• Title/Summary/Keyword: f-derivations

Search Result 75, Processing Time 0.02 seconds

APPROXIMATELY QUADRATIC DERIVATIONS AND GENERALIZED HOMOMORPHISMS

  • Park, Kyoo-Hong;Jung, Yong-Soo
    • The Pure and Applied Mathematics
    • /
    • v.17 no.2
    • /
    • pp.115-130
    • /
    • 2010
  • Let $\cal{A}$ be a unital Banach algebra. If f : $\cal{A}{\rightarrow}\cal{A}$ is an approximately quadratic derivation in the sense of Hyers-Ulam-J.M. Rassias, then f : $\cal{A}{\rightarrow}\cal{A}$ is anexactly quadratic derivation. On the other hands, let $\cal{A}$ and $\cal{B}$ be Banach algebras.Any approximately generalized homomorphism f : $\cal{A}{\rightarrow}\cal{B}$ corresponding to Cauchy, Jensen functional equation can be estimated by a generalized homomorphism.

On Semiprime Rings with Generalized Derivations

  • Khan, Mohd Rais;Hasnain, Mohammad Mueenul
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.4
    • /
    • pp.565-571
    • /
    • 2013
  • In this paper, we investigate the commutativity of a semiprime ring R admitting a generalized derivation F with associated derivation D satisfying any one of the properties: (i) $F(x){\circ}D(y)=[x,y]$, (ii) $D(x){\circ}F(y)=F[x,y]$, (iii) $D(x){\circ}F(y)=xy$, (iv) $F(x{\circ}y)=[F(x) y]+[D(y),x]$, and (v) $F[x,y]=F(x){\circ}y-D(y){\circ}x$ for all x, y in some appropriate subsets of R.

On Prime Near-rings with Generalized (σ,τ)-derivations

  • Golbasi, Oznur
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.2
    • /
    • pp.249-254
    • /
    • 2005
  • Let N be a prime left near-ring with multiplicative center Z and f be a generalized $({\sigma},{\tau})-derivation$ associated with d. We prove commutativity theorems in prime near- rings with generalized $({\sigma},{\tau})-derivation$.

  • PDF

b-GENERALIZED DERIVATIONS ON MULTILINEAR POLYNOMIALS IN PRIME RINGS

  • Dhara, Basudeb
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.573-586
    • /
    • 2018
  • Let R be a noncommutative prime ring of characteristic different from 2, Q be its maximal right ring of quotients and C be its extended centroid. Suppose that $f(x_1,{\ldots},x_n)$ be a noncentral multilinear polynomial over $C,b{\in}Q,F$ a b-generalized derivation of R and d is a nonzero derivation of R such that d([F(f(r)), f(r)]) = 0 for all $r=(r_1,{\ldots},r_n){\in}R^n$. Then one of the following holds: (1) there exists ${\lambda}{\in}C$ such that $F(x)={\lambda}x$ for all $x{\in}R$; (2) there exist ${\lambda}{\in}C$ and $p{\in}Q$ such that $F(x)={\lambda}x+px+xp$ for all $x{\in}R$ with $f(x_1,{\ldots},x_n)^2$ is central valued in R.

Generalized Derivations on ∗-prime Rings

  • Ashraf, Mohammad;Jamal, Malik Rashid
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.3
    • /
    • pp.481-488
    • /
    • 2018
  • Let I be a ${\ast}$-ideal on a 2-torsion free ${\ast}$-prime ring and $F:R{\rightarrow}R$ a generalized derivation with an associated derivation $d:R{\rightarrow}R$. The aim of this paper is to explore the condition under which generalized derivation F becomes a left centralizer i.e., associated derivation d becomes a trivial map (i.e., zero map) on R.

SYMMETRIC BI-DERIVATIONS IN PRIME RINGS

  • Jung, Yong-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.3
    • /
    • pp.819-826
    • /
    • 1998
  • The purpose of this paper is to prove the following results; (1) Let R be a prime ring of char $(R)\neq 2$ and I a nonzero left ideal of R. The existence of a nonzero symmetric bi-derivation D : $R\timesR\;\longrightarrow\;$ such that d is sew-commuting on I where d is the trace of D forces R to be commutative (2) Let m and n be integers with $m\;\neq\;0.\;or\;n\neq\;0$. Let R be a noncommutative prime ring of char$ (R))\neq \; 2-1\; p_1 \;n_1$ where p is a prime number which is a divisor of m, and I a nonzero two-sided ideal of R. Let $D_1$ ; $R\;\times\;R\;\longrightarrow\;and\;$ $D_2\;:\;R\;\times\;R\;longrightarrow\;R$ be symmetric bi-derivations. Suppose further that there exists a symmetric bi-additive mapping B ; $R\;\times\;R\;\longrightarrow\;and\;$ such that $md_1(\chi)\chi + n\chi d_2(\chi)=f(\chi$) holds for all $\chi$$\in$I, where $d_1 \;and\; d_2$ are the traces of $D_1 \;and\; D_2$ respectively and f is the trace of B. Then we have $D_1=0 \;and\; D_2=0$.

A NOTE ON DERIVATIONS OF A SULLIVAN MODEL

  • Kwashira, Rugare
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.279-286
    • /
    • 2019
  • Complex Grassmann manifolds $G_{n,k}$ are a generalization of complex projective spaces and have many important features some of which are captured by the $Pl{\ddot{u}}cker$ embedding $f:G_{n,k}{\rightarrow}{\mathbb{C}}P^{N-1}$ where $N=\(^n_k\)$. The problem of existence of cross sections of fibrations can be studied using the Gottlieb group. In a more generalized context one can use the relative evaluation subgroup of a map to describe the cohomology of smooth fiber bundles with fiber the (complex) Grassmann manifold $G_{n,k}$. Our interest lies in making use of techniques of rational homotopy theory to address problems and questions involving applications of Gottlieb groups in general. In this paper, we construct the Sullivan minimal model of the (complex) Grassmann manifold $G_{n,k}$ for $2{\leq}k<n$, and we compute the rational evaluation subgroup of the embedding $f:G_{n,k}{\rightarrow}{\mathbb{C}}P^{N-1}$. We show that, for the Sullivan model ${\phi}:A{\rightarrow}B$, where A and B are the Sullivan minimal models of ${\mathbb{C}}P^{N-1}$ and $G_{n,k}$ respectively, the evaluation subgroup $G_n(A,B;{\phi})$ of ${\phi}$ is generated by a single element and the relative evaluation subgroup $G^{rel}_n(A,B;{\phi})$ is zero. The triviality of the relative evaluation subgroup has its application in studying fibrations with fibre the (complex) Grassmann manifold.

NOTES ON A NON-ASSOCIATIVE ALGEBRAS WITH EXPONENTIAL FUNCTIONS III

  • Choi, Seul-Hee
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.2
    • /
    • pp.153-159
    • /
    • 2008
  • For $\mathbb{F}[e^{{\pm}x}]_{\{{\partial}\}}$, all the derivations of the evaluation algebra $\mathbb{F}[e^{{\pm}x}]_{\{{\partial}\}}$ is found in the paper (see [16]). For $M=\{{\partial}_1,\;{\partial}_1^2\},\;Der_{non}(\mathbb{F}[e^{{\pm}x}]_M))$ of the evaluation algebra $\mathbb{F}[e^{{\pm}x},\;e^{{\pm}y}]_M$ is found in the paper (see [2]). For $M=({\partial}_1^2,\;{\partial}_2^2)$, we find $Der_{non}(\mathbb{F}[e^{{\pm}x},\;e^{{\pm}y}]_M))$ of the evaluation algebra $\mathbb{F}[e^{{\pm}x},\;e^{{\pm}y}]_M$ in this paper.

A ONE-SIDED VERSION OF POSNER'S SECOND THEOREM ON MULTILINEAR POLYNOMIALS

  • FILIPPIS VINCENZO DE
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.4
    • /
    • pp.679-690
    • /
    • 2005
  • Let K be a commutative ring with unity, R a prime K-algebra of characteristic different from 2, d a non-zero derivation of R, I a non-zero right ideal of R, f($x_1,{\cdots},\;x_n$) a multilinear polynomial in n non-commuting variables over K, a $\in$ R. Supppose that, for any $x_1,{\cdots},\;x_n\;\in\;I,\;a[d(f(x_1,{\cdots},\;x_n)),\;f(x_1,{\cdots},\;x_n)]$ = 0. If $[f(x_1,{\cdots},\;x_n),\;x_{n+1}]x_{n+2}$ is not an identity for I and $$S_4(I,\;I,\;I,\;I)\;I\;\neq\;0$$, then aI = ad(I) = 0.