ(p−1)nkδ‖x‖2p

for all x ∈ A and all n ∈ N. Namely,

(12) ‖f(x)−D(x)‖ ≤ 4τ(p−1)nkδ‖x‖2p
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for all x ∈ A and all n ∈ N. Since τ(p − 1) < 0, if we let n → ∞ in (12), then
we conclude that f(x) = D(x) for all x ∈ A which implies that f is a quadratic
derivation. ¤

3. Stability of Generalized Homomorphisms
via Cauchy Equation

We begin with our investigation establishing the stability of generalized homo-
morphisms via Cauchy equation. From now on, A and B denote Banach algebras.

Theorem 3.1. Let ε ≥ 0. For each approximately generalized homomorphism f :
A → B corresponding to the Cauchy inequality

(13) ‖f(αx + βy)− αf(x)− βf(y)‖ ≤ ε,

for all x, y ∈ A and all α, β ∈ U = {µ ∈ C : |µ| = 1}, there exists a unique
generalized homomorphism h : A → B such that

(14) ‖f(x)− h(x)‖ ≤ ε

for all x ∈ A.

Proof. Let us the second variable of F be fixed. Then, by hypothesis, for each fixed
z ∈ A, the mapping F : A×A → B satisfies the inequality

‖F (αx + βy, z)− αF (x, z)− βF (y, z)‖
≤ ‖f(αxz + βyz)− f(αx + βy)f(z)

− αf(xz) + αf(x)f(z)− βf(yz) + βf(y)f(z)‖
≤ ‖f(αxz + βyz)− αf(xz)− βf(yz)‖

+ ‖f(αx + βy)− αf(x)− βf(y)‖‖f(z)‖
≤ (1 + ‖f(z)‖)ε,

that is, we obtain the inequality

(15) ‖F (αx + βy, z)− αF (x, z)− βF (y, z)‖ ≤ (1 + ‖f(z)‖)ε

for all x, y ∈ A and all α, β ∈ U.
Putting α = β = 1 in (15) and utilizing the Hyers’ direct method [10], there is

an additive mapping in the first variable S : A×A → B such that

(16) ‖F (x, z)− S(x, z)‖ ≤ (1 + ‖f(z)‖)ε
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for all x ∈ A, where

(17) S(x, z) = lim
n→∞

F (2nx, z)
2n

for all x ∈ A. Replacing x, y by 2nx, 2ny in (15), we get

‖2−nF (2n(αx + βy), z)− α2−nF (2nx, z)− β2−nF (2ny, z)‖ ≤ 2−n(1 + ‖f(z)‖)ε

for all x, y ∈ A and all α, β ∈ U. Taking limits as n →∞, we obtain

(18) S(αx + βy, z) = αS(x, z) + βS(y, z)

for all x, y ∈ A and all α, β ∈ U.
Clearly, S(0x, z) = 0 = 0S(x, z) for all x ∈ A. Now, let λ ∈ C (λ 6= 0), and

let M ∈ N greater than |λ|. By applying a geometric argument, we see that there
exists α1, β2 ∈ U such that 2 λ

M = α1 + β2. By the additivity of S(·, z), we get
S(1

2x, z) = 1
2S(x, z) for all x ∈ A. Therefore

S(λx, z) = S

(
M

2
· 2 · λ

M
x, z

)
= MS

(
1
2
· 2 · λ

M
x, z

)
=

M

2
S((α1 + β2)x, z)

=
M

2
(α1 + β2)S(x, z) =

M

2
· 2 · λ

M
S(x, z) = λS(x, z)(19)

for all x ∈ A, so that the mapping S : A×A → B is C-linear in the first variable.
From the Hyers’ theorem [10], the inequality (13) with α = β = 1 guarantees

that there exists a unique additive mapping h : A → B defined by

h(x) = lim
n→∞

f(2nx)
2n

for all x ∈ A satisfying the inequality (14). Applying a similar approach of (15)∼(19)
to (13), we see that h is C-linear.

For each fixed x ∈ A, we note that the mapping F : A × A → B satisfies the
inequality

‖2−nF (2nx, αy + βz)− α2−nF (2nx, y)− β2−nF (2nx, z)‖
≤ ‖2−nf(α2n(xy) + β2n(xz))− 2−nf(2nx)f(αy + βz)

− α2−nf(2n(xy)) + α2−nf(2nx)f(y)− β2−nf(2n(xz)) + β2−nf(2nx)f(z)‖
≤ 2−n‖f(α2n(xy) + β2n(xz))− αf(2n(xy))− βf(2n(xz))‖

+ 2−n‖f(2nx)‖ ‖f(αx + βy)− αf(x)− βf(y)‖
≤ 2−nε + 2−n‖f(2nx)‖ε,



APPROXIMATELY QUADRATIC DERIVATIONS AND GENERALIZED HOMOMORPHISMS125

Letting n →∞ in this inequality, it follows from (17) that the inequality

(20) ‖S(x, αy + βz)− αS(x, y)− βS(x, z)‖ ≤ ‖h(x)‖ε
holds for all y, z ∈ A. Following the same process as (15)∼(19) with (20), it follows
that the mapping H : A×A → B defined by

(21) H(x, y) = lim
n→∞

S(x, 2ny)
2n

for all z ∈ A, is C-linear in second variable. Since S was C-linear in first variable,
H is also C-linear in first variable. Hence, we conclude that H is C-bilinear.

From (13), we obtain

(22)
F (2nx, y)

2n
=

f(2n(xy))
2n

− f(2nx)
2n

f(y)

for all x, y ∈ A, and so taking n →∞ in (22) yields

(23) S(x, y) = h(xy)− h(x)f(y)

for all x, y ∈ A. Replacing y by 2ny in (23), we get

(24)
S(x, 2ny)

2n
= h(xy)− h(x)

f(2ny)
2n

for all x, y ∈ A. Now, setting n →∞ in the both sides of (24) gives

(25) H(x, y) = h(xy)− h(x)h(y)

for all x, y ∈ A.
To show the continuity of H in x ∈ A for each fixed y ∈ A we use the way of [10].
Assume that F is continuous in x ∈ A for each fixed y ∈ A. If S is not continuous

at a point x ∈ A for some fixed y0 ∈ A, then there exist a positive integer η and a
sequence {xn} in A converging to zero such that

‖S(xn, y0)‖ >
1
η

for all n ∈ N. Let k be an integer greater than 3ηδ, where δ = (‖1 + f(y0)‖)ε. Then
we have

‖S(kxn, y0)− S(0, y0)‖ = ‖S(kxn, y0)‖ > 3δ

for all n ∈ N.
But, from (16), we obtain the inequality

‖S(kxn, y0)− S(0, y0)‖ ≤ ‖S(kxn, y0)− F (kxn, y0)‖
+ ‖F (kxn, y0)− F (0, y0)‖
+ ‖F (0, y0)− S(0, y0)‖ ≤ 3δ(26)
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for sufficiently large n, since F (kxn, y0) → F (0, y0) as n → ∞. This contradiction
means that S is continuous in x ∈ A for each fixed y ∈ A. Hence, the relation (21)
tells us that H is continuous in x ∈ A for each fixed y ∈ A.

To prove that the mapping H defined by (25) is continuous in y ∈ A for each
fixed x ∈ A, let us the first variable of F be fixed. By the similar one to the
manner obtaining the inequality (15), we see that for each fixed x ∈ A, the mapping
F : A×A → B satisfies the inequality

‖F (x, αy + βz)− αF (x, y)− βF (x, z)‖ ≤ (1 + ‖f(x)‖)ε

for all y, z ∈ A and all α, β ∈ U. Now, the remainder of the proof carries over almost
verbatim among (16)∼(26). So we conclude that H is continuous in y ∈ A for each
fixed x ∈ A. Consequently, h is a generalized homomorphism. ¤

4. Stability of Generalized Homomorphisms
via Jensen Equation

Consider the Jensen equation

2f
(x + y

2

)
= f(x) + f(y).

It is well known that a function f between vector spaces with f(0) = 0 satisfies the
Jensen equation if and only if it is additive. In this section, we obtain the stability
result of generalized homomorphisms via the Jensen equation.

Theorem 4.1. Let ε ≥ 0 and let f : A → B be an approximately generalized
homomorphism corresponding to the Jensen inequality

(27)
∥∥∥∥2f

(αx + βy

2

)
− αf(x)− βf(y)

∥∥∥∥ ≤ ε,

for all x, y ∈ A and all α, β ∈ I = {1, i}. For each fixed z ∈ A (resp. x ∈ A), there
is a positive number rz (resp. rx) such that the real functions t 7→ ‖F (tx, z)‖ (resp.
t 7→ ‖F (x, tz)‖) is bounded on the interval [0, rz] (resp. [0, rx]). Then there exists a
unique generalized homomorphism h : A → B such that

(28) ‖f(x)− h(x)‖ ≤ ε

for all x ∈ A.
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Proof. By hypothesis, for each fixed z ∈ A, the mapping F : A × A → B satisfies
the inequality

∥∥∥∥2F
(αx + βy

2
, z

)
− αF (x, z)− βF (y, z)

∥∥∥∥

≤
∥∥∥∥2f

(αxz + βyz

2

)
− 2f

(αx + βy

2

)
f(z)

− αf(xz) + αf(x)f(z)− βf(yz) + βf(y)f(z)
∥∥∥∥

≤
∥∥∥∥2f

(αxz + βyz

2

)
− αf(xz)− βf(yz)

∥∥∥∥

+
∥∥∥∥2f

(αx + βy

2

)
− αf(x)− βf(y)

∥∥∥∥‖f(z)‖
≤ (1 + ‖f(z)‖)ε,

that is, we obtain the inequality

(29)
∥∥∥∥2F

(αx + βy

2
, z

)
− αF (x, z)− βF (y, z)

∥∥∥∥ ≤ (1 + ‖f(z)‖)ε

for all x, y ∈ A and all α, β ∈ I.
Putting α = β = 1 in (29) and using the Jung’s result [14], there is an additive

mapping in the first variable S : A×A → B such that

(30) ‖F (x, z)− S(x, z)‖ ≤ (1 + ‖f(z)‖)ε

for all x ∈ A, where

(31) S(x, z) = lim
n→∞

F (2nx, z)
2n

for all x ∈ A. By replacing x by 2n+1x and letting y = 0 in (29), we get

2−(n+1)

∥∥∥∥2F
(2n+1

2
ix, z

)
− iF (2n+1x, z)− F (0, z)

∥∥∥∥ ≤ 2−(n+1)(1 + ‖f(z)‖)ε

for all x ∈ A. Taking limits as n →∞, we obtain

(32) S(ix, z) = iS(x, z)

for all x ∈ A. To prove the homogeneous property in the first variable of S, let us
g ∈ A∗, where A∗ is the dual of A, and define the additive function Υ : R → R by
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Υ(t) = g(S(tx, z)). The function is bounded since

|Υ(t)| ≤ ‖g‖‖S(tx, z)‖
≤ ‖g‖(S(tx, z)− F (tx, z)‖+ ‖F (tx, z)‖)
≤ ‖g‖|((1 + ‖f(z)‖)ε + sup{‖F (tx, z)‖ : t ∈ [0, rz]}

)
.(33)

It follows from Corollary 2.5 of [1] that Υ(t) = Υ(1)t for all t ∈ R. Hence we get

g(S(tx, z)) = g(tS(x, z))

for all t ∈ R and all g ∈ A∗ which implies that S(tx, z) = tS(x, z) for all t ∈ R.
Now, for each complex number λ = u + iv, we have

S(λx, z) = S(ux + ivx, z)

= S(ux, z) + S(ivx, z)

= uS(x, z) + ivS(x, z) = λS(x, z),(34)

that is, the mapping S : A×A → B is C-linear in the first variable.
From Jung’s result [14], the inequality (27) with α = β = 1 implies that there

exists a unique additive mapping h : A → B defined by

h(x) = lim
n→∞

f(2nx)
2n

for all x ∈ A satisfying the inequality (28). Applying a similar approach to (29)∼(34)
to (27), we see that h is C-linear. The remainder of the proof follows the similar
argument as in the proof of Theorem 2.1. Therefore, h is a generalized homomor-
phism. ¤
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