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APPROXIMATELY QUADRATIC DERIVATIONS AND
GENERALIZED HOMOMORPHISMS

Ky00-HONG PARK? AND YONG-S0OO JUNG P»*

ABSTRACT. Let A be a unital Banach algebra. If f : A — A is an approximately
quadratic derivation in the sense of Hyers-Ulam-J.M. Rassias, then f: A — A is an
exactly quadratic derivation. On the other hands, let A and B be Banach algebras.
Any approximately generalized homomorphism f : A — B corresponding to Cauchy,
Jensen functional equation can be estimated by a generalized homomorphism.

1. INTRODUCTION

In 1940, S. M. Ulam [26] proposed the following question concerning the stability

of group homomorphisms:

Let Gy be a group and let Gy be a metric group with the metric d(-,-). Given e > 0,
does there exist a § > 0 such that if a function h : G1 — G4 satisfies the inequality
d(h(zy), h(x)h(y)) < § for all z,y € Gy, then there exists a homomorphism H :
G1 — Go with d(h(z), H(x)) < € for all x € G1?

In next year, D.H. Hyers [10] answers the problem of Ulam under the assumption
that the groups are Banach spaces: if ¢ >0 and f : X — Y is a mapping with X a

normed space, ) a Banach space such that

1f(z+y) = flz) - fyll <e
for all x,y € X, then there exists a unique additive mapping T : X — Y such that

1f(z) =T (@)l <e
forall x € X.
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A generalized version of the theorem of Hyers for approximately linear mappings
was given by Th.M. Rassias [21] by introducing the unbounded Cauchy difference.
Since then, the stability problems of several functional equation have been exten-
sively investigated by a number of authors (for instance, [1, 3, 6, 23]).

On the other hand, J.M. Rassias [19] generalized the Hyers’ stability result by
presenting a weaker condition controlled by (or involving) a product of different
powers of norms (from the right-hand side of assumed conditions). That is, assume
that there exist constants € > 0 and p1,p2 € R such that p = p1 + p2 # 1, and
f: X =Y is a mapping with X a normed space, Y a Banach space such that the

nequality
1f (@ +y) = f(x) = f@I < ellz]P[[y[[>
for all x,y € X, then there exist a unique additive mapping T : X — Y such that
-T <
1F@) - T < 5

for all x € X. If, in addition, f(tzx) is continuous in t € R for each fized x in X,

then T 1is linear.

l][”

A counter-example for a singular case of this result was given by P. Gavruta [7].
Particularly, one of the important functional equations studied is the following

functional equation:

flz+y)+ flx—y)=2f(x) +2f(y)

2 is a solution of this functional equation, and so

The quadratic function f(x) = ax
one usually is said the above functional equation to be quadratic [1, 13, 20].

The Hyers-Ulam stability problem of the quadratic functional equation was first
proved by F. Skof [25] for functions between a normed space and a Banach space.
Afterwards, her result was extended by P.W. Cholewa [4] and S. Czerwik [5]:

Ifp#£2and f: X — Y is a mapping with X a normed space, Y a Banach space

such that

1f (e +y) + f(z —y) = 2f(x) = 2f ()] < e(lz]” + [ly]*)

for all x,y € A, then there exists a unique quadratic mapping Q : X — Y such that

1f(2) = Q)| < ¢+ kellz|]?

‘ ‘ ) _ lif ol
forallz € X if p > 0 and for all v € X\ {0} if p < 0, where: when p <2, c = 45—,

kZﬁ andwhenp>2,C=0;k:2p2—4-
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Let A be an algebra over the real or complex field F. An additive mapping d :
A — Aissaid to be a ring derivation if the functional equation d(xy) = zd(y)+d(x)y
holds for all z,y € A.

T. Miura et al. [18] investigated the stability of ring derivations on Banach
algebras:

Suppose that A is a Banach algebra, p >0 ande >0. Ifp#1 and f: A — A is
a mapping such that

1f (@ +y) = f(x) = fF)l < e(llz]]” + llyl]*)
for all xz,y € A and

1f(@y) —xf(y) — f(@)yll < ellz)P|yl”
for all x,y € A, then there exists a unique ring derivation d : A — A such that

2¢e
I7@) = d@)] < 5=

[l

for all x € A. In particular, if A is a Banach algebra without order, then f is an
ring derivation.

Several results for the stability of derivations have been obtained by many authors
(for instances, [2, 16, 17, 24]).

We here introduce the following mapping:

A quadratic mapping D : A — A is said to be a quadratic derivation if the
functional equation D(xy) = 22D(y) + D(x)y? holds for all 2,y € A. As a simple

example, let us consider the algebra of 2 x 2 matrices

a={[4 0] nec),

where C is a complex field. Then it is easy to see that the mapping D : A — A

defined by
D a b B 0 a?
0 0 10 0

is a quadratic derivation. Here it is natural to ask that there exists an approximately
quadratic derivation which is not an exactly quadratic derivation. The following

example is a slight modification of an example due to [18].

Example. Let X be a compact Hausdorff space and let C'(X) be the commutative

Banach algebra of real-valued continuous functions on X under pointwise operations
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and the supremum norm || - ||oc. We define f: C(X) — C(X) by
)

a(z)?log|a(z)| if a(z 7&_

fa={ § ”
for all a € C(X) and x € X. It is easy to see that

flab) = a®f(b) + f(a)b®

0,

a(z) =0

for all a,b € C(X).
Note that the following inequality holds for all u,v € R\ {0} with u+ v # 0,

where R is a real field,
|(u+ v)?log|u+ v| + (u — v)?log |u — v| — 2u®log |u| — 2v? log |UH < 4u| |v|
In fact, fix u,v € R\ {0}, u + v # 0 arbitrarily. Since log(1 + z) < z for all x > 0,

|(u+ v)?log |u + v| + (u — v)*log |u — v| — 2u?log |u| — 2v%log ||
< !(u + v)? log(Jul + |v]) + (u — v)2 log(|ul + |v]) — 2u? log lu| — 202 log |UH
= [2(u? + v?) log(Ju| + |v]) — 2u? log |u| — 2v* log |||

|uf + Jv] Juf + [v]
|ul [v]

< 2Jul?log (1 - ||> + 2|v|? log (1 + |“)

v
Jul vl

|ul
|v

< 2Jul? + 2[v|?|log

log

lvl

< 2ul? = + 2w = = 4|uv]

|ul
which gives
1f(a+b)+ fla—b) —2f(a) = 2f(b)[lcc < 4lladl|

forall a,b € C'(X). Hence we may regard f as an approximately quadratic derivation
on C'(X).

Let A and B be Banach algebras and let h : A — B be a linear mapping. Define
the bilinear mapping H by H(x,y) = h(xy) — h(z)h(y) for all z,y € A. We say that
h is a generalized homomorphism if H is continuous in x € A for each fixed y € A
and in y € A for each fixed z € A, respectively. The mapping was introduced by
B.E. Johnson [12].

By an approximately generalized homomorphism corresponding to a functional

equation £(f) = 0, we mean a mapping f : A — B such that

1EWNIN < e
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and the mapping F : A x A — B defined by

(1) F(x,y) = f(zy) — f(z)f(y)

for all z,y € A, is continuous in x € A for each fixed y € A and in y € A for each
fixed x € A, respectively.

In Section 2, we prove the stability in the sense of Hyers-Ulam-J.M. Rassias and
the superstability of quadratic derivations on Banach algebras as in the case of ring
derivations. In Section 3 and 4, the stability of generalized homomorphisms on

Banach algebras via Cauchy, Jensen equations is established, respectively.

2. STABILITY OF QUADRATIC DERIVATIONS
In this section, Q and N will denote the set of the rational and the natural
numbers, respectively.

Lemma 2.1. Suppose that A is a Banach algebra. Let 5, > 0 and let p,q > 0 with
eitherp<1,g<2orp>1,¢q>2. If f: A— Ais a mapping such that

(2) 1f(@+y)+ f(@z—y) = 2f(@) = 2f W) < oll=|"[|yl]”
for all xz,y € A and
(3) 1f(zy) =22 fy) = f(2)y?[| < ell]|7lly ]|

for all z,y € A, then there exists a unique quadratic derivation D : A — A such
that

(4) If(x) = D(@)|| < kdl]*
forall x € A, wherek::ﬁ ifp<l1 andk:ﬁ if p>1.

Proof. Assume that either p <1, ¢g<2o0orp>1,¢>2 Set7=1ifp<1,q<?2
and 7 = —1ifp>1,¢ > 2. In (2), put z =y = 0 to see that f(0) = 0. Hence,

following Czerwik’s process [5] using the direct method, we obtain from (2)

147" £(2") — f(2)] < efja® Y220 DP gt
k=1

forallz € Aand alln € Nif p < 1, and

I£(@) 4] < (5) a3 2720
k=1
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for all x+ € A and all n € N if p > 1. Using these inequalities and Czerwik’s
process, we see that there exists a unique quadratic mapping D : A — A defined by
D(z) = limy, 00 477" f(27"z) for all x € A such that

If () = D(@)|| < kélj|*

forallweA,Wherek:ﬁifp<1andk:4p—l_41fp>1.
We claim that

D(zy) = 2*D(y) + D(z)y’

for all z,y € A. Since D is quadratic, we see that D(z) = 477" D(2™"z) for all x € A
and all n € N. First, it follows from (4) that

[47™f(2™x) — D(z)|| = 477" f(27"z) — D(2™"x)]|
< 4—Tnk6”2’rnx”2p
= 4700

for all z € A and all n € N. Since 7(p — 1) < 0, we have
(5) [47™ f(2™"z) — D(z)|| = 0 asn — oc.
Following the similar argument as the above, we obtain
14727 f(2° T xy) — D(wy)|| < 47Dk |ay|*?

for all x,y € A and all n € N, and so
(6) 14727 f(2*™"xy) — D(ay)|| — 0 asn — oo.
Since f satisfies (3), we get

14727 f(2° M ary) — 477" f(27y) — f(2T )47 |

= 47| F(272) (27y)) — (27"w)?f(27y) — F2Te) (27y)?

< 47|27 ]|9 |27y |4 = 27 De ]|y |
for all x,y € A and all n € N. Invoking 7(¢ — 2) < 0, we obtain
(7) 472 (2% ay) — 47T f(2Ty) — (2T a)4T Y] = 0 as n— oo
Using (5), (6) and (7), we now see that

ID(zy) — 2*D(y) — D(x)y?|
< ||D(zy) — 472 f(2° " ay) |
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+ {1475 (22 ay) — 47T F(27y) — 47T F(27 )y
+ 47T f(27y) = 2?D(y)|| + 1472 2)y? — D(x)y?||
< [ID(zy) — 472 F(2° " ay) |
+ |47 F (22 y) — 47T f(27y) — 47T F(27 )y
+ 22|47 F27y) = D)l + [ f(272)4™™ = D(@)||lly*[l — 0 asn — oo
which implies that D(zy) = 2?D(y)+D(z)y? for all z € A. Namely, D is a quadratic

derivation, as claimed and the proof is complete. ]

Lemma 2.2. Suppose that A is a unital Banach algebra. Let d,e > 0 and let p,qg > 0
with either p < 1,q<2o0orp>1,q>2. If f: A— A is a mapping satisfying (2)
and (3), then we have we have

flra) =12 f(x)
for allz € A and all r € Q.

Proof. In the case when r = 0, it is trivial since f(0) = 0. Let e be a unit element
of Aand r € Q\ {0} arbitrarily. Put 7 =1ifp<1l,g<2and7=—-11ifp > 1,
q > 2. Hence it follows that 7(p — 1) < 0 and 7(¢ — 2) < 0. By Lemma 2.1, there
exists a unique quadratic derivation D : A — A such that (4) is true. Recall that D
is quadratic, and hence it is easy to see that D(rz) = r?>D(x) for all z € A. Then
we get
ID((2e)(r)) — 222 ™e f(z) — f(2™"e)r’a?|
8)  <r?D@E@ex) — f(2ex)|| + 7| f (27" ex) — 4T"ef(z) — F(2"e)?|
for all z € A and all n € N. Now the inequalities (3), (4) and (8) yields that
ID((27"e)(rx)) — r°2* e f(x) — f(2"e)r®a?|
9) < P2 4TPEG |2 ||?P + r22T e |2 ||
for all z € A and all n € N.
It follows from (4) and (9) that

I£(2™e)(ra)) — r®2°Te f(a) — f(27"e)r?a?|
< [lF((2™e)(rz)) — D((27"e)(rz))|
+[ID(2™e) (ra)) — r?22 e f(x) — (2" e)r?a?|

< k64T (12 402 ||| 2P 4 227 |24
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for all z € A and all n € N. That is, we have
(27" e)(rz)) — r?2* e f(x) — f(2T"e)r?a?|
(10) < kS4TP (%P 4 ) ||z %P + r227 e |||
for all z € A and all n € N. From (3) and (10), we obtain
147 f (rz) — r* f(2)} ]
= 47" e{f(rz) — r*f(2)}]
< 122 e f (ra) + f(27e)r?a® — f((27"e) (r2)) |
+ 1 F((27"e) (rx)) — 222 e f (x) — f(2T"e)r?a?|
< el 27| U a7 + kOATTP (1% + 1) ||| 1227 e ||
=27 (pd 4 e ||z||? + kSATP (r?P 4 r?) |2 ||*P
for all x € A and all n € N. This means that
1f(ra) =72 f(2)]
(11) < 27@2n (0 4 e ||| + k4TI 4 p2)||2)| 2P
for all x € A and all n € N. If we take n — oo in (11), then we arrive at
flrz) =r?f(x)
for all z € A. This completes the proof since r € Q \ {0} was arbitrary. O
Now we are ready to prove the main result in this section.

Theorem 2.3. Suppose that A is a unital Banach algebra. Let 6, > 0 and let
p,q > 0 with either p < 1, g < 2o0rp>1,q>2. Iff: A— Aisa mapping
satisfying (2) and (3), then f : A — A is a quadratic derivation.

Proof. Let D be a unique quadratic derivation as in Lemma 2.2. Put 7 = 1if p < 1,
g<2and7T=-1ifp>1,¢>2 Since f(27"x) = 47" f(x) for all x € A and all
n € N by Lemma 2.2, it follows from (4) that

If(z) = D(z)|| = [[47" f(2™"x) — 477" D(2™"x)||
< 4_Tnk(5H2Tn.%'||2p
= 47~ "kg 2| %
for all z € A and all n € N. Namely,

(12) If (z) = D(x)|| < 47®D"ks |||



APPROXIMATELY QUADRATIC DERIVATIONS AND GENERALIZED HOMOMORPHISMS123

for all x € A and all n € N. Since 7(p — 1) < 0, if we let n — oo in (12), then
we conclude that f(x) = D(x) for all + € A which implies that f is a quadratic

derivation. ]

3. STABILITY OF GENERALIZED HOMOMORPHISMS
viA CAUCHY EQUATION

We begin with our investigation establishing the stability of generalized homo-
morphisms via Cauchy equation. From now on, A and B denote Banach algebras.

Theorem 3.1. Let € > 0. For each approximately generalized homomorphism f :

A — B corresponding to the Cauchy inequality

(13) [f(cx + By) — af(z) = Bf W) <,

for all z,y € A and all o, € U = {u € C : |u| = 1}, there exists a unique

generalized homomorphism h : A — B such that

(14) 1f(z) = h(z)|| < e
for all x € A.
Proof. Let us the second variable of F' be fixed. Then, by hypothesis, for each fixed
z € A, the mapping F' : A x A — B satisfies the inequality
IF(aw+ By,2) - aF(z,2) ~ BF(y, )]
< |[f(ewz + Byz) — flax + By) f(2)
—af(zz) +af(x)f(z) = Bf(yz) + Bf(y)f(2)]]
< | flazxz + Byz) — af (zz) — Bf (y2)||
+ [If(ex + By) — af () = BfF WIS (=)
< (L4 17 (2)De,

that is, we obtain the inequality
(15) |F(ax + By, z) — aF(z,2) = BF(y, 2)|| < (1 + [ f(2)l))e

for all x,y € A and all o, 3 € U.
Putting @« = § = 1 in (15) and utilizing the Hyers’ direct method [10], there is
an additive mapping in the first variable S : A x A — B such that

(16) [1F(x,2) = Sz, 2)| < L+ [[f(2)l])e
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for all x € A, where
F(2"
(17) S(x,z) = lim F2'e,2)
n—00 on

for all x € A. Replacing =,y by 2"z, 2"y in (15), we get

127" F (2" (e + By), 2) — a2 " F(2"x, z) — B27"F(2"y, 2)|| < 27" (1 + [|f(2)l))e
for all x,y € A and all «, 8 € U. Taking limits as n — oo, we obtain
(18) S(ax + By, z) = aS(z, z) + BS(y, 2)

for all x,y € A and all o, 3 € U.

Clearly, S(0z,z) = 0 = 0S(z,2) for all x € A. Now, let A € C (A # 0), and
let M € N greater than |A|. By applying a geometric argument, we see that there
exists a1, 2 € U such that 2% = a1 + f2. By the additivity of S(-,2), we get
S(3z,2) = 15(z, 2) for all € A. Therefore

M A 1 A M
S(A\x,z) = S(Q-Q-Ma:,z> —MS<2-2-M:E,,2> = ?S((al + B2, 2)

M M A
(19) - 7((11_{'&2)5(1'32) - 72MS(:U’Z)_)‘S(‘T7Z)
for all x € A, so that the mapping S : A x A — B is C-linear in the first variable.
From the Hyers’ theorem [10], the inequality (13) with & = § = 1 guarantees
that there exists a unique additive mapping h : A — B defined by
27’1
hz) = lim 1&0)

n—oo 2N

for all z € A satisfying the inequality (14). Applying a similar approach of (15)~(19)
to (13), we see that h is C-linear.
For each fixed z € A, we note that the mapping F : A x A — B satisfies the
inequality
|27"F(2"x,ay + z) — a2 "F(2"z,y) — f2 "F(2"z, 2)||
< (|27 (a2 (zy) + 82" (22)) — 27" f(2"2) f(ay + B2)
—a27" f(2"(zy)) + a27" f(2"2) f(y) — 627" f(2"(22)) + 527" F(2"2) f(2)]]
<27 f (a2 (xy) 4 2" (22)) — af(2"(zy)) — BF (2" (x2))|
+ 27 f 2 )| I f (az + By) — af () — Bf ()|
<27+ 277 f(2"2)le,
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Letting n — oo in this inequality, it follows from (17) that the inequality

(20) 1S(z,ay + Bz) — aS(z,y) — BS(z, 2)|| < [|h(x)l|e

holds for all y, z € A. Following the same process as (15)~(19) with (20), it follows
that the mapping H : A x A — B defined by

(21) H(z,y) = lim Sz, 2"y)

n—00 2n
for all z € A, is C-linear in second variable. Since S was C-linear in first variable,
H is also C-linear in first variable. Hence, we conclude that H is C-bilinear.

From (13), we obtain
FEhzy) _ f2"(zy)  [(2"2)

(22) ) S T2 g

for all x,y € A, and so taking n — oo in (22) yields

(23) S(x,y) = h(zy) — h(z)f(y)

for all z,y € A. Replacing y by 2"y in (23), we get

(24) S 2) _ h(ay) - nay 2

for all x,y € A. Now, setting n — oo in the both sides of (24) gives
(25) H(z,y) = h(zy) — h(z)h(y)

for all z,y € A.
To show the continuity of H in € A for each fixed y € A we use the way of [10].
Assume that F' is continuous in z € A for each fixed y € A. If S is not continuous
at a point z € A for some fixed yy € A, then there exist a positive integer n and a

sequence {z,} in A converging to zero such that
1
1S Gn, o)l > 2

for all n € N. Let k be an integer greater than 3nd, where § = (|14 f(vo)||)e. Then
we have
1S (kzn, yo) — S(0,y0) || = [[S(kzn, yo)|| > 30
for all n € N.
But, from (16), we obtain the inequality

S (kn, yo) — S(0,y0)|| < |5 (kzn, yo) — F (kxn, yo)|
(26) + [1F(0,30) — S(0,50)[| <36
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for sufficiently large n, since F'(kxy,,y0) — F(0,y0) as n — oo. This contradiction
means that S is continuous in z € A for each fixed y € A. Hence, the relation (21)
tells us that H is continuous in x € A for each fixed y € A.

To prove that the mapping H defined by (25) is continuous in y € A for each
fixed z € A, let us the first variable of F' be fixed. By the similar one to the
manner obtaining the inequality (15), we see that for each fixed = € A, the mapping
F: Ax A — B satisfies the inequality

[F (2, 0y + B2) — aF(z,y) — BF (2, 2)| < (1 + [[f(z)])e

for all y, z € A and all a, 3 € U. Now, the remainder of the proof carries over almost
verbatim among (16)~(26). So we conclude that H is continuous in y € A for each

fixed z € A. Consequently, h is a generalized homomorphism. O

4. STABILITY OF GENERALIZED HOMOMORPHISMS
VIA JENSEN EQUATION

Consider the Jensen equation

r+y

2/ (*57) = F@) + £ ).

It is well known that a function f between vector spaces with f(0) = 0 satisfies the
Jensen equation if and only if it is additive. In this section, we obtain the stability

result of generalized homomorphisms via the Jensen equation.

Theorem 4.1. Let ¢ > 0 and let f : A — B be an approzimately generalized

homomorphism corresponding to the Jensen inequality

oza:—l—ﬁy)

(27) H2f of (2) - ﬂf(y)H <

forall x,y € A and all o, B € I = {1,i}. For each fized z € A (resp. x € A), there
is a positive number r, (resp. r4) such that the real functions t — || F(tx, z)|| (resp.
t— ||F(z,tz)]|) is bounded on the interval [0,7,] (resp. [0,ry]). Then there exists a

unique generalized homomorphism h : A — B such that

(28) If(2) = h(z)| <€

for all x € A.
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Proof. By hypothesis, for each fixed z € A, the mapping F' : A x A — B satisfies
the inequality

HZF(W,Z) —aF(z,z) — BF(y, z)

< (e ) (e 20y

—af(zz) +af(x)f(2) = Bf(yz) + Bf(y)f(2)

arz + fyz
2

o (B2 ~ st - 1wl

< (L4 17 (2)De,

IA

2/ ( ) — af(@z) - Bf(y2)

that is, we obtain the inequality

@) |er(M ) - ares) - R < @+ D

2

for all z,y € A and all a, 5 € L.
Putting o« = § = 1 in (29) and using the Jung’s result [14], there is an additive
mapping in the first variable S : A x A — B such that

(30) 1F(z,2) = S(z,2)[| < (L4 [[£(2)])e
for all x € A, where
(31) S(z,z) = lim ———

for all z € A. By replacing = by 2"z and letting y = 0 in (29), we get

n+1
2

2—(n+1)

2r (2 <27 (11 || (2)])e

iz, z) iR, 2) — F(0, 2)

for all x € A. Taking limits as n — oo, we obtain
(32) S(iz, z) = 1S(z, 2)

for all z € A. To prove the homogeneous property in the first variable of S, let us
g € A*, where A* is the dual of A, and define the additive function T : R — R by
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Y(t) = g(S(tx,2)). The function is bounded since
T < gllllS(tz, 2|
< llgll(S(ta, z) = F(tz, 2)[| + || F(tz, 2)]])
(33) < llgll((@ + If (2))e + sup{||F (tz, 2)| : ¢ € [0,72]}).

It follows from Corollary 2.5 of [1] that Y (¢) = Y (1)t for all ¢ € R. Hence we get

9(S(tx, 2)) = g(t5(z, 2))

for all t € R and all g € A* which implies that S(tz,z) = tS(z, z) for all t € R.

Now, for each complex number A = u + iv, we have

S(Az, z) = S(ux + vz, 2)
= S(ux, z) + S(ivz, z)
(34) =uS(z,z) +ivS(z, z) = AS(x, 2),

that is, the mapping S : A x A — B is C-linear in the first variable.
From Jung’s result [14], the inequality (27) with & = § = 1 implies that there
exists a unique additive mapping h : A — B defined by
) 2"y
h(z) = nh_)rgo f<2n)
for all x € A satisfying the inequality (28). Applying a similar approach to (29)~(34)
to (27), we see that h is C-linear. The remainder of the proof follows the similar
argument as in the proof of Theorem 2.1. Therefore, h is a generalized homomor-

phism. O
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