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Abstract. In this paper, we investigate the following: Let A be a semisimple Banach

algebra. Suppose that there exists a linear derivation f : A → A such that the functional

equation 〈f(x), x〉2 = 0 holds for all x ∈ A. Then we have f = 0 on A.

1. Introduction

Throughout this paper, A will represent an algebra over a complex field C and
the Jacobson radical of A will be denoted by rad(A), i.e., the intersection of all
primitive ideals of A. A is said to be semisimple if rad(A) = {0}. Recall that A is
semiprime if xAx = {0} implies x = 0 and A is prime if xAy = {0} implies x = 0 or
y = 0 An additive mapping f : A → A is called a derivation if f(xy) = f(x)y+xf(y)
holds for all x, y ∈ A. We write [x, y] for the Lie product xy− yx and 〈x, y〉 denotes
the Jordan product xy + yx.

In 1955, Singer and Wermer proved that the range of a continuous derivation
on a commutative Banach algebra is contained in the Jacobson radical [6]. In the
same paper they conjectured that the assumption of continuity is not necessary. In
1988, Thomas proved the (so-called) Singer-Wermer conjecture [7]. Obviously, the
Singer-Wermer conjecture implies that every derivation on a commutative semisim-
ple Banach algebra is identically zero. But, in the noncommutative setting, it is
still an open question whether the above result is true or not.

Our main purpose in this paper is to supply a partial solution of the open ques-
tion for noncommutative semisimple Banach algebras. That is, let A be a noncom-
mutative semisimple Banach algebra. Suppose that there exists a linear derivation
f : A → A satisfying the functional equation 〈f(x), x〉2 = 0 for all x ∈ A. Then we

Received January 6, 2006.
2000 Mathematics Subject Classification: 47B47, 47B48, 16W25.
Key words and phrases: semisimple Banach algebra, linear derivation.
∗This work was supported by the Korea Research Foundation Grant funded by the

Korean Government (MOEHRD)(KRF-2005-041-C00029).

119



120 Yong-Soo Jung and Ick-Soon Chang

have f = 0 on A. By using this result, we also give a condition which characterizes
commutative semisimple Banach algebras among all semisimple Banach algebras.

2. Results

For the purpose, we will need the lemmas below.

Lemma 2.1. Let R be a semiprime ring. Suppose that the relation axb + bxc = 0
holds for all x ∈ R and some a, b, c ∈ R. In this case (a + c)xb = 0 is satisfied for
all x ∈ R.

Proof. See [8, Lemma 1]. ¤

Lemma 2.2. Let A be a noncommutative semisimple Banach algebra. Suppose
that there exists a linear derivation f : R → R such that the functional equation
f(x)[f(x), x] = 0 holds for all x ∈ R. Then we have f = 0 on A.

Proof. See [3, Corollary 2.8]. ¤

Lemma 2.3. Let A be a noncommutative semisimple Banach algebra. Suppose
that there exists a linear derivation f : A → A such that the functional equation
[[f(x), x], f(x)] = 0 holds for all x ∈ A. Then we have f = 0 on A.

Proof. By the result of Johnson and Sinclair [2], every linear derivation on a semisim-
ple Banach algebra is continuous. Hence [4, Theorem 2.5] gives the result. ¤

Lemma 2.4. Let A be a noncommutative semisimple Banach algebra. Suppose
that there exists a linear derivation f : A → A such that the functional equation
〈〈f(x), x〉, f(x)〉 = 0 holds for all x ∈ A. Then we have f = 0 on A.

Proof. As the proof of Lemma 2.3, the conclusion is true in view of [4, Theorem
2.6]. ¤

Our main result is

Theorem 2.5. Let A be a semisimple Banach algebra. Suppose that there exists a
linear derivation f : A → A such that the functional equation 〈f(x), x〉2 = 0 holds
for all x ∈ A. Then we have f = 0 on A.

Proof. As above, every linear derivation on a semisimple Banach algebra is contin-
uous. Also, following the result of Sinclair [5], every continuous linear derivation
on a Banach algebra leaves the primitive ideals of A invariant. Therefore for ev-
ery primitive ideal P ⊆ A, we can define a linear derivation fP : A/P → A/P ,
where A/P is a factor Banach algebra which is primitive, by fP (x̂) = f(x) + P,
x̂ = x + P for all x ∈ A. Observe that the assumption 〈f(x), x〉2 = 0, x ∈ A yields
〈f(x̂), x̂〉2 = 0̂, x̂ ∈ A/P . Hence we see that there is no loss of generality in assuming
that A is primitive. In particular, A is prime. Since a commutative Banach algebra
is isomorphic to the complex field C, we may assume that A is noncommutative.

Now suppose that the functional equation

(1) 〈f(x), x〉2 = 0
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holds for all x ∈ A. The linearization of (1) leads to

(2) P1(x, y) + P2(x, y) + P3(x, y) = 0, x, y ∈ A,

where Pk(x, y) is the sum of terms involving x and y such that Pk(x,my) =
mkPk(x, y), k = 1, 2, 3 and m ∈ Z. Substituting −y for y in (2), we obtain by
comparing the result with (2) that

(3) P1(x, y) + P3(x, y) = 0, x, y ∈ A.

Substituting 2y for y in (3), we get

(4) 2P1(x, y) + 8P3(x, y) = 0, x, y ∈ A.

Multiplying by 8 in (3) and subtracting (4) from the result, we obtain

0 = P1(x, y)(5)
= f(x)xf(x)y + f(x)xf(y)x + f(x)yf(x)x + f(y)xf(x)x

+ f(x)x2f(y) + f(x)xyf(x) + f(x)yxf(x) + f(y)x2f(x)

+ xf(x)2y + xf(x)f(y)x + xf(y)f(x)x + yf(x)2x
+ xf(x)xf(y) + xf(x)yf(x) + xf(y)xf(x) + yf(x)xf(x), x, y ∈ A.

Putting xy instead of y in (5), we obtain

f(x)xf(x)xy + f(x)x2f(y)x + f(x)xf(x)yx + f(x)xyf(x)x(6)
+xf(y)xf(x)x + f(x)yxf(x)x + f(x)x2f(x)y + f(x)x3f(y)
+f(x)x2yf(x) + f(x)xyxf(x) + xf(y)x2f(x) + f(x)yx2f(x)
+xf(x)2xy + xf(x)xf(y)x + xf(x)2yx + x2f(y)f(x)x + xf(x)yf(x)x
+xyf(x)2x + xf(x)x2f(y) + xf(x)xf(x)y + xf(x)xyf(x)
+x2f(y)xf(x) + xf(x)yxf(x) + xyf(x)xf(x) = 0, x, y ∈ A.

Left-multiplying by x in (5) and subtracting the result from (6), we have

[f(x), x2]f(y)x + [f(x), x2]xf(y) + 〈f(x), x〉f(x)yx(7)
+[f(x), x2]yf(x) + f(x)xy〈f(x), x〉+ f(x)yx〈f(x), x〉
+x[f(x)2, x]y + f(x)x〈f(x), x〉y = 0, x, y ∈ A.

Substituting yx for y in (7), we arrive at

[f(x), x2]yf(x)x + [f(x), x2]f(y)x2(8)
+[f(x), x2]xyf(x) + [f(x), x2]xf(y)x
+〈f(x), x〉f(x)yx2 + [f(x), x2]yxf(x)
+f(x)xyx〈f(x), x〉+ f(x)yx2〈f(x), x〉
+x[f(x)2, x]yx + f(x)x〈f(x), x〉yx = 0, x, y ∈ A.
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Right-multiplying by x in (7) and subtracting the result from (8), we obtain

[f(x), x2]yxf(x) + [f(x), x2]xyf(x)(9)
−f(x)xy[f(x), x2]− f(x)yx[f(x), x2] = 0, x, y ∈ A.

Replacing f(x)y for y in (9), we have

[f(x), x2]f(x)yxf(x) + [f(x), x2]xf(x)yf(x)(10)
−f(x)xf(x)y[f(x), x2]− f(x)2yx[f(x), x2] = 0, x, y ∈ A.

Left-multiplying by f(x) in (9) and subtracting the result from (10), we get

[[f(x), x2], f(x)]yxf(x) + [[f(x), x2]x, f(x)]yf(x)(11)
+f(x)[f(x), x]y[f(x), x2] = 0, x, y ∈ A.

Putting yf(x) instead of y in (11), we obtain

[[f(x), x2], f(x)]yf(x)xf(x) + [[f(x), x2]x, f(x)]yf(x)2(12)
+f(x)[f(x), x]yf(x)[f(x), x2] = 0, x, y ∈ A.

Right-multiplying by f(x) in (11) and subtracting the result from (12), we have

[[f(x), x2], f(x)]y[f(x), x]f(x)− f(x)[f(x), x]y[[f(x), x2], f(x)] = 0, x, y ∈ A.

¿From Lemma 2.1, it follows that for any y ∈ A,

[[f(x), x], f(x)]y[[f(x), x2], f(x)] = 0

and hence for any x ∈ A, either [[f(x), x], f(x)] = 0 or [[f(x), x2], f(x)] = 0. That
is, A is the union of its subsets D = {x ∈ A : [[f(x), x], f(x)] = 0} and E = {x ∈
A : [[f(x), x2], f(x)] = 0}. Suppose that f 6= 0. Then we see from Lemma 2.3 that
D 6= A. We also assert that E 6= A. Assume that E = A, i.e., [[f(x), x2], f(x)] = 0
for all x ∈ A. Replacing y by y〈f(x), x〉 in (9), we obtain

[f(x), x2]y〈f(x), x〉xf(x) + [f(x), x2]xy〈f(x), x〉f(x)(13)
−f(x)xy〈f(x), x〉[f(x), x2]− f(x)y〈f(x), x〉x[f(x), x2] = 0, x, y ∈ A.

Right-multiplying by 〈f(x), x〉 in (9) and adding the result to (13), we have

[f(x), x2]y〈〈f(x), x〉, xf(x)〉+ [f(x), x2]xy〈〈f(x), x〉, f(x)〉(14)
−f(x)xy〈〈f(x), x〉, [f(x), x2]〉 − f(x)y〈〈f(x), x〉, x[f(x), x2]〉 = 0, x, y ∈ A.

Since 〈f(x), x〉2 = 0, we get

〈〈f(x), x〉, [f(x), x2]〉
= 〈〈f(x), x〉, [〈f(x), x〉, x]〉
= 〈f(x), x〉2x− 〈f(x), x〉x〈f(x), x〉

+〈f(x), x〉x〈f(x), x〉 − x〈f(x), x〉2 = 0, x, y ∈ A.
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Therefore, the relation (14) can be reduced to

[f(x), x2]y〈〈f(x), x〉, xf(x)〉+ [f(x), x2]xy〈〈f(x), x〉, f(x)〉(15)
−f(x)y〈〈f(x), x〉, x[f(x), x2]〉 = 0, x, y ∈ A.

Substituting f(x)y for y in (15), we arrive at

[f(x), x2]f(x)y〈〈f(x), x〉, xf(x)〉+ [f(x), x2]xf(x)y〈〈f(x), x〉, f(x)〉(16)
−f(x)2y〈〈f(x), x〉, x[f(x), x2]〉 = 0, x, y ∈ A.

Left-multiplying by f(x) in (15) and subtracting the result from (16), we obtain

0 = [[f(x), x2], f(x)]y〈〈f(x), x〉, xf(x)〉+ [[f(x), x2]x, f(x)]y〈〈f(x), x〉, f(x)〉
= [[f(x), x2]x, f(x)]y〈〈f(x), x〉, f(x)〉, x, y ∈ A.

Namely, we see that

[[f(x), x2]x, f(x)]y〈〈f(x), x〉, f(x)〉 = 0, x, y ∈ A.

¿From primeness of A, it follows that for any x ∈ A, either [[f(x), x2]x, f(x)] =
0 or 〈〈f(x), x〉, f(x)〉 = 0. Hence A is the union of its subsets F = {x ∈ A :
〈〈f(x), x〉, f(x)〉 = 0} and G = {x ∈ A : [[f(x), x2]x, f(x)] = 0}. Because of f 6= 0,
we see from Lemma 2.4 that F 6= A. We claim that G 6= A. Assume that G = A,
i.e., [[f(x), x2]x, f(x)] = 0 for all x ∈ A. Since both E = A and G = A are valid, it
follows from (11) that

f(x)[f(x), x]y[f(x), x2] = 0, x, y ∈ A.

Again using primeness of A, we see that for any x ∈ A, either f(x)[f(x), x] = 0 or
[f(x), x2] = 0. Hence A is the union of its subsets H = {x ∈ A : f(x)[f(x), x] = 0}
and I = {x ∈ A : [f(x), x2] = 0}. Since f 6= 0, we obtain from Lemma 2.2 and [1,
the proof of Theorem 2] that H 6= A and I 6= A, respectively. This implies that
there exist x0, y0 ∈ A such that x0 /∈ H and y0 /∈ I. Hence, y0 ∈ H and x0 ∈ I.
Now consider x0+λy0, λ ∈ C. Then we see that either x0+λy0 ∈ H or x0+λy0 ∈ I.
If x0 + λy0 ∈ H, then we have

(17) f(x0)[f(x0), x0] + λP1(x0, y0) + λ2P2(x0, y0) = 0

and also if x0 + λy0 ∈ I, then we get

(18) λP1(x0, y0) + λ2P2(x0, y0) + λ3[f(y0), y2
0 ] = 0,

where Pk(x0, y0) is the sum of terms involving x0 and y0 such that

Pk(x0,my0) = mkPk(x0, y0), k = 1, 2 and m ∈ Z.
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Therefore, for every λ ∈ C one of these two possibilities holds. But either (17) has
more than two solutions or (18) has more than three solutions. And this contradicts
the assumption that f(x0)[f(x0), x0] 6= 0 and [f(y0), y2

0 ] 6= 0.
We now see that G 6= A, as claimed. Namely, F 6= A and G 6= A. So there exist

x1, y1 ∈ A such that x1 /∈ F and y1 /∈ G. Thus y1 ∈ F and x1 ∈ G. Then we see
that either x1 + λy1 ∈ F or x1 + λy1 ∈ G. If x1 + λy1 ∈ F , then we have

(19) 〈〈f(x1), x1〉, f(x1)〉+ λP1(x1, y1) + λ2P2(x1, y1) = 0

and also if x1 + λy1 ∈ G, then we get

λP1(x1, y1) + λ2P2(x1, y1) + λ3P3(x1, y1)(20)
+λ4P4(x1, y1) + λ5[[f(y1), y2

1 ]y1, f(y1)] = 0,

where Pk(x1, y1) is the sum of terms involving x1 and y1 such that

Pk(x1,my1) = mkPk(x1, y1), k = 1, 2, 3, 4 and m ∈ Z.

Therefore, for every λ ∈ C one of these two possibilities holds. But, since either (19)
has more than two solutions or (20) has more than five solutions, this contradicts
the assumption that 〈〈f(x1), x1〉, f(x1)〉 6= 0 and [[f(y1), y2

1 ]y1, f(y1)] 6= 0. Because
this contradiction comes from the hypothesis E = A, it gives E 6= A which was the
first assertion. Hence we conclude that D 6= A and E 6= A. This means that there
exist x2, y2 ∈ A such that x2 /∈ D and y2 /∈ E. Thus y2 ∈ D and x2 ∈ E. We also
obtain that either x2 + λy2 ∈ D or x2 + λy2 ∈ E. If x2 + λy2 ∈ D, then we have

(21) [[f(x2), x2], f(x2)] + λP1(x2, y2) + λ2P2(x2, y2) = 0

and if x2 + λy2 ∈ E, then we get

(22) λP1(x2, y2) + λ2P2(x2, y2) + λ3P3(x2, y2) + λ4[[f(y2), y2
2 ], f(y2)] = 0,

where Pk(x2, y2) is the sum of terms involving x2 and y2 such that

Pk(x2,my2) = mkPk(x2, y2), k = 1, 2, 3 and m ∈ Z.

Therefore, for every λ ∈ C one of these two possibilities holds. But either (21) has
more than two solutions or (22) has more than four solutions. And this contradicts
the assumption that f(x2)[f(x2), x2] 6= 0 and [[f(y2), y2

2 ], f(y2)] 6= 0. Consequently,
we conclude that f = 0 which completes the proof. ¤

As a special case of Theorem 2.5, we obtain the next result which characterizes
commutative semisimple Banach algebras among all semisimple Banach algebras.

Corollary 2.6. Let A be a semisimple Banach algebra. Suppose that 〈[x, y], x〉2 = 0
holds for all x, y ∈ A. Then A is commutative.
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