• 제목/요약/키워드: f-derivations

검색결과 75건 처리시간 0.025초

APPROXIMATELY QUADRATIC DERIVATIONS AND GENERALIZED HOMOMORPHISMS

  • Park, Kyoo-Hong;Jung, Yong-Soo
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제17권2호
    • /
    • pp.115-130
    • /
    • 2010
  • Let $\cal{A}$ be a unital Banach algebra. If f : $\cal{A}{\rightarrow}\cal{A}$ is an approximately quadratic derivation in the sense of Hyers-Ulam-J.M. Rassias, then f : $\cal{A}{\rightarrow}\cal{A}$ is anexactly quadratic derivation. On the other hands, let $\cal{A}$ and $\cal{B}$ be Banach algebras.Any approximately generalized homomorphism f : $\cal{A}{\rightarrow}\cal{B}$ corresponding to Cauchy, Jensen functional equation can be estimated by a generalized homomorphism.

Linear Derivations Satisfying a Functional Equation on Semisimple Banach Algebras

  • Jung, Yong-Soo;Chang, Ick-Soon
    • Kyungpook Mathematical Journal
    • /
    • 제47권1호
    • /
    • pp.119-125
    • /
    • 2007
  • In this paper, we investigate the following: Let A be a semisimple Banach algebra. Suppose that there exists a linear derivation $f:A{\rightarrow}A$ such that the functional equation $<f(x),x>^2=0$ holds for all $x{\in}A$. Then we have $f=0$ on A.

  • PDF

On Semiprime Rings with Generalized Derivations

  • Khan, Mohd Rais;Hasnain, Mohammad Mueenul
    • Kyungpook Mathematical Journal
    • /
    • 제53권4호
    • /
    • pp.565-571
    • /
    • 2013
  • In this paper, we investigate the commutativity of a semiprime ring R admitting a generalized derivation F with associated derivation D satisfying any one of the properties: (i) $F(x){\circ}D(y)=[x,y]$, (ii) $D(x){\circ}F(y)=F[x,y]$, (iii) $D(x){\circ}F(y)=xy$, (iv) $F(x{\circ}y)=[F(x) y]+[D(y),x]$, and (v) $F[x,y]=F(x){\circ}y-D(y){\circ}x$ for all x, y in some appropriate subsets of R.

On Prime Near-rings with Generalized (σ,τ)-derivations

  • Golbasi, Oznur
    • Kyungpook Mathematical Journal
    • /
    • 제45권2호
    • /
    • pp.249-254
    • /
    • 2005
  • Let N be a prime left near-ring with multiplicative center Z and f be a generalized $({\sigma},{\tau})-derivation$ associated with d. We prove commutativity theorems in prime near- rings with generalized $({\sigma},{\tau})-derivation$.

  • PDF

b-GENERALIZED DERIVATIONS ON MULTILINEAR POLYNOMIALS IN PRIME RINGS

  • Dhara, Basudeb
    • 대한수학회보
    • /
    • 제55권2호
    • /
    • pp.573-586
    • /
    • 2018
  • Let R be a noncommutative prime ring of characteristic different from 2, Q be its maximal right ring of quotients and C be its extended centroid. Suppose that $f(x_1,{\ldots},x_n)$ be a noncentral multilinear polynomial over $C,b{\in}Q,F$ a b-generalized derivation of R and d is a nonzero derivation of R such that d([F(f(r)), f(r)]) = 0 for all $r=(r_1,{\ldots},r_n){\in}R^n$. Then one of the following holds: (1) there exists ${\lambda}{\in}C$ such that $F(x)={\lambda}x$ for all $x{\in}R$; (2) there exist ${\lambda}{\in}C$ and $p{\in}Q$ such that $F(x)={\lambda}x+px+xp$ for all $x{\in}R$ with $f(x_1,{\ldots},x_n)^2$ is central valued in R.

Generalized Derivations on ∗-prime Rings

  • Ashraf, Mohammad;Jamal, Malik Rashid
    • Kyungpook Mathematical Journal
    • /
    • 제58권3호
    • /
    • pp.481-488
    • /
    • 2018
  • Let I be a ${\ast}$-ideal on a 2-torsion free ${\ast}$-prime ring and $F:R{\rightarrow}R$ a generalized derivation with an associated derivation $d:R{\rightarrow}R$. The aim of this paper is to explore the condition under which generalized derivation F becomes a left centralizer i.e., associated derivation d becomes a trivial map (i.e., zero map) on R.

SYMMETRIC BI-DERIVATIONS IN PRIME RINGS

  • Jung, Yong-Soo
    • Journal of applied mathematics & informatics
    • /
    • 제5권3호
    • /
    • pp.819-826
    • /
    • 1998
  • The purpose of this paper is to prove the following results; (1) Let R be a prime ring of char $(R)\neq 2$ and I a nonzero left ideal of R. The existence of a nonzero symmetric bi-derivation D : $R\timesR\;\longrightarrow\;$ such that d is sew-commuting on I where d is the trace of D forces R to be commutative (2) Let m and n be integers with $m\;\neq\;0.\;or\;n\neq\;0$. Let R be a noncommutative prime ring of char$ (R))\neq \; 2-1\; p_1 \;n_1$ where p is a prime number which is a divisor of m, and I a nonzero two-sided ideal of R. Let $D_1$ ; $R\;\times\;R\;\longrightarrow\;and\;$ $D_2\;:\;R\;\times\;R\;longrightarrow\;R$ be symmetric bi-derivations. Suppose further that there exists a symmetric bi-additive mapping B ; $R\;\times\;R\;\longrightarrow\;and\;$ such that $md_1(\chi)\chi + n\chi d_2(\chi)=f(\chi$) holds for all $\chi$$\in$I, where $d_1 \;and\; d_2$ are the traces of $D_1 \;and\; D_2$ respectively and f is the trace of B. Then we have $D_1=0 \;and\; D_2=0$.

A NOTE ON DERIVATIONS OF A SULLIVAN MODEL

  • Kwashira, Rugare
    • 대한수학회논문집
    • /
    • 제34권1호
    • /
    • pp.279-286
    • /
    • 2019
  • Complex Grassmann manifolds $G_{n,k}$ are a generalization of complex projective spaces and have many important features some of which are captured by the $Pl{\ddot{u}}cker$ embedding $f:G_{n,k}{\rightarrow}{\mathbb{C}}P^{N-1}$ where $N=\(^n_k\)$. The problem of existence of cross sections of fibrations can be studied using the Gottlieb group. In a more generalized context one can use the relative evaluation subgroup of a map to describe the cohomology of smooth fiber bundles with fiber the (complex) Grassmann manifold $G_{n,k}$. Our interest lies in making use of techniques of rational homotopy theory to address problems and questions involving applications of Gottlieb groups in general. In this paper, we construct the Sullivan minimal model of the (complex) Grassmann manifold $G_{n,k}$ for $2{\leq}k<n$, and we compute the rational evaluation subgroup of the embedding $f:G_{n,k}{\rightarrow}{\mathbb{C}}P^{N-1}$. We show that, for the Sullivan model ${\phi}:A{\rightarrow}B$, where A and B are the Sullivan minimal models of ${\mathbb{C}}P^{N-1}$ and $G_{n,k}$ respectively, the evaluation subgroup $G_n(A,B;{\phi})$ of ${\phi}$ is generated by a single element and the relative evaluation subgroup $G^{rel}_n(A,B;{\phi})$ is zero. The triviality of the relative evaluation subgroup has its application in studying fibrations with fibre the (complex) Grassmann manifold.

NOTES ON A NON-ASSOCIATIVE ALGEBRAS WITH EXPONENTIAL FUNCTIONS III

  • Choi, Seul-Hee
    • 대한수학회논문집
    • /
    • 제23권2호
    • /
    • pp.153-159
    • /
    • 2008
  • For $\mathbb{F}[e^{{\pm}x}]_{\{{\partial}\}}$, all the derivations of the evaluation algebra $\mathbb{F}[e^{{\pm}x}]_{\{{\partial}\}}$ is found in the paper (see [16]). For $M=\{{\partial}_1,\;{\partial}_1^2\},\;Der_{non}(\mathbb{F}[e^{{\pm}x}]_M))$ of the evaluation algebra $\mathbb{F}[e^{{\pm}x},\;e^{{\pm}y}]_M$ is found in the paper (see [2]). For $M=({\partial}_1^2,\;{\partial}_2^2)$, we find $Der_{non}(\mathbb{F}[e^{{\pm}x},\;e^{{\pm}y}]_M))$ of the evaluation algebra $\mathbb{F}[e^{{\pm}x},\;e^{{\pm}y}]_M$ in this paper.

A ONE-SIDED VERSION OF POSNER'S SECOND THEOREM ON MULTILINEAR POLYNOMIALS

  • FILIPPIS VINCENZO DE
    • 대한수학회보
    • /
    • 제42권4호
    • /
    • pp.679-690
    • /
    • 2005
  • Let K be a commutative ring with unity, R a prime K-algebra of characteristic different from 2, d a non-zero derivation of R, I a non-zero right ideal of R, f($x_1,{\cdots},\;x_n$) a multilinear polynomial in n non-commuting variables over K, a $\in$ R. Supppose that, for any $x_1,{\cdots},\;x_n\;\in\;I,\;a[d(f(x_1,{\cdots},\;x_n)),\;f(x_1,{\cdots},\;x_n)]$ = 0. If $[f(x_1,{\cdots},\;x_n),\;x_{n+1}]x_{n+2}$ is not an identity for I and $$S_4(I,\;I,\;I,\;I)\;I\;\neq\;0$$, then aI = ad(I) = 0.