NOTES ON A NON-ASSOCIATIVE ALGEBRAS WITH EXPONENTIAL FUNCTIONS III

SEUL HEE CHOI

ABSTRACT. For $\mathbb{F}[e^{\pm x}]_{\{\partial\}}$, all the derivations of the evaluation algebra $\mathbb{F}[e^{\pm x}]_{\{\partial\}}$ is found in the paper (see [16]). For $M=\{\partial_1,\partial_1^2\}$, $Der_{non}(\mathbb{F}[e^{\pm x}]_M)$) of the evaluation algebra $\mathbb{F}[e^{\pm x},e^{\pm y}]_M$ is found in the paper (see [2]). For $M=\{\partial_1^2,\partial_2^2\}$, we find $Der_{non}(\mathbb{F}[e^{\pm x},e^{\pm y}]_M)$) of the evaluation algebra $\mathbb{F}[e^{\pm x},e^{\pm y}]_M$ in this paper.

1. Preliminaries

Let \mathbb{F} be a field of characteristic zero (not necessarily algebraically closed). Throughout this paper, \mathbb{N} and \mathbb{Z} will denote the non-negative integers and the integers, respectively. Let A be an associative algebra and $M = \{\delta \mid \delta \text{ is a mapping from } A \text{ to itself } \}$. The evaluation algebra $A_M = \{a\delta \mid a \in A, \delta \in M\}$ with the obvious addition and the multiplication * is defined as follows:

$$a_1\delta_1*a_2\delta_2=a_1\delta_1(a_2)\delta_2$$

for any $a_1\delta_1, a_2\delta_2 \in A_M$ (see [1], [3], [4], and [13]). For A_M , if $M = \{id\}$, then the ring $A_M = A$ where id is the identity map of A. Note that $A_M = \langle A_M, +, * \rangle$ is not an associative ring generally (see [15]). Using the commutator [,] of A_M , we can define the semi-Lie ring (see [1]). If the Jacobi identity holds in $A_{M[,]}$, then $A_{M[,]}$ is a Lie ring (see [14]). Generally, $A_{M[,]}$ is not a Lie ring, because of the Jacobi identity. Let $\mathbb{F}[e^{\pm x_1}, e^{\pm x_2}, \dots, e^{\pm x_n}]$ be a ring in the formal power series ring $\mathbb{F}[[x_1, x_2, \dots, x_n]]$ (see [6] and [7]). If we take the subalgebra $\mathbb{F}[e^{\pm x}, e^{\pm y}]$ in $\mathbb{F}[[x_1, x_2, \dots, x_n]]$ and the map $M = \{\partial_1^2, \partial_2^2\}$, then we define the simple evaluation algebra $\mathbb{F}[e^{\pm x}, e^{\pm y}]_M$ (see [5], [9], [10], [11], and [12]). It is well known that the non-associative algebras $\mathbb{F}[e^{\pm x}, e^{\pm y}]_{\{\partial_1^2, \partial_2^2\}}$ and $\mathbb{F}[e^{\pm x}, e^{\pm y}]_{\{\partial_1, \partial_2^2\}}$ are simple (see [1], [3], and [16]). Note that $\mathbb{F}[e^{\pm x}, e^{\pm y}]_{\partial_1^2, \partial_2^2}$ can be decomposed as follows:

(1)
$$\mathbb{F}[e^{\pm x}, e^{\pm y}]_{\partial_1^2, \partial_2^2} = A_1 \oplus A_2$$

Received May 16, 2006.

²⁰⁰⁰ Mathematics Subject Classification. Primary 17B40, 17B56.

Key words and phrases. simple, Witt algebra, graded, radical homogeneous equivalent component, order, derivation invariant.

where A_1 (resp. A_2) is the subalgebra spanned by $\{e^{ax}e^{iy}\partial_1^2|a,i\in\mathbb{Z}\}$ (resp. $\{e^{bx}e^{jy}\partial_2^2|b,j\in\mathbb{Z}\}$) in $\mathbb{F}[e^{\pm x},e^{\pm y}]_{\partial_1^2,\partial_2^2}$.

2. Derivations of $\mathbb{F}[e^{\pm x}, e^{\pm y}]_M$

From now on, M denotes the set $\{\partial_1^2, \partial_2^2\}$.

Lemma 2.1. For any $D \in Der_{non}(\mathbb{F}[e^{\pm x}, e^{\pm y}]_M)$ if $D(\partial_1^2) = 0$ and $D(\partial_2^2) = 0$, then we have the followings:

$$D(e^x e^y \partial_r^2) = (a_{1,1,0} + b_{2,0,1})e^x e^y \partial_r^2,$$

where $r \in \{1, 2\}$ with appropriate scalars.

Proof. Let D be the derivation of $\mathbb{F}[e^{\pm x}, e^{\pm y}]_M$ in the lemma. Since ∂_2^2 is in the left annihilator of $e^x\partial_1^2$, we have that $\partial_2^2*D(e^x\partial_1^2)=0$. This implies that $D(e^x\partial_1^2)=\sum_i a_{1,i,0}e^{ix}\partial_1^2+\sum_i a_{2,i,0}e^{ix}\partial_2^2$ with appropriate scalars. Since ∂_1^2 is a left (multiplicative) identity of $e^x\partial_1^2$ and by assumption, we have that

(2)
$$\partial_1^2 * (\sum_i a_{1,i,0} e^{ix} \partial_1^2 + \sum_i a_{2,i,0} e^{ix} \partial_2^2) = \sum_i a_{1,i,0} e^{ix} \partial_1^2 + \sum_i a_{2,i,0} e^{ix} \partial_2^2$$

with appropriate scalars. By (2), we have that $i = \pm 1$, i.e.,

$$D(e^x \partial_1^2) = a_{1,1,0} e^x \partial_1^2 + a_{1,-1,0} e^{-x} \partial_1^2 + a_{2,1,0} e^x \partial_2^2 + a_{2,-1,0} e^{-x} \partial_2^2$$

Similarly, we can prove that

$$D(e^{y}\partial_{2}^{2}) = b_{1,0,1}e^{y}\partial_{1}^{2} + b_{1,0,-1}e^{-y}\partial_{1}^{2} + b_{2,0,1}e^{y}\partial_{2}^{2} + b_{2,0,-1}e^{-y}\partial_{2}^{2}$$

with appropriate scalars. Since $e^y \partial_2^2$ is in the right annihilator of $e^x \partial_1^2$, we have that $a_{2,1,0} = a_{2,-1,0} = 0$, i.e.,

$$D(e^x \partial_1^2) = a_{1,1,0} e^x \partial_1^2 + a_{1,-1,0} e^{-x} \partial_1^2.$$

Symmetrically, we can also prove that $D(e^y\partial_2^2) = b_{2,0,1}e^y\partial_2^2 + b_{2,0,-1}e^{-y}\partial_2^2$. By $D(e^{-x}\partial_1^2 * e^x\partial_1^2) = 0$, we have that $D(e^{-x}\partial_1^2) * e^x\partial_1^2 = -a_{1,1,0}\partial_1^2 - a_{1,-1,0}e^{-2x}\partial_1^2$. This implies that

(3)
$$D(e^{-x}\partial_1^2) = -a_{1,1,0}e^{-x}\partial_1^2 - a_{1,-1,0}e^{-3x}\partial_1^2 + \sum_{i,j} c_{2,i,j}e^{ix}e^{jy}\partial_2^2$$

with appropriate scalars. Since ∂_1^2 is a left identity of $e^{-x}\partial_1^2$, we have that $a_{1,-1,0}=0$, i.e., $D(e^x\partial_1^2)=a_{1,1,0}e^x\partial_1^2$. Similarly, we can also prove that $D(e^y\partial_2^2)=b_{2,0,1}e^y\partial_2^2$. Since ∂_2^2 is in the left annihilator of $e^{-x}\partial_1^2$, we have that either j=0 or $c_{2,i,j}=0$. On the other hand, since ∂_1^2 is a left identity of $e^{-x}\partial_1^2$, we can prove that $i\in\{1,-1\}$. If $c_{2,i,j}=0$ holds for all $i,j\in\mathbb{Z}$, then we have that $D(e^{-x}\partial_1^2)=-a_{1,1,0}e^{-x}\partial_1^2$. If $c_{2,i,j}\neq 0$ for some $i,j\in\mathbb{Z}$, then j=0 and we have the following two cases, Case I: i=1 and Case II: i=-1.

Case I. Let us assume that i = 1 holds. We have that

$$D(e^{-x}\partial_1^2) = -a_{1,1,0}e^{-x}\partial_1^2 + c_{2,1,0}e^x\partial_2^2.$$

Since $e^x \partial_1^2$ is in the left annihilator of $e^{-x} \partial_1^2$, we can prove that $c_{2,1,0} = 0$.

Case II. Let us assume that i = -1 holds. We have that

$$D(e^{-x}\partial_1^2) = -a_{1,1,0}e^{-x}\partial_1^2 + c_{2,-1,0}e^{-x}\partial_2^2.$$

By $D(e^x \partial_1^2 * e^{-x} \partial_1^2) = 0$, we prove that $c_{2,-1,0} = 0$.

Thus, by the cases I and II, we have that $D(e^{-x}\partial_1^2) = -a_{1,1,0}e^{-x}\partial_1^2$. Similarly, we can prove that

(4)
$$D(e^{x}\partial_{2}^{2}) = a_{1,1,0}e^{x}\partial_{2}^{2}$$

$$D(e^{-x}\partial_{2}^{2}) = -a_{1,1,0}e^{-x}\partial_{2}^{2}.$$

By $D(e^x e^y \partial_1^2 * e^{-x} \partial_2^2) = D(e^y \partial_2^2)$, we have that

$$D(e^x e^y \partial_1^2) * e^{-x} \partial_2^2 = a_{1,1,0} e^y \partial_2^2 + b_{2,0,1} e^y \partial_2^2.$$

This implies that

(5)
$$D(e^x e^y \partial_1^2) = (a_{1,1,0} + b_{2,0,1})e^x e^y \partial_1^2 + \sum_{i,j} t_{2,i,j} e^{ix} e^{jy} \partial_2^2$$

with appropriate scalars. Since $e^y\partial_2^2$ is in the right annihilator of $e^xe^y\partial_1^2$, we also have that $\sum_{i,j}t_{2,i,j}e^{ix}e^{(j+1)y}\partial_2^2=0$. This implies that $t_{2,i,j}=0$ for $i,j\in\mathbb{Z}$. Thus, we have that

(6)
$$D(e^x e^y \partial_1^2) = (a_{1,1,0} + b_{2,0,1})e^x e^y \partial_1^2.$$

By $D(e^{-x}\partial_2^2 * e^x e^y \partial_2^2) = D(e^y \partial_2^2)$, we have that

$$e^{-x}\partial_2^2 * D(e^x e^y \partial_2^2) = (a_{1,1,0} + b_{2,0,1})e^y \partial_2^2.$$

This implies that

(7)
$$D(e^x e^y \partial_2^2) = (a_{1,1,0} + b_{2,0,1})e^x e^y \partial_2^2 + \sum_i u_{1,i,0} e^{ix} \partial_1^2 + \sum_i u_{2,i,0} e^{ix} \partial_2^2$$

with appropriate scalars. Since ∂_2^2 is a left identity of $e^x e^y \partial_2^2$, we have that

(8)
$$D(e^x e^y \partial_2^2) = (a_{1,1,0} + b_{2,0,1})e^x e^y \partial_2^2$$

(6) and (8) are the required forms in the lemma. Therefore we have proven the lemma. \Box

Lemma 2.2. For any $D \in Der_{non}(\mathbb{F}[e^{\pm x}, e^{\pm y}]_M)$ and $e^{ix}e^{jy}\partial_r^2 \in \mathbb{F}[e^{\pm x}, e^{\pm y}]_M$, if $D(\partial_1^2) = 0$ and $D(\partial_2^2) = 0$, then we have the following equality

$$D(e^{ix}e^{jy}\partial_r^2) = (ia_{1,1,0} + jb_{2,0,1})e^{ix}e^{jy}\partial_r^2$$

holds where $r \in \{1,2\}$ and $a_{1,1,0},b_{2,0,1} \in \mathbb{F}$.

Proof. Let D be the derivation of $\mathbb{F}[e^{\pm x}, e^{\pm y}]_M$ in the lemma. Since $D(e^x\partial_1^2 * e^x\partial_1^2) = D(e^{2x}\partial_1^2)$, we have that $D(e^x\partial_1^2) * e^x\partial_1^2 + e^x\partial_1^2 * D(e^x\partial_1^2) = D(e^{2x}\partial_1^2)$. Thus we have that $D(e^{2x}\partial_1^2) = 2a_{1,1,0}e^{2x}\partial_1^2$. By $D(e^x\partial_1^2 * e^{2x}\partial_1^2) = 2D(e^{3x}\partial_1^2)$, we can prove that $D(e^{3x}\partial_1^2) = 3a_{1,1,0}e^{3x}\partial_1^2$. By induction on i of $e^{ix}\partial_1^2$, we also

prove that $D(e^{ix}\partial_1^2) = ia_{1,1,0}e^{ix}\partial_1^2$. Similarly, we can prove that $D(e^{jy}\partial_2^2) = jb_{2,0,1}e^{jx}\partial_2^2$. By $D(e^{(i-1)x}\partial_1^2 * e^x e^y \partial_1^2) = D(e^{ix}e^y\partial_1^2)$, we have that

$$D(e^{ix}e^{y}\partial_{1}^{2}) = D(e^{(i-1)x}\partial_{1}^{2}) * e^{x}e^{y}\partial_{1}^{2} + e^{(i-1)x}\partial_{1}^{2} * D(e^{x}e^{y}\partial_{1}^{2})$$

$$= (i-1)a_{1,1,0}e^{ix}e^{y}\partial_{1}^{2} + e^{(i-1)x}\partial_{1}^{2} * \{(a_{1,1,0} + b_{2,0,1})e^{x}e^{y}\partial_{1}^{2}\}$$

$$= (ia_{1,1,0} + b_{2,0,1})e^{ix}e^{y}\partial_{1}^{2}.$$

Since $D(e^{(j-1)y}\partial_2^2 * e^{ix}e^y\partial_1^2) = D(e^{ix}e^{jy}\partial_1^2)$, we prove that

$$\begin{array}{lll} D(e^{ix}e^{jy}\partial_1^2) & = & D(e^{(j-1)y}\partial_2^2) * e^{ix}e^y\partial_1^2 + e^{(j-1)y}\partial_2^2 * D(e^{ix}e^y\partial_1^2) \\ & = & (j-1)b_{2,0,1}e^{ix}e^{jy}\partial_1^2 + e^{(j-1)y}\partial_2^2 * (ia_{1,1,0} + jb_{2,0,1})e^{ix}e^y\partial_1^2 \\ & = & (ia_{1,1,0} + jb_{2,0,1})e^{ix}e^{iy}\partial_1^2. \end{array}$$

By $D(e^{(i-1)x}\partial_1^2 * e^x e^y \partial_2^2) = D(e^{ix}e^y \partial_2^2)$, we also have that

$$D(e^{ix}e^{y}\partial_{2}^{2}) = D(e^{(i-1)x}\partial_{1}^{2}) * e^{x}e^{y}\partial_{2}^{2} + e^{(i-1)x}\partial_{1}^{2} * D(e^{x}e^{y}\partial_{2}^{2})$$

$$= (i-1)a_{1,1,0}e^{(i-1)x}\partial_{1}^{2} * e^{x}e^{y}\partial_{2}^{2}$$

$$+e^{(i-1)x}\partial_{1}^{2} * (a_{1,1,0} + b_{2,0,1})e^{x}e^{y}\partial_{2}^{2}$$

$$= (i-1)a_{1,1,0}e^{ix}e^{y}\partial_{2}^{2} + (a_{1,1,0} + b_{2,0,1})e^{(i)x}e^{y}\partial_{2}^{2}$$

$$= (ia_{1,1,0} + b_{2,0,1})e^{ix}e^{y}\partial_{2}^{2}.$$

Since $D(e^{(j-1)y}\partial_2^2 * e^{ix}e^y\partial_2^2) = D(e^{ix}e^{jy}\partial_2^2)$, we can prove that

$$D(e^{ix}e^{jy}\partial_2^2) = D(e^{(j-1)y}\partial_2^2) * e^{ix}e^y\partial_2^2 + e^{(j-1)y}\partial_2^2 * D(e^{ix}e^y\partial_2^2)$$

$$= (j-1)b_{2,0,1}e^{ix}e^{jy}\partial_2^2 + (ia_{1,1,0} + b_{2,0,1})e^{ix}e^{jy}\partial_2^2$$

$$= (ia_{1,1,0} + jb_{2,0,1})e^{ix}e^{jy}\partial_2^2.$$

Therefore we have proven the lemma.

Lemma 2.3. For any $D \in Der_{non}(\mathbb{F}[e^{\pm x}, e^{\pm y}]_M), D(\partial_1^2) = D(\partial_2^2) = 0$ holds.

Proof. Let D be any derivation of $\mathbb{F}[e^{\pm x}, e^{\pm y}]_M$. By $\partial_1^2 * D(\partial_1^2) = 0$ and $\partial_2^2 * D(\partial_1^2) = 0$, we have that $D(\partial_1^2) = c_1 \partial_1^2 + c_2 \partial_2^2$ for $c_1, c_2 \in \mathbb{F}$. Similarly, we can prove that $D(\partial_2^2) = c_3 \partial_1^2 + c_4 \partial_2^2$ for $c_3, c_4 \in \mathbb{F}$. By $D(\partial_2^2 * e^x \partial_1^2) = 0$, we have that $\partial_2^2 * D(e^x \partial_1^2) = -c_3 e^x \partial_1^2$. This implies that $c_3 = 0$. Symmetrically, we can prove that $c_2 = 0$, i.e., $D(\partial_1^2) = c_1 \partial_1^2$ and $D(\partial_2^2) = c_4 \partial_2^2$. Since ∂_1^2 is a left identity of $e^x \partial_1^2$, we have that

(9)
$$c_1 e^x \partial_1^2 + \partial_1^2 * D(e^x \partial_1^2) = D(e^x \partial_1^2).$$

If $c_1 \neq 0$, then there is no element $D(e^x \partial_1^2)$ which holds (9). This contradiction implies that $c_1 = 0$. Similarly, we can also prove that $c_4 = 0$. This completes the proof of the lemma.

Notes. For any basis element $e^x e^y \partial_r^2$, $r \in \{1,2\}$, of $\mathbb{F}[e^{\pm x}, e^{\pm y}]_M$ and for $c_1, c_2 \in \mathbb{F}$, if we define \mathbb{F} -linear maps D_{c_1, c_2} as follows:

$$D_{c_1,c_2}(e^{ix}e^{jy}\partial_r^2) = (ic_1 + jc_2)e^{ix}e^{jy}\partial_r^2$$

then D_{c_1,c_2} can be linearly extended to a derivation of $\mathbb{F}[e^{\pm x},e^{\pm y}]_M$.

Theorem 2.1. $Der_{non}(\mathbb{F}[e^{\pm x}, e^{\pm y}]_M)$ of the non-associative algebra

$$\mathbb{F}[e^{\pm x}, e^{\pm y}]_M$$

is generated by D_{c_1,c_2} , $c_1,c_2 \in \mathbb{F}$, which are defined in Notes.

Proof. Let D be any derivation of $\mathbb{F}[e^{\pm x}, e^{\pm y}]_M$. By Lemma 2.3, we have that $D(\partial_1^2) = D(\partial_2^2) = 0$. So by Lemma 2.1 and Lemma 2.2, by taking appropriate scalars c_1 and c_2 , we have that $D = D_{c_1,c_2}$ which is defined in Notes. Thus we have proven the theorem.

Corollary 2.1. For any D in $Der_{non}(\mathbb{F}[e^{\pm x}, e^{\pm y}]_M)$, D is the sum of two outer derivations $D_{c_1\partial_1}$ and $D_{c_2\partial_2}$ where ∂_1 and ∂_2 are the usual partial derivatives of the \mathbb{F} -algebra $\mathbb{F}[e^{\pm x}, e^{\pm y}]$ and $c_1, c_2 \in \mathbb{F}$.

Corollary 2.2. For any D in $Der_{non}(\mathbb{F}[e^{\pm x}, e^{\pm y}]_M)$, $D(A_1) \subset A_1$ and $D(A_2) \subset A_2$ hold.

Proposition 2.1. If M_1 is either $\{\partial_1\}$ or $\{\partial_1^2\}$, then

$$Hom_{non}(\mathbb{F}[e^{\pm x}, e^{\pm y}]_M, \mathbb{F}[e^{\pm x}]_{M_1}) = \{0\},\$$

where 0 is the zero algebra automorphism and $Hom_{non}(\mathbb{F}[e^{\pm x}, e^{\pm y}]_M, \mathbb{F}[e^{\pm x}]_{M_1})$ is the set of all non-associative algebra homomorphisms from the algebra

$$\mathbb{F}[e^{\pm x}, e^{\pm y}]_M$$

to the algebra $\mathbb{F}[e^{\pm x}]_{M_1}$.

Proof. Let us assume that there is a non-zero algebra homomorphism θ from the algebra $\mathbb{F}[e^{\pm x}, e^{\pm y}]_M$ to the algebra $\mathbb{F}[e^{\pm x}]_{M_1}$. Since θ is injective and the right annihilator of $\mathbb{F}[e^{\pm x}, e^{\pm y}]_M$ is spanned by ∂_1^2 and ∂_2^2 , we can derive a contradiction easily. This completes the proof of the proposition.

Corollary 2.3. If M_1 is either $\{\partial_1\}$ or $\{\partial_1^2\}$, then there is no algebra isomorphism from the algebra $\mathbb{F}[e^{\pm x}, e^{\pm y}]_M$ to the algebra $\mathbb{F}[e^{\pm x}]_{M_1}$.

Theorem 2.2. There is no algebra isomorphism from the algebra

$$\mathbb{F}[e^{\pm x}, e^{\pm y}]_{\partial_1, \partial_2^2}$$

to the algebra $\mathbb{F}[e^{\pm x}, e^{\pm y}]_{\partial_1^2, \partial_2^2}$ as non-associative algebras.

Proof. Let us assume that there is an isomorphism θ from $\mathbb{F}[e^{\pm x}, e^{\pm y}]_{\partial_1, \partial_2^2}$ to $\mathbb{F}[e^{\pm x}, e^{\pm y}]_{\partial_1^2, \partial_2^2}$ as non-associative algebras. We know that $\theta(\partial_1) = c_1 \partial_1^2 + c_2 \partial_2^2$ where $c_1, c_2 \in \mathbb{F}$. Let us assume that c_1 and c_2 are non-zero scalars. This implies that $\theta(\partial_2) = c_3 \partial_1^2 + c_4 \partial_2^2$ such that $c_1 c_4 - c_2 c_3 \neq 0$ where $c_3, c_4 \in \mathbb{F}$. By $(c_1 \partial_1^2 + c_2 \partial_2^2) * \theta(e^y \partial_2^1) = 0$, we have that

(10)
$$\theta(e^y \partial_1) = \sum_{r,u} C(a_r, i_r, u) e^{a_r x} e^{i_r y} \partial_u^2$$

such that $c_1a_r + c_2i_r = 0$ for r and $1 \leq u \leq 2$. Since c_1 and c_2 are nonzero scalars, a_r and i_r are non-zeroes. Since $e^y \partial_1^2$ annihilates itself, $a_r^2 + i_r^2 =$ 0. Since a_r and i_r are integers, we have that $i_r = 0$. This contradicts the assumption. Thus either c_1 is zero or c_2 is zero. Let us assume that $c_2 = 0$, i.e., $\theta(\partial_1) = c_1 \partial_1^2$. Similarly, we can prove that $\theta(\partial_2^2) = c_4 \partial_2^2$ for $c_4 \in \mathbb{F}^{\bullet}$. Since ∂_1 is a left identity of $e^x\partial_1$ and it is in the right annihilator of ∂_2^2 , we have that $\theta(e^x\partial_1) = d_1e^x\partial_1^2 + d_2e^x\partial_2^2$ where $d_1, d_2 \in \mathbb{F}$. Similarly, we can prove that $\theta(e^y\partial_2^2) = d_3e^y\partial_1^2 + d_4e^y\partial_2^2$ where $d_3, d_4 \in \mathbb{F}$. Since $e^x\partial_1$ and $e^y\partial_2^2$ annihilates each other, we can prove that $d_2 = d_3 = 0$. By $\theta(e^x \partial_1 * e^x \partial_1) = \theta(e^{2x} \partial_1)$, we have that $\theta(e^{2x}\partial_1) = d_1^2 e^{2x}\partial_1^2$. By induction on $e^{nx}\partial_1$, we can prove that $\theta(e^{nx}\partial_1) = d_1^n e^{2x}\partial_1^2$. By $\theta(e^{mx}\partial_1 * e^{nx}\partial_1) = n\theta(e^{(m+n)x}\partial_1)$, we can derive a contradiction easily. Thus there is no isomorphism from $\mathbb{F}[e^{\pm x}, e^{\pm y}]_{\partial_1, \partial_2^2}$ to $\mathbb{F}[e^{\pm x}, e^{\pm y}]_{\partial_1^2, \partial_2^2}$ such that $c_2 = 0$. Thus let us assume that $c_1 = 0$, i.e., $\theta(\partial_1) = c_2 \partial_2^2$. Similarly to the proof of $c_2 = 0$ case, we can derive a contradiction easily. Thus there is no isomorphism between them. This completes the proof of the theorem.

Open Question. Find all the derivations and all the non-associative algebra automorphisms of the non-associative algebra $\mathbb{F}[e^{\pm x_1}, e^{\pm x_2}, \dots, e^{\pm x_n}]_{\partial_1^2, \dots, \partial_n^2}$ respectively.

References

- [1] M. H. Ahmadi, K.-B. Nam, and J. Pakianathan, *Lie admissible non-associative algebras*, Algebra Colloquium **12** (2005), no. 1, 113–120.
- [2] S. H. Choi, Notes on a Non-Associative Algebras with Exponential Functions II, Bull. Korean Math. Soc. 44 (2007), no. 2, 241–246.
- [3] S. H. Choi and K.-B. Nam, The derivation of a restricted Weyl type non-associative algebra, Hadronic Journal 28 (2005), no. 3, 287–295.
- [4] _____, Derivation of symmetric non-associative algebra I, Algebras, Groups and Geometries 22 (2005), no. 3, 341–352.
- [5] _____, Derivations of a restricted Weyl Type Algebra I, Appear, Rocky Mountain Journal of Mathematics, 2007.
- [6] T. Ikeda, N. Kawamoto, and K.-B. Nam, A class of simple subalgebras of generalized W algebras, Proceedings of the International Conference in 1998 at Pusan (Eds. A. C. Kim), Walter de Gruyter Gmbh Co. KG, 2000, 189–202.
- [7] V. G. Kac, Description of Filtered Lie Algebra with which Graded Lie algebras of Cartan type are Associated, Izv. Akad. Nauk SSSR, Ser. Mat. Tom, 38 (1974), 832–834.
- [8] N. Kawamoto, A. Mitsukawa, K.-B. Nam, and M.-O. Wang, The automorphisms of generalized Witt type Lie algebras, Journal of Lie Theory 13 (2003), no. 2, 571–576.
- [9] I. Kaplansky, The Virasoro algebra, Comm. Math. Phys. 86 (1982), no. 1, 49–54.
- [10] K.-B. Nam, On some non-associative algebras using additive groups, Southeast Asian Bulletin of Mathematics 27 (2003), 493–500.
- [11] K.-B. Nam, Y. Kim, and M.-O. Wang, Weyl-type non-associative algebras I, IMCC Proceedings, 2004, SAS Publishers, 147–155.
- [12] K.-B. Nam and M.-O. Wang, *Notes on some non-associative algebras*, Journal of Applied Algebra and Discrete Structured **1** (2003), no. 3, 159–164.
- [13] K.-B. Nam and S. H. Choi, On the derivations of non-associative Weyl-type algebras, Southeast Asian Bull. Math. **31** (2007), 341–348.

- [14] A. N. Rudakov, Groups of automorphisms of infinite-dimensional simple Lie algebras, Math. USSR-Izvestija 3 (1969), 707-722.
- [15] R. D. Schafer, Introduction to nonassociative algebras, Dover, 128–138, 1995.
- [16] M.-O. Wang, J.-G. Hwang, and K.-S. Lee, Some results on non-associative algebras, Bull. Korean Math. Soc. 44 (2007), no. 1, 95–102.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF JEONJU
CHON-JU 560-759, KOREA
E-mail address: chois@www.jj.ac.kr