• 제목/요약/키워드: extension theorem.

검색결과 146건 처리시간 0.024초

RESTRICTION OF SCALARS AND CUBIC TWISTS OF ELLIPTIC CURVES

  • Byeon, Dongho;Jeong, Keunyoung;Kim, Nayoung
    • 대한수학회지
    • /
    • 제58권1호
    • /
    • pp.123-132
    • /
    • 2021
  • Let K be a number field and L a finite abelian extension of K. Let E be an elliptic curve defined over K. The restriction of scalars ResKLE decomposes (up to isogeny) into abelian varieties over K $$Res^L_KE{\sim}{\bigoplus_{F{\in}S}}A_F,$$ where S is the set of cyclic extensions of K in L. It is known that if L is a quadratic extension, then AL is the quadratic twist of E. In this paper, we consider the case that K is a number field containing a primitive third root of unity, $L=K({\sqrt[3]{D}})$ is the cyclic cubic extension of K for some D ∈ K×/(K×)3, E = Ea : y2 = x3 + a is an elliptic curve with j-invariant 0 defined over K, and EaD : y2 = x3 + aD2 is the cubic twist of Ea. In this case, we prove AL is isogenous over K to $E_a^D{\times}E_a^{D^2}$ and a property of the Selmer rank of AL, which is a cubic analogue of a theorem of Mazur and Rubin on quadratic twists.

GENERALIZED BROWDER, WEYL SPECTRA AND THE POLAROID PROPERTY UNDER COMPACT PERTURBATIONS

  • Duggal, Bhaggy P.;Kim, In Hyoun
    • 대한수학회지
    • /
    • 제54권1호
    • /
    • pp.281-302
    • /
    • 2017
  • For a Banach space operator $A{\in}B(\mathcal{X})$, let ${\sigma}(A)$, ${\sigma}_a(A)$, ${\sigma}_w(A)$ and ${\sigma}_{aw}(A)$ denote, respectively, its spectrum, approximate point spectrum, Weyl spectrum and approximate Weyl spectrum. The operator A is polaroid (resp., left polaroid), if the points $iso{\sigma}(A)$ (resp., $iso{\sigma}_a(A)$) are poles (resp., left poles) of the resolvent of A. Perturbation by compact operators preserves neither SVEP, the single-valued extension property, nor the polaroid or left polaroid properties. Given an $A{\in}B(\mathcal{X})$, we prove that a sufficient condition for: (i) A+K to have SVEP on the complement of ${\sigma}_w(A)$ (resp., ${\sigma}_{aw}(A)$) for every compact operator $K{\in}B(\mathcal{X})$ is that ${\sigma}_w(A)$ (resp., ${\sigma}_{aw}(A)$) has no holes; (ii) A + K to be polaroid (resp., left polaroid) for every compact operator $K{\in}B(\mathcal{X})$ is that iso${\sigma}_w(A)$ = ∅ (resp., $iso{\sigma}_{aw}(A)$ = ∅). It is seen that these conditions are also necessary in the case in which the Banach space $\mathcal{X}$ is a Hilbert space.

Lebesgue-Stieltjes Measures and Differentiation of Measures

  • Jeon, Won-Kee
    • 호남수학학술지
    • /
    • 제8권1호
    • /
    • pp.51-74
    • /
    • 1986
  • The thery of measure is significant in that we extend from it to the theory of integration. AS specific metric outer measures we can take Hausdorff outer measure and Lebesgue-Stieltjes outer measure connecting measure with monotone functions.([12]) The purpose of this paper is to find some properties of Lebesgue-Stieltjes measure by extending it from $R^1$ to $R^n(n{\geq}1)$ $({\S}3)$ and differentiation of the integral defined by Borel measure $({\S}4)$. If in detail, as follows. We proved that if $_n{\lambda}_{f}^{\ast}$ is Lebesgue-Stieltjes outer measure defined on a finite monotone increasing function $f:R{\rightarrow}R$ with the right continuity, then $$_n{\lambda}_{f}^{\ast}(I)=\prod_{j=1}^{n}(f(b_j)-f(a_j))$$, where $I={(x_1,...,x_n){\mid}a_j$<$x_j{\leq}b_j,\;j=1,...,n}$. (Theorem 3.6). We've reached the conclusion of an extension of Lebesgue Differentiation Theorem in the course of proving that the class of continuous function on $R^n$ with compact support is dense in $L^p(d{\mu})$ ($1{\leq$}p<$\infty$) (Proposition 2.4). That is, if f is locally $\mu$-integrable on $R^n$, then $\lim_{h\to\0}\left(\frac{1}{{\mu}(Q_x(h))}\right)\int_{Qx(h)}f\;d{\mu}=f(x)\;a.e.(\mu)$.

  • PDF

Direct Adaptive Fuzzy Control with Less Restrictions on the Control Gain

  • Phan, Phi Anh;Gale, Timothy J.
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권6호
    • /
    • pp.621-629
    • /
    • 2007
  • In the adaptive fuzzy control field for affine nonlinear systems, there are two basic configurations: direct and indirect. It is well known that the direct configuration needs more restrictions on the control gain than the indirect configuration. In general, these restrictions are difficult to check in practice where mathematical models of plant are not available. In this paper, using a simple extension of the universal approximation theorem, we show that the only required constraint on the control gain is that its sign is known. The Lyapunov synthesis approach is used to guarantee the stability and convergence of the closed loop system. Finally, examples of an inverted pendulum and a magnet levitation system demonstrate the theoretical results.

ON CONSTRUCTING A HIGHER-ORDER EXTENSION OF DOUBLE NEWTON'S METHOD USING A SIMPLE BIVARIATE POLYNOMIAL WEIGHT FUNCTION

  • LEE, SEON YEONG;KIM, YOUNG IK
    • 충청수학회지
    • /
    • 제28권3호
    • /
    • pp.491-497
    • /
    • 2015
  • In this paper, we have suggested an extended double Newton's method with sixth-order convergence by considering a control parameter ${\gamma}$ and a weight function H(s, u). We have determined forms of ${\gamma}$ and H(s, u) in order to induce the greatest order of convergence and established the main theorem utilizing related properties. The developed theory is ensured by numerical experiments with high-precision computation for a number of test functions.

Existence of Solutions for the Impulsive Semilinear Fuzzy Intergrodifferential Equations with Nonlocal Conditions and Forcing Term with Memory in n-dimensional Fuzzy Vector Space(ENn, dε)

  • Kwun, Young-Chel;Kim, Jeong-Soon;Hwang, Jin-Soo;Park, Jin-Han
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제11권1호
    • /
    • pp.25-32
    • /
    • 2011
  • In this paper, we study the existence and uniqueness of solutions for the impulsive semilinear fuzzy integrodifferential equations with nonlocal conditions and forcing term with memory in n-dimensional fuzzy vector space ($E^n_N$, $d_{\varepsilon}$) by using Banach fixed point theorem. That is an extension of the result of Kwun et al. [9] to impulsive system.

SOLUTION TO ${\bar{\partial}}$-PROBLEM WITH SUPPORT CONDITIONS IN WEAKLY q-CONVEX DOMAINS

  • Saber, Sayed
    • 대한수학회논문집
    • /
    • 제33권2호
    • /
    • pp.409-421
    • /
    • 2018
  • Let X be a complex manifold of dimension n $n{\geqslant}2$ and let ${\Omega}{\Subset}X$ be a weakly q-convex domain with smooth boundary. Assume that E is a holomorphic line bundle over X and $E^{{\otimes}m}$ is the m-times tensor product of E for positive integer m. If there exists a strongly plurisubharmonic function on a neighborhood of $b{\Omega}$, then we solve the ${\bar{\partial}}$-problem with support condition in ${\Omega}$ for forms of type (r, s), $s{\geqslant}q$ with values in $E^{{\otimes}m}$. Moreover, the solvability of the ${\bar{\partial}}_b$-problem on boundaries of weakly q-convex domains with smooth boundary in $K{\ddot{a}}hler$ manifolds are given. Furthermore, we shall establish an extension theorem for the ${\bar{\partial}}_b$-closed forms.

Stationary bootstrapping for structural break tests for a heterogeneous autoregressive model

  • Hwang, Eunju;Shin, Dong Wan
    • Communications for Statistical Applications and Methods
    • /
    • 제24권4호
    • /
    • pp.367-382
    • /
    • 2017
  • We consider an infinite-order long-memory heterogeneous autoregressive (HAR) model, which is motivated by a long-memory property of realized volatilities (RVs), as an extension of the finite order HAR-RV model. We develop bootstrap tests for structural mean or variance changes in the infinite-order HAR model via stationary bootstrapping. A functional central limit theorem is proved for stationary bootstrap sample, which enables us to develop stationary bootstrap cumulative sum (CUSUM) tests: a bootstrap test for mean break and a bootstrap test for variance break. Consistencies of the bootstrap null distributions of the CUSUM tests are proved. Consistencies of the bootstrap CUSUM tests are also proved under alternative hypotheses of mean or variance changes. A Monte-Carlo simulation shows that stationary bootstrapping improves the sizes of existing tests.

MULTI-POINT BOUNDARY VALUE PROBLEMS FOR ONE-DIMENSIONAL p-LAPLACIAN AT RESONANCE

  • Wang Youyu;Zhang Guosheng;Ge Weigao
    • Journal of applied mathematics & informatics
    • /
    • 제22권1_2호
    • /
    • pp.361-372
    • /
    • 2006
  • In this paper, we consider the multi-point boundary value problems for one-dimensional p-Laplacian at resonance: $({\phi}_p(x'(t)))'=f(t,x(t),x'(t))$, subject to the boundary value conditions: ${\phi}_p(x'(0))={\sum}^{n-2}_{i=1}{\alpha}_i{\phi}_p(x'({\epsilon}i)),\;{\phi}_p(x'(1))={\sum}^{m-2}_{i=1}{\beta}_j{\phi}_p(x'({\eta}_j))$ where ${\phi}_p(s)=/s/^{p-2}s,p>1,\;{\alpha}_i(1,{\le}i{\le}n-2){\in}R,{\beta}_j(1{\le}j{\le}m-2){\in}R,0<{\epsilon}_1<{\epsilon}_2<...<{\epsilon}_{n-2}1,\;0<{\eta}1<{\eta}2<...<{\eta}_{m-2}<1$, By applying the extension of Mawhin's continuation theorem, we prove the existence of at least one solution. Our result is new.

PANCYCLIC ARCS IN HAMILTONIAN CYCLES OF HYPERTOURNAMENTS

  • Guo, Yubao;Surmacs, Michel
    • 대한수학회지
    • /
    • 제51권6호
    • /
    • pp.1141-1154
    • /
    • 2014
  • A k-hypertournament H on n vertices, where $2{\leq}k{\leq}n$, is a pair H = (V,A), where V is the vertex set of H and A is a set of k-tuples of vertices, called arcs, such that for all subsets $S{\subseteq}V$ with |S| = k, A contains exactly one permutation of S as an arc. Recently, Li et al. showed that any strong k-hypertournament H on n vertices, where $3{\leq}k{\leq}n-2$, is vertex-pancyclic, an extension of Moon's theorem for tournaments. In this paper, we prove the following generalization of another of Moon's theorems: If H is a strong k-hypertournament on n vertices, where $3{\leq}k{\leq}n-2$, and C is a Hamiltonian cycle in H, then C contains at least three pancyclic arcs.