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Abstract
We consider an infinite-order long-memory heterogeneous autoregressive (HAR) model, which is motivated

by a long-memory property of realized volatilities (RVs), as an extension of the finite order HAR-RV model. We
develop bootstrap tests for structural mean or variance changes in the infinite-order HAR model via stationary
bootstrapping. A functional central limit theorem is proved for stationary bootstrap sample, which enables us to
develop stationary bootstrap cumulative sum (CUSUM) tests: a bootstrap test for mean break and a bootstrap test
for variance break. Consistencies of the bootstrap null distributions of the CUSUM tests are proved. Consisten-
cies of the bootstrap CUSUM tests are also proved under alternative hypotheses of mean or variance changes. A
Monte-Carlo simulation shows that stationary bootstrapping improves the sizes of existing tests.

Keywords: heterogeneous autoregressive(∞) model, stationary bootstrap, structural changes,
CUSUM test

1. Introduction

Corsi (2009) and Hwang and Shin (2014) recently proposed autoregressive models called heteroge-
neous autoregressions (HAR) of realized volatility (RV) to address the long-memory properties of
financial market volatilities. Corsi (2004, 2009) proposed an additive cascade model having three
volatility components defined over three different time periods, called the HAR(3) model. The
HAR(3) model has been shown to successively achieve the purpose of reproducing the main empiri-
cal features of financial return volatilities such as long memory, fat tails and self-similarity. However,
as noted by Corsi (2009), the HAR(3) model has a short memory with a exponentially decreasing
autocorrelation function (ACF) because it can be expressed as a stationary AR(22) model. Hwang
and Shin (2014) proposed a genuine long-memory HAR model with algebraically decreasing ACF, an
infinite-order HAR(∞) model, as an extension of the Corsi (2009)’s HAR(3) model. They character-
ized stationary conditions for the model, provided some probability theories and statistical methods
in terms of consistency and limited the normality of the ordinary least squares estimator (OLSE) and
forecasting.

Long memory of realized volatility is occasionally accompanied by structural changes. The prob-
lem of testing for structural changes has been a most important issue in time series regression or
dynamic economic models. For this purpose, cumulative sum (CUSUM) tests have been widely used
because the change-points are not known. See Brown et al. (1975), Ploberger and Krämer (1986,
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1990, 1992), Qu and Perron (2007), and Deng and Perron (2008) for the CUSUM(-SQ) tests. For
more efficient versions of the CUSUM tests, we refer to Xu (2013, 2015), who focused on volatility
and mean change tests and proposed powerful and robust alternatives. In the long-memory HAR mod-
els, Hwang and Shin (2013, 2015) and Lee (2014) studied CUSUM tests for mean or variance breaks.
In particular, Lee (2014) established a functional central limit theorem (FCLT), by proving that the
HAR(∞) process is a near epoch dependent (NED) process, which has been applied to construct a
CUSUM test for mean stability and a CUSUM test for variance stability.

All the break tests for the HAR model except the CUSUMSQ test of Hwang and Shin (2015) have
undesirable size distortions. The aim of this paper is to develop bootstrap tests for mean or variance
changes in the HAR(∞) model, which remedy the size distortion problem. Based on the result of
Lee (2014), we establish a bootstrap FCLT. Block bootstrapping methods are more well-suited than
identically distributed (iid) bootstrapping because realized volatilities have long memories. Among
the various block bootstrapping methods used, we consider the stationary bootstrapping (SB) of Politis
and Romano (1994). The SB is one of the most widely adopted block bootstrapping methods for the
dependent samples and is characterized by geometrically distributed random block lengths.

The partial sum process of the SB sample is shown to converge to the standard Brownian motion
that enables us to construct SB CUSUM tests: a bootstrap mean break test and a bootstrap variance
break test. Asymptotic critical values can be obtained from the stationary bootstrap distribution of the
CUSUM tests. Consistencies of the null bootstrapping distributions of the CUSUM tests are proved.
Consistencies of the bootstrapping CUSUM tests are also proved under alternative hypotheses of mean
or variance breaks.

A Monte-Carlo experiment is conducted to show that SB significantly improves the sizes of the
CUSUM tests of Lee (2014) for mean break and for variance break, which are badly sized in a finite
sample. It also shows some improvement of the CUSUM test of Hwang and Shin (2013) for the mean
break. The size improvement is achieved without power loss.

The remaining of the paper is organized as follows. The HAR models are described and Section 2
presents the existing results Section 3 discusses the main results, including the SB functional central
theorem and the bootstrap CUSUM tests. Section 4 deals with the Monte-Carlo study and Section 5
gives the concluding remarks. The Appendix provides the proofs.

2. Existing theories and methods

2.1. Heterogeneous autoregressive models

First, we describe the 3rd order HAR(3) model of Corsi (2009) defined by

Yt = β0 +

p∑
j=1

β jYt,h j + at, (2.1)

where p = 3, at is a sequence of regression error,

Yt,h j =
1
h j

(Yt−1 + Yt−2 + · · · + Yt−h j ), j = 1, 2, . . . , (2.2)

h1 = 1, h2 = 5 and h3 = 22. Note that Yt,h j , j = 2, 3, are weekly and monthly moving averages,
respectively. This model captures long-memory in a parameter-parsimonious way by considering
the moving averages. However, this model is theoretically a short-memory AR(22) model having
exponentially decreasing ACF and is not a genuine long-memory model.
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As an extension of Corsi’s model (2.1), Hwang and Shin (2014) proposed an infinite-order genuine
long-memory HAR(∞) model having an algebraically decreasing ACF, defined by

Yt = β0 + β1Yt,h1 + β2Yt,h2 + · · · + ϵt, (2.3)

where Yt,h j is as in (2.2), {β j : j = 0, 1, 2, . . . } is a sequence of real numbers tending to 0, {h j : j =
1, 2, . . . } is a given sequence of positive integers increasing to∞, and {ϵt} is a sequence of iid random
variables with mean zero and variance E[ϵ2

t ] = σ2
ϵ .

Here, we review the discussion of Hwang and Shin (2014) for the HAR(∞) process Yt in (2.3)
and adopt their assumptions on the HAR(∞). The HAR(∞) process Yt in (2.3) can be written as an
AR(∞) process:

Yt = β0 +

∞∑
j=1

β j

h j

(
Yt−1 + Yt−2 + · · · + Yt−h j

)
+ ϵt = β0 +

∞∑
j=1

α j

 h j∑
k=h j−1+1

Yt−k

 + ϵt = β0 +

∞∑
i=1

ϕiYt−i + ϵt

with α j =
∑∞

k= j βk/hk for j = 1, 2, . . . ; ϕ1 = α1, ϕh j+r = α j+1 for r = 1, 2, . . . , h j+1−h j and j = 1, 2, . . . ;
and h0 = 0. We need the following conditions for the stationarity of Yt:

(A1) The coefficients β j in (2.3) satisfy
∑∞

j=1 |β j| < ∞, and A(z) , 0 for |z| ≤ 1 where the polynomial

A(z) = 1 −
∞∑
j=1

α j f j(z) = 1 −
∞∑

i=1

ϕizi

with f j(z) =
∑h j

k=h j−1+1 zk for j = 1, 2, . . . .

We refer to Remarks 1 and 2 of Hwang and Shin (2014) for a necessary and sufficient condition
of (A1) and for the absolutely summability of ϕi and α j. Proposition 1 characterizes stationarity of Yt,
which is given by Hwang and Shin (2014).

Proposition 1. Assume condition (A1). Then Yt is stationary and has a one-sided infinite moving-
average representation Yt = µ+

∑∞
k=0 ξkϵt−k, where µ = E(Yt), ξi’s are recursively calculated as ξ0 = 1,

ξk =
∑k−1
ℓ=0 ξℓϕk−ℓ for k = 1, 2, . . . . Moreover, ξk’s are absolute summable.

For the long memory property of Yt, we need the following condition:

(A2) For generic constants c, β j ∼ cλ j for some |λ| < 1 and h j ∼ cω j for some ω > 1. Here, we write
a j ∼ b j to denote a j = b j + o(b j).

According to Hwang and Shin (2014), the long-memory property of the HAR(∞) model has been
investigated, which are stated in Propositions 2 and 3. In particular, Proposition 3 tells us that, given
h j ∼ cω j, HAR(∞) model is of long-memory with algebraically decreasing ACF if and only if β j

decreases exponentially.

Proposition 2. Under conditions (A1) and (A2), for ρ = (logω − log |λ|)/ logω > 1 and generic
constants c, we have (i) |ξk | ∼ ck−ρ and (ii) γk = Cov(Yt,Yt+k) = σ2

ϵ

∑∞
i=0 ξiξi+k ∼ ck−ρ.

Proposition 3. Assume (A1), h j ∼ cω j for some ω > 1, and |ξk | ∼ ck−ρ for some ρ > 1, then
β j ∼ cλ j for λ = ω1−ρ ∈ (0, 1).

Estimation theories were provided by Hwang and Shin (2014) in which the infinite-order HAR
model in (2.3) is estimated by a finite pth order model in (2.1) with p increasing as sample size
increases. They proved consistency and limiting normality of the OLSE of the HAR coefficients.
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2.2. Functional central limit theorem

Recently, Lee (2014) has established a FCLT for the HAR(∞) model by showing that f (Yt) is an L2-
NED on {ϵt} where f (x) = |x|ν or f (x) = sign(x) · |x|ν, (ν > 0). A mean break test is developed from
the CUSUM of Yt − µ and a variance break test is developed from the CUSUM of Y2

t − E[Y2
t ], which

correspond to ν = 1 and ν = 2, respectively. For notational simplicity, we denote yt = f (Yt).
We say that {yt} is L2-NED on {ϵt} if {yt} satisfies∥∥∥∥yt − E

[
yt

∣∣∣F t+ℓ
t−ℓ

]∥∥∥∥
2
≤ ctd(ℓ),

where F t+ℓ
t−ℓ = σ{ϵt−ℓ, . . . , ϵt, ϵt+1, . . . , ϵt+ℓ} is a σ-algebra generated by {ϵt−ℓ, . . . , ϵt, ϵt+1, . . . , ϵt+ℓ}, ct is

a sequence of positive constants and d(ℓ) → 0 as ℓ → ∞. Denote ||x||p by (E|x|p)1/p for 1 ≤ p < ∞
and by E|x|p for 0 < p < 1. Let σ2

y = Var(y1) + 2
∑∞

t=1 Cov(y1, yt+1).

Proposition 4. (Lee, 2014) Assume that (A1), (A2) and one of (a) 0 < ν < 1, ν(ρ − 1) > 1, or (b)
ν ≥ 1, ρ > 3 holds. If ||ϵt ||2ν < ∞ and σy > 0 for each case, then

S yn(z) :=
1

σy
√

n

[nz]∑
t=1

(yt − E[yt] )
d−→ B(z),

where yt = |Yt |ν or yt = sign(Yt) · |Yt |ν and B(z) is a standard Brownian motion for 0 ≤ z ≤ 1.

The FCLT in Proposition 4 requires conditions on ν, ρ which require γk ∼ ck2d−1, d < 0. This
condition does not permit fractional integration I(d) with d ∈ (0, 1/2) because I(d) process has γk ∼
ck2d−1. Our break tests below depend on the FCLT and are not valid for long memory process with
γk ∼ ck2d−1, d ∈ (0, 1/2). We observe that, for I(d) process yt, according to Baillie (1996), the weak
limit of S yn(z) is a fractional Brownian motion Bd(z) depending on the fractional integration order d.
Consequently, the usual break tests tend to be over-sized if d ∈ (0, 1/2). This makes it very difficult to
distinguish between long memory and break; in addition, the literature provides no satisfactory test.
Therefore, validity of our test only under d < 0 is not a real disadvantage.

2.3. Existing break tests

Let a data set {Yt : t = 1, . . . , n} be given. There are two strategies of constructing tests for detecting
breaks in the mean or variance of Yt during the data span {1, . . . , n}: one is based on the cumulative
sum of observed data and the other is based on the cumulative sum of HAR-residuals. The long
memory of the original sample is addressed by a consistent long-run variance estimator in the first
strategy and by an HAR regression in the second strategy.

The first strategy was considered by Lee (2014). Applying the FCLT in Proposition 4, Lee (2014)
considered the CUSUM test for mean break and the CUSUM test for the variance break as well as
derived the limiting distributions of the CUSUM tests. The mean break test and variance break test
are

QM
n =

1
σ̂y
√

n
sup

0≤z≤1

∣∣∣∣∣∣∣
[nz]∑
t=1

(yt − ȳn)

∣∣∣∣∣∣∣ , yt = Yt,

QV
n =

1
σ̂y
√

n
sup

0≤z≤1

∣∣∣∣∣∣∣
[nz]∑
t=1

(yt − ȳn)

∣∣∣∣∣∣∣ , yt = Y2
t ,
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respectively, where ȳn = (1/n)
∑n

t=1 yt and

σ̂2
y :=

1
n

n∑
t=1

(yt − ȳn)2 +
2
n

ℓ∑
t=1

(
1 − t

ℓ + 1

) n−t∑
i=1

(yi − ȳn)(yi+t − ȳn), ℓ < n (2.4)

is a consistent estimator of the long-run variance limn→∞ nVar(ȳn) with bandwidth ℓ.
The second strategy was considered by Hwang and Shin (2013, 2015). The HAR(p) model (2.1) is

estimated by OLS regression. Let β̂0, . . . , β̂p be the OLSE. The break tests are based on OLS residuals

ât = Yt − β̂0 − β̂1Yt,h1 − · · · − β̂pYt,hp , t = hp + 1, . . . , n

as given by

PM
n =

1

σ̂a
√

n − hp
sup

0≤z≤1

∣∣∣∣∣∣∣∣
[nz]∑

t=hp+1

ât

∣∣∣∣∣∣∣∣ ,
PV

n =
1

σ̂b
√

n − hp
sup

0≤z≤1

∣∣∣∣∣∣∣∣
[nz]∑

t=hp+1

b̂t

∣∣∣∣∣∣∣∣ , b̂t =
(
â2

t − σ̂2
a

)
,

where

σ̂2
a :=

1
(n − hp)

n∑
t=hp+1

â2
t , σ̂2

b :=
1

(n − hp)

n∑
t=hp+1

b̂2
t .

The tests PM
n and PV

n detect breaks in mean and variance of Yt, t = 1, . . . , n, respectively.
Large values of QM

n ,Q
V
n , P

M
n , and PV

n reject the null hypotheses of parameter constancy. Critical
values of the tests can be obtained from the large sample null distributions of the tests. Under the null
hypothesis of no break, according to Proposition 4 and the results of Hwang and Shin (2013, 2015),
with consistent σ̂y, the limiting null distributions of QM

n ,Q
V
n , P

M
n , and PV

n are all standard Brownian
bridges as given by

QM
n ,Q

V
n , P

M
n , P

V
n

d−→ sup
0≤z≤1

∣∣∣B0(z)
∣∣∣ as n→ ∞, (2.5)

whose distribution function is given by

Pr
(

sup
0≤z≤1

∣∣∣B0(z)
∣∣∣ ≤ x

)
=

∞∑
k=−∞

(−1)ke−2k2 x2
, (2.6)

where B0(z) := B(z) − zB(1) is a standard Brownian bridge and B(z) is a standard Brownian motion.

3. Stationary bootstrap tests

We construct SB tests and prove their asymptotic validity. Assume that sample {Yt : t = 1, 2, . . . , n} is
given. We apply the SB of Politis and Romano (1994) to the sample {Yt : t = 1, 2, . . . , n} to produce a
SB sample {Y∗t : t = 1, 2, . . . , n}.

SB versions (Q∗Mn ,Q∗Vn , P∗Mn , P∗Vn ) are constructed from the SB sample {Y∗t : t = 1, 2, . . . , n} in the
same way that (QM

n ,Q
V
n , P

M
n , P

V
n ) are constructed from the original sample {Yt : t = 1, 2, . . . , n}.



372 Eunju Hwang, Dong Wan Shin

Consistencies of the null bootstrapping distributions of (Q∗Mn ,Q∗Vn , P∗Mn , P∗Vn ) are proved. This en-
ables us to use the quantiles of the bootstrapping distributions as critical values for the tests (QM

n ,Q
V
n ,

PM
n , P

V
n ). The tests with SB critical values will be called stationary bootstrap tests in the sequel.

Consistencies of the SB tests are proved under alternatives of mean or variance changes.
We briefly describe how to construct SB sample from the original sample. Let {I1, I2, . . .} be

independent uniform random variables on {1, 2, . . . , n}. Let {L1 : L2, . . .} be independent geometric
random variables with mean 1/ϱ, independent of {I1, I2, . . .}. For observations {Yt : t = 1, 2, . . . , n},
consider periodic extensions {Yn,i : i ≥ 1} by wrapping the sample in a circle with i = nq + t for some
q and 1 ≤ t ≤ n. Define the blocks B(I j, L j), starting Yn,I j of block length L j. Let κ = inf{ k ≥ 1 :
L1 + · · · + Lk ≥ n}. Then combine the κ blocks B(I1, L1), . . . ,B(Iκ, Lκ) and take the first n elements to
get the bootstrap sample {Y∗t : t = 1, 2, . . . , n}.

3.1. Consistencies of the null distributions of Q∗Mn and Q∗Vn

The stationary bootstrap versions of QM
n and QV

n are

Q∗Mn =
1

σ̂∗y
√

n
sup

0≤z≤1

∣∣∣∣∣∣∣
[nz]∑
t=1

(
y∗t − ȳ∗n

)∣∣∣∣∣∣∣ , y∗t = Y∗t ,

Q∗Vn =
1

σ̂∗y
√

n
sup

0≤z≤1

∣∣∣∣∣∣∣
[nz]∑
t=1

(
y∗t − ȳ∗n

)∣∣∣∣∣∣∣ , y∗t = Y∗2t ,

where

ȳ∗n =
1
n

n∑
t=1

y∗t , σ̂∗2y :=
1
n

n∑
t=1

(y∗t − ȳ∗n)2 +
2
n

ℓ∑
t=1

(
1 − t

ℓ + 1

) n−t∑
i=1

(y∗i − ȳ∗n)(y∗i+t − ȳ∗n), ℓ < n.

In order to prove consistencies of the null distributions of Q∗Mn and Q∗Vn , we first establish a FCLT
for the SB CUSUM

S ∗yn(z) :=
1

σ∗y,n
√

n

[nz]∑
t=1

(
y∗t − E∗(y∗t )

)
, y∗t = Y∗t or Y∗2t ,

for 0 ≤ z ≤ 1, where

σ∗ 2
y,n := Var∗

 1
√

n

n∑
t=1

y∗t

 ,
and E∗ and Var∗ denote the expectation and variance conditional on sample {Yt : t = 1, 2, . . . , n}. In
the following theorems, the bootstrap version S ∗yn(z) of the cumulative sum S yn(z) is shown to converge
to the standard Brownian motion as in Theorem 1 below, from which we obtain the consistencies of
the null distributions of Q∗Mn and Q∗Vn as in Theorem 2 below.

Theorem 1. We assume the same conditions as in Proposition 4. Under the null hypothesis of no
break, if ϱ→ 0 and

√
nϱ→ ∞, then, as n→ ∞,

S ∗yn(·) d∗−→ B(·) in probability,
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where
d∗−→ denotes convergence in distribution conditional on the sample {Y1, . . . ,Yn}.

Theorem 2. Assume the same conditions of Theorem 1. Assume further that the bandwidth ℓ is
chosen so that σ̂y is consistent. Then, as n→ ∞,

Q∗Mn ,Q∗Vn
d∗−→ sup

0≤z≤1

∣∣∣B0(z)
∣∣∣ in probability.

3.2. Consistencies of the null distributions of P∗Mn and P∗Vn

Let β̂∗0, . . . , β̂
∗
p be the OLSE constructed from the SB sample {Y∗1 , . . . ,Y∗n }. Let

â∗t = Y∗t − β̂∗0 − β̂∗1Y∗t,h1
− · · · − β̂∗pY∗t,hp

, b̂∗t = â∗2t − σ̂∗2a , t = hp + 1, . . . , n,

σ̂∗2a :=
1

n − hp

n∑
t=hp+1

â∗2t , σ̂∗2b :=
1

n − hp

n∑
t=hp+1

b̂∗2t ,

σ∗ 2
an := Var∗

 1√
n − hp

n∑
t=hp+1

â∗t

 , σ∗ 2
bn := Var∗

 1√
n − hp

n∑
t=hp+1

b̂∗t

 .
The SB versions P∗Mn and P∗Vn of PM

n and PV
n are

P∗Mn =
1

σ̂∗a
√

n − hp
sup

0≤z≤1

∣∣∣∣∣∣∣∣
[nz]∑

t=hp+1

â∗t

∣∣∣∣∣∣∣∣ , P∗Vn =
1

σ̂∗b
√

n − hp
sup

0≤z≤1

∣∣∣∣∣∣∣∣
[nz]∑

t=hp+1

b̂∗t

∣∣∣∣∣∣∣∣ .
Let

S ∗an(z) :=
1

σ∗an
√

n − hp

[nz]∑
t=hp+1

(
â∗t − E∗(â∗t )

)
, S ∗bn(z) :=

1

σ∗bn

√
n − hp

[nz]∑
t=hp+1

(
b̂∗t − E∗

(
b̂∗t

))
for 0 ≤ z ≤ 1, where E∗(â∗t ) = E∗(b̂∗t ) = 0. In the following theorems, the bootstrap versions S ∗an(z)
and S ∗bn(z) of the cumulative sums S an(z) and S bn(z) are shown to converge to the standard Brownian
motion as in Theorem 3 below, from which we get the consistencies of the null distributions of P∗Mn
and P∗Vn as in Theorem 4 below.

Theorem 3. We assume the same conditions as in Proposition 4. Under the null hypothesis of no
break, if ϱ→ 0,

√
nϱ→ ∞, p→ ∞, and p2+ϵ = O(n), then, as n→ ∞,

S ∗an(·) d∗−→ B0(·) in probability , S ∗bn(·) d∗−→ B0(·) in probability.

Theorem 4. Assume the same conditions of Theorem 3. Then, as n→ ∞,

P∗Mn , P∗Vn
d∗−→ sup

0≤z≤1

∣∣∣B0(z)
∣∣∣ in probability.
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3.3. Bootstrap tests for structural changes

Thanks to the consistencies in Theorems 2 and 4, asymptotic critical values of mean break tests QM
n

and PM
n and variance break tests QV

n and PV
n can be obtained from the distributions of the bootstrap

statistics Q∗Mn , P∗Mn ,Q∗Vn , and P∗Vn instead of the large sample distribution in (2.5) and (2.6).
Let Rn be one of QM

n , P
M
n ,Q

V
n , and PV

n and let R∗n be the corresponding SB version. We can
construct level-α bootstrap critical value R∗n(α) as the αth empirical quantile of the m independent
stationary bootstrap test values {R∗n = R∗(i)n , i = 1, . . . ,m}, α ∈ (0, 1). Now, SB test is: reject the null
hypothesis of mean (or variance) constancy if Rn is larger than R∗n(α).

Consistencies of the stationary bootstrap tests will be proved under alternative hypotheses of a
single mean break at time t0 ∈ {1, . . . , n}

E(Yt) =
{
µ(1), t < t0,
µ(2), t0 ≤ t ≤ n; µ(1) , µ(2); 0 < lim inf

n→∞

t0
n
≤ lim sup

n→∞

t0
n
< 1 (3.1)

or of a variance break at time t0 ∈ {1, . . . , n}

E
(
a2

t

)
=

 σ2
(1), t < t0,

σ2
(2), t0 ≤ t ≤ n;

σ2
(1) , σ

2
(2); 0 < lim inf

n→∞

t0
n
≤ lim sup

n→∞

t0
n
< 1. (3.2)

In the followings, Pr∗ denotes the conditional probability given on sample {Yt : t = 1, 2, . . . , n}.

Theorem 5. We assume the same conditions as in Theorem 2 except for the condition of no break.
Let α ∈ (0, 1). If (3.1) holds, then as n→ ∞, Pr∗[QM

n > Q∗Mn (α)]
p
−→ 1. If (3.2) holds, then as n→ ∞,

Pr∗[QV
n > Q∗Vn (α)]

p
−→ 1.

Theorem 6. We assume the same conditions as in Theorem 4 except for the condition of no break.
Let α ∈ (0, 1). If (3.1) holds, then as n→ ∞, Pr∗[PM

n > P∗Mn (α)]
p
−→ 1. If (3.2) holds, then as n→ ∞,

Pr∗[PV
n > P∗Vn (α)]

p
−→ 1.

4. Monte-Carlo study

A simulation experiment is conducted to investigate finite sample sizes and powers of the proposed
tests for breaks in the memory parameters β1, . . . , βp. Long-memory data are generated by approxi-
mating HAR(∞) by HAR(7) model

Yt =

p∑
j=1

β jYt,h j + et, p = 7, t = 1, . . . , n,

where et is a sequence of independent standard normal errors. The sample size is set to n = 1,000,
2,000, 4,000, which correspond roughly, 5 years, 10 years, and 20 years, respectively. The error term
et is set to independent standard normal variables. For power study of mean break tests, 0.125 is
added to Yt for all t > n/2. For power study of variance break tests, 1.08 is multiplied to et for all
t > n/2. The parameters for the HAR model are chosen as in Table 1: D1 and D2 are HAR(7) with∑p

j=1 β j = 0.9 with λ = 0.6, 0.9, respectively; D3 and D4 the historic HAR(3) models for RVs of the
US S&P500, and US T-bond, respectively, analyzed by Corsi (2009).

The normal errors et are generated by RNNOA, a FORTRAN subroutine in IMSL. Data Yt are
simulated from t = −1,000 with Yt = 0, t < −10,00. Data Y1, . . . , Yn are used for computing the
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Table 1: Parameters for data generating process (DGP)

DGP β1 β2 β3 β4 β5 β6 β7 h j

D1 0.370 0.222 0.133 0.080 0.048 0.029 0.017 h j = 2 j−1, j = 1, . . . , 7
D2 0.173 0.155 0.140 0.126 0.113 0.102 0.092 h j = 2 j−1, j = 1, . . . , 7
D3 0.372 0.343 0.224 h1 = 1, h2 = 5, h3 = 22
D4 0.039 0.412 0.361 h1 = 1, h2 = 5, h3 = 22

Table 2: Rejection rates (%) of the level 5% mean break tests

D1, λ = 0.6 D2, λ = 0.9
DGP n ℓ Size Power Size Power

Qn Q∗n Pn P∗n Qn Q∗n Pn P∗n Qn Q∗n Pn P∗n Qn Q∗n Pn P∗n

HAR(7)

1,000

0 92.5 4.6 3.2 3.9 99 29 39 25 95.7 4.7 3.1 3.7 100 29 39 25
20 7.8 3.6 - - 50 26 - - 8.4 3.6 - - 52 26 - -
80 2.4 4.5 - - 26 28 - - 2.4 4.4 - - 26 28 - -

160 0.6 4.8 - - 2 18 - - 0.5 4.9 - - 2 18 - -

2,000

0 94.5 3.9 5.9 4.4 100 59 71 56 96.5 4.2 5.9 4.2 100 59 70 56
20 8.7 3.5 - - 76 49 - - 10.0 3.2 - - 77 49 - -
80 2.8 3.2 - - 58 50 - - 2.8 3.3 - - 59 50 - -

160 2.8 5.4 - - 39 45 - - 2.7 5.5 - - 39 45 - -

4,000

0 94.7 4.2 5.1 4.2 100 89 95 89 98.1 4.4 5.1 4.2 100 89 95 89
20 6.9 2.5 - - 97 85 - - 8.5 2.2 - - 97 85 - -
80 3.6 3.9 - - 93 87 - - 3.6 3.9 - - 94 87 - -

160 4.3 5.5 - - 88 84 - - 4.2 5.7 - - 88 84 - -
D3, S&P500 D4, US T-Bond

DGP n ℓ Size Power Size Power
Qn Q∗n Pn P∗n Qn Q∗n Pn P∗n Qn Q∗n Pn P∗n Qn Q∗n Pn P∗n

1,000

0 100.0 13.8 1.1 4.2 100 55 3 7 98.8 8.0 2.1 3.3 100 41 11 11
20 67.7 9.7 - - 93 50 - - 44.2 6.3 - - 85 40 - -
80 13.7 7.6 - - 57 34 - - 6.6 5.2 - - 42 30 - -

160 0.1 3.4 - - 0 11 - - 0.1 4.0 - 0.0 1 14 - -

2,000

0 100.0 13.0 3.6 5.2 100 80 17 26 99.7 7.3 4.9 5.7 100 68 49 47
Historic 20 74.0 6.9 - - 99 65 - - 46.4 4.2 - - 96 53 - -
HAR(3) 80 17.4 3.6 - - 84 51 - - 7.0 2.6 - - 73 46 - -

160 3.9 4.6 - - 52 43 - - 2.7 4.8 - - 43 44 - -

4,000

0 100.0 10.6 3.3 5.5 100 96 74 80 100.0 6.9 4.5 5.1 100 93 89 87
20 70.8 2.2 - - 100 83 - - 42.2 1.8 - - 100 79 - -
80 15.5 2.8 - - 99 82 - - 7.9 2.9 - - 97 83 - -

160 7.4 3.8 - - 93 82 - - 5.6 4.1 - - 91 83 - -

Note: Number of replications = 1,000, number of bootstrap replication = 1,000.
DGP = data generating process; HAR = heterogeneous autoregressive.

mean break test statistics QM
n ,Q

∗M
n , PM

n , P
∗M
n and the variance break test statistics QV

n ,Q
∗V
n , PV

n , P
∗V
n .

For QM
n ,Q

∗M
n ,QV

n ,Q
∗V
n based on the CUSUM of Yt or Y2

t , the bandwidth parameter for the longrun
variance estimate (2.4) is chosen to be ℓ = iℓ(n/1000)1/4, iℓ = 0, 20, 80, 160. We use the 1/4-order
bandwidth because it is generally recommended to be good for longrun variance estimate, see for
example, Schwert (1989). A wide range of values of ℓ is chosen because these tests are very sensitive
to ℓ. For the P-statistics PM

n , P
∗M
n , PV

n , P
∗V
n based on the residuals of HAR fitting, the residuals are

computed from HAR(p) model, p = 2, 3, 4.
For computing the stationary bootstrap tests Q∗Mn , P∗Mn Q∗Vn , P∗Vn , the block length parameter is

chosen set to ϱ = 0.005(n/1000)−1/3 so that the mean block length is ϱ−1. The third order parameter
is chosen because it is usually optimal for parameter estimators based on block bootstrapping, see for
example Bühlmann (2002).
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Table 3: Rejection rates (%) of the level 5% variance break tests

D1, λ = 0.6 D2, λ = 0.9
DGP n ℓ Size Power Size Power

Qn Q∗n Pn P∗n Qn Q∗n Pn P∗n Qn Q∗n Pn P∗n Qn Q∗n Pn P∗n

HAR(7)

1,000

0 54.0 3.9 4.1 3.4 65 9 32 19 66.0 3.7 4.0 3.8 73 7 32 19
20 5.0 4.3 - - 13 8 - - 5.1 4.2 - - 10 7 - -
80 2.4 4.7 - - 5 8 - - 2.4 4.8 - - 4 7 - -

160 0.4 5.7 - - 1 8 - - 0.2 5.8 - - 1 8 - -
cline2-22

2,000

0 55.6 3.1 4.9 3.1 79 16 61 45 66.9 2.9 4.9 3.1 83 13 61 45
20 4.0 2.3 - - 21 11 - - 4.1 2.6 - - 18 9 - -
80 3.1 3.5 - - 13 14 - - 2.9 3.3 - - 11 11 - -

160 1.7 4.4 - - 9 15 - - 1.7 4.0 - - 7 13 - -
cline2-22

4,000

0 60.1 3.3 3.9 3.5 88 31 89 80 72.3 3.2 3.9 3.2 89 26 89 80
20 4.8 2.9 - - 39 27 - - 5.2 2.9 - - 33 22 - -
80 4.0 4.0 - - 34 30 - - 4.0 4.0 - - 28 26 - -

160 2.9 4.3 - - 28 29 - - 2.6 4.1 - - 25 26 - -
D3, S&P500 D4, US T-Bond

DGP n ℓ Size Power Size Power
Qn Q∗n Pn P∗n Qn Q∗n Pn P∗n Qn Q∗n Pn P∗n Qn Q∗n Pn P∗n

1,000

0 98.5 7.4 4.1 2.7 98 7 30 16 47.1 4.0 4.1 2.8 64 8 31 16
20 38.7 6.5 - - 38 8 - - 14.2 4.5 - - 25 10 - -
80 3.4 4.9 - - 4 5 - - 2.2 4.6 - - 6 7 - -

160 0.1 4.0 - - 0 4 - - 0.7 3.7 - - 1 7 - -

2,000

0 99.6 6.0 3.9 2.3 100 7 60 41 60.1 3.9 4.2 2.8 77 15 60 42
Historic 20 35.8 2.3 - - 46 5 - - 11.8 1.2 - - 37 12 - -
HAR(3) 80 6.4 3.9 - - 7 4 - - 3.5 3.6 - - 16 12 - -

160 1.2 2.7 - - 2 5 - - 1.8 4.0 - - 8 13 - -

4,000

0 99.9 5.5 3.6 2.3 100 9 88 78 66.0 3.2 3.7 2.8 87 29 88 79
20 40.9 2.1 - - 46 3 - - 14.9 2.2 - - 55 20 - -
80 7.3 2.4 - - 11 5 - - 5.3 3.7 - - 33 26 - -

160 2.0 3.2 - - 5 5 - - 2.1 3.1 - - 25 25 - -

Note: Number of replications = 1,000, number of bootstrap replication = 1,000.
DGP = data generating process; HAR = heterogeneous autoregressive.

Tables 2 and 3 report sizes and powers of the mean break tests and volatility break tests, respec-
tively, which are based on 1,000 independent replications with m = 1,000 bootstrapping samples. In
computing the P-tests and P∗-tests, we first consider HAR(3) fitting because HAR(3) model is usually
used in practice for analyzing realized volatilities. We observe the following.

1. SB improves sizes of QM
n ,Q

V
n , P

M
n but does not improve size of PV

n .

2. Among the four mean break tests QM
n ,Q

∗M
n , PM

n , P
∗M
n , the SB test P∗Mn based on HAR residual is

the best.

3. Among the four variance break tests QV
n ,Q

∗V
n , PV

n , P
∗V
n , the normal test PV

n based on HAR residual
is the best.

We next investigate the performance of the P-tests and P∗-tests in terms of the HAR estimation
order p. Tables 4 and 5 report sizes and powers of the tests which are constructed under the same
setup used for Tables 2 and 3. We observe the following.

1. For mean break test, we see, for p = 2 of (relatively) under-specified order, the P-tests tend to be
oversized, especially for D3 and D4 of the historical DGPs; the SB mitigate over-size for D1 and
D2 but not for D3 and D4.
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Table 4: Rejection rates (%) of the level 5% mean break tests PM
n and P∗Mn based on HAR(p) fittings

D1, λ = 0.6 D2, λ = 0.9 D3, S&P500 D4, US T-Bond
p n Size Power Size Power Size Power Size Power

Pn P∗n Pn P∗n Pn P∗n Pn P∗n Pn P∗n Pn P∗n Pn P∗n Pn P∗n
1,000 6.0 3.0 46 38 6.8 3.0 48 37 30.7 20.3 71 66 34.3 12.9 80 61

2 2,000 8.2 5.1 76 67 8.1 5.1 77 66 39.5 21.2 94 87 43.6 13.8 95 82
4,000 7.4 4.1 96 95 7.6 3.9 96 94 39.5 18.4 100 99 43.7 11.7 100 97
1,000 3.2 3.9 39 25 3.1 3.7 39 25 1.1 4.2 3 7 2.1 3.3 11 11

3 2,000 5.9 4.4 71 56 5.9 4.2 70 56 3.6 5.2 17 26 4.9 5.7 49 47
4,000 5.1 4.2 95 89 5.1 4.2 95 89 3.3 5.5 74 80 4.5 5.1 89 87
1,000 3.3 3.3 35 36 3.5 3.0 36 37 1.7 2.1 2 2 1.7 3.0 4 5

4 2,000 5.1 5.2 68 65 5.4 4.8 70 65 2.6 3.1 8 12 2.8 3.9 26 36
4,000 4.4 3.7 95 94 4.5 3.9 95 94 2.7 4.0 57 72 3.4 4.3 83 88

Note: Number of replications = 1000, number of bootstrap replication = 1000.
HAR = heterogeneous autoregressive.

Table 5: Rejection rates (%) of the level 5% variance break tests PV
n and P∗Vn based on HAR(p) fittings

D1, λ = 0.6 D2, λ = 0.9 D3, S&P500 D4, US T-Bond
p n Size Power Size Power Size Power Size Power

Pn P∗n Pn P∗n Pn P∗n Pn P∗n Pn P∗n Pn P∗n Pn P∗n Pn P∗n
1,000 5.3 3.6 31 25 5.2 3.7 31 26 5.3 3.1 31 23 5.5 3.3 31 25

2 2,000 4.5 4.0 59 53 4.7 3.7 59 53 4.8 3.5 58 49 5.2 3.9 59 50
4,000 5.3 4.6 89 88 5.3 4.5 89 88 5.3 3.7 88 84 5.3 4.4 88 86
1,000 4.1 3.4 32 19 4.0 3.8 32 19 4.1 2.7 30 16 4.1 2.8 31 16

3 2,000 4.9 3.1 61 45 4.9 3.1 61 45 3.9 2.3 60 41 4.2 2.8 60 42
4,000 3.9 3.5 89 80 3.9 3.2 89 80 3.6 2.3 88 78 3.7 2.8 88 79
1,000 4.9 3.7 31 26 5.2 3.7 31 26 5.5 3.1 28 21 5.3 3.4 29 22

4 2,000 4.6 3.9 59 53 4.7 4.0 59 53 4.6 2.5 56 47 4.6 3.6 57 49
4,000 5.1 4.9 89 88 5.3 4.8 89 88 5.0 3.5 88 85 5.2 4.5 88 87

Note: Number of replications = 1000, number of bootstrap replication = 1000.
HAR = heterogeneous autoregressive.

2. For the mean break test, we see the power of the test with p = 4 of (relatively) over-specified order
tend to be smaller than that with p = 3.

3. For break test, there is no significance difference in size and power performances of tests with
p = 2, 3, 4.

From this experiment, we can say that SB considerably improve the sizes of the existing tests,
especially mean break tests, without power loss. No substantial improvement is achieved for the
variance break test PV

n by the SB because the size and power of variance break test PV
n is already

robust against the bandwidth parameter ℓ or HAR estimation order p. The widely used HAR(3) fitting
produces P-tests and P∗-tests with not worse performance than HAR(2) or HAR(4) fittings.

5. Conclusion

We established the stationary bootstrap functional central limit theorem (FCLT) for the HAR(∞)
model, which is a genuine long-memory model for realized volatility in financial economics. The
bootstrap version of the cumulative sum of the HAR(∞) process is shown to converge to the standard
Brownian motion. Applying the FCLT, under the null hypothesis of no break, we have established
consistencies of the bootstrap null distributions of the SB CUSUM tests for structural mean change
and for structural variance change. Consistencies of the stationary bootstrap tests are also established
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under alternative hypotheses of mean break and of variance break. Monte-Carlo simulation shows
that SB improves size performance of existing tests especially for mean break tests.

Appendix: Proofs

Proof of Theorem 1: Proof is given in a similar way to that of Theorem 1 of Parker et al. (2006).
Note that E∗y∗t = (1/n)

∑n
t=1 yt = ȳn. For t = 1, 2, . . . , n, let Kt = inf{k : L1 + · · · + Lk ≥ t} and note

that Kn = κ. We observe

1
√

n

[nz]∑
t=1

(
y∗t − E∗y∗t

)
=

1
√

n

K[nz]∑
j=1

L j∑
t=1

(
yn,I j+t−1 − ȳn

)
−

M[nz]−[nz]∑
t=1

(
yn,I′[nz]+L′[nz]−t − ȳn

) ,
where M[nz] = L1 + · · · + LK[nz] , I′[nz] = IK[nz] and L′[nz] = LK[nz] . It is well-known, (see Politis and
Romano (1994) or Hwang and Shin (2012)), that the last n − (L1 + · · · + Lκ−1) observations in the
last block B(Iκ, Lκ) of the SB procedure does not affect the limiting distribution of the SB sample
mean by the memoryless property of the geometric distribution, and thus in the same way we have
(1/
√

n)
∑M[nz]−[nz]

t=1 (yn,I′[nz]+L′[nz]−t − ȳn)
p
−→ 0.

For j = 1, 2, . . . , κ, let Û j =
∑L j

t=1(yn,I j+t−1 − ȳn), i.e., the sum of centered yn,ts belonging to block
B(I j, L j), and let R̂n(z) = (1/

√
n)

∑K[nz]

j=1 Û j for 1 ≤ z ≤ 1. For the desired result, it suffices to show

R̂n(·) d∗−→ σyB(·) in probability. Its proof is based on Theorem 13.5 of Billingsley (1999), which
requires the convergence of the finite-dimensional distribution and the condition for the tightness of
the partial sum process in the followings: for 0 ≤ z1 < · · · < zk ≤ 1 in probability(

R̂n(z1), . . . , R̂n(zk)
) d∗−→ N(0,Σ), (A.1)

where Σ = ((ci, j))i, j=1,...,k with ci, j = σ
2
y min{zi, z j} and for 0 ≤ z < u < r ≤ 1

E∗
(∣∣∣R̂n(r) − R̂n(u)

∣∣∣2 ∣∣∣R̂n(u) − R̂n(z)
∣∣∣2) ≤ C(r − z)2. (A.2)

Verifications of (A.1) and (A.2) can be given in the same way as those on pp. 627–628, (proofs of Eqs.
(34) and (35)), of Parker et al. (2006). Note that Gonçalves and de Jong (2003) proved the first order
asymptotic validity of the SB of the NED process for ϱ → 0 and

√
nϱ → ∞, which can be applied

to the process yt according to Lemmas 1 and 2 of Lee (2014), and thus the convergence of the SB
variance of the NED process yt holds in probability as follows: σ∗ 2

y,n := Var∗((1/
√

n)
∑n

t=1 y∗t )
p
−→ σ2

y .
Hence we finish the proof of Theorem 1. �

Proof of Theorem 2: It is obvious from the result in Theorem 1. �

Proof of Theorem 3: Let ãt = Y∗t − β̂0 −
∑p

j=1 β̂ jY∗t,h j
and we mimic the model (2.1) by the stationary

bootstrap sample {Y∗t } as follows:

Y∗t = β̂0 +

p∑
j=1

β̂ jY∗t,h j
+ ãt. (A.3)
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Following the same arguments as in Step 1 of the proof of Theorem 2.4 by Hwang and Shin (2013),
together with the asymptotic normality of the stationary sequence {ãt : t = 1, 2, . . . }, we can show that

1√
n − hp

 [nz]∑
t=hp+1

ãt − z
n∑

t=hp+1

ãt

 d∗−→ σ̃aB0(z), (A.4)

where σ̃2
a = plimn→∞Var∗(

∑n
t=1 ãt/

√
n).

The model (A.3) can be written as

Y∗t = ζ̂0 +

p∑
j=1

β̂ j

(
Y∗t,h j
− µ̂

)
+ ãt,

where ζ̂0 = β̂0 +
∑p

j=1 β̂ jµ̂ and µ̂ = (1/n)
∑n

t=1 Yt. By the same arguments as in Step 2 of the proof of
Theorem 2.4 by Hwang and Shin (2013), we can obtain that

1√
n − hp

[nz]∑
t=hp+1

(
β̂∗ − β̂

)′
X∗t =

z√
n − hp

n∑
t=hp+1

ãt + op(1), (A.5)

where X∗t = (1,Y∗t,h1
− µ̂, . . . , Y∗t,hp

− µ̂)′, β̂ = (ζ̂0, β̂1, . . . , β̂p)′, and β̂∗ = (ζ̂∗0 , β̂
∗
1, . . . , β̂

∗
p)′ with ζ̂∗0 =

β̂∗0 +
∑p

j=1 β̂
∗
j µ̂. The result in (A.5) is obtained by observing that

√
n − hp

(
β̂∗ − β̂

)
=

1√
n − hp

[
1 0
0 R

]−1 [ ∑n
t=hp+1 ãt∑n

t=hp+1 X∗t,0ãt

]
+ op(1),

where R is the p×p matrix with (i, j)-component E∗[(Y∗t,hi
−µ̂)(Y∗t,h j

−µ̂)], and X∗t,0 = (Y∗t,h1
−µ̂, . . . , Y∗t,hp

−
µ̂)′, and by the following convergence:

1
n − hp

[nz]∑
t=hp+1

X∗t =
1

n − hp

[nz] − hp,

[nz]∑
t=hp+1

Y∗t,hi
− µ̂, . . . ,

[nz]∑
t=hp+1

Y∗t,hp
− µ̂


′

p∗
−→ (z, 0, . . . , 0)′.

To prove the first convergence in distribution for S ∗an(·) in Theorem 3, we note that

â∗t = Y∗t − β̂∗′X∗t , ãt = Y∗t − β̂′X∗t

and we observe, by (A.4) and (A.5)

1√
n − hp

[nz]∑
t=hp+1

â∗t =

 1√
n − hp

[nz]∑
t=hp+1

Y∗t −
1√

n − hp

[nz]∑
t=hp+1

β̂′X∗t

 − 1√
n − hp

[nz]∑
t=hp+1

(
β̂∗ − β̂

)′
X∗t

=
1√

n − hp

[nz]∑
t=hp+1

ãt −
z√

n − hp

n∑
t=1

ãt + op(1)
d∗−→ σ̃aB0(z).

It is clear that σ∗ 2
an

p
−→ σ̃2

a as n→ ∞. Thus we obtain the first desired convergence in distribution.
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To prove the second convergence in distribution for S ∗bn(·), in the model (A.3), we can show that,
uniformly in z,

1√
n − hp

 [nz]∑
t=hp+1

â∗ 2
t −

[nz]∑
t=hp+1

ã2
t

 p∗
−→ 0

and letting ξt = ã2
t /σ̃

2
a − 1,

1√
n − hp

 [nz]∑
t=hp+1

ξt − z
n∑

t=hp+1

ξt

 d∗−→ ϕ
1
2

σ̃2
a

B0(z),

where ϕ = ϕ1/2ϕ1/2 := σ̃4
a limn→∞ Var(

∑n
t=1 ξt/

√
n). We can now observe that

1√
n − hp

[nz]∑
t=hp+1

b̂∗t =
1√

n − hp

[nz]∑
t=hp+1

(
â∗ 2

t − σ̂∗ 2
a

)

=
1√

n − hp

 [nz]∑
t=hp+1

â∗ 2
t −

[nz] − hp

n − hp

n∑
t=hp+1

â∗ 2
t


=

1√
n − hp

 [nz]∑
t=hp+1

ã2
t − z

n∑
t=hp+1

ã2
t

 + op(1)

=
σ̃2

a√
n − hp

 [nz]∑
t=hp+1

(
ã2

t

σ̃2
a
− 1

)
− z

n∑
t=hp+1

(
ã2

t

σ̃2
a
− 1

) + op(1)
d∗−→ ϕ

1
2 B0(z),

and σ∗ 2
bn

p
−→ ϕ as n→ ∞. More detailed verifications can be given by the same arguments as in proof

of Theorem 2.4 of Hwang and Shin (2015) along with their Lemmas 6.1 and 6.2, as applied to the
model (A.3) above. �
Proof of Theorem 4: It is obvious from the results in Theorem 3. �
Proof of Theorems 5–6: Let Rn be one of QM

n , P
M
n ,Q

V
n , P

V
n and let R∗n be the corresponding SB ver-

sion. It suffices to show

R∗n = Op(1) and Rn → as n→ ∞. (A.6)

First, for Rn = QM
n with yt = Yt, to show the boundedness, we note that under the alternative, y∗t do

not have structural changes because of the random block selection. We follow the same arguments
as in the proof of Theorem 1. The block sums Û j in the proof of Theorem 1 are also iid under the
alternative; therefore, the same arguments as those in proof of Theorem 1 provide a weak convergence
of Q∗Mn under the alternative and Q∗Mn = Op(1).

We show the second limiting in (A.6). Let σ2 = Var[yt]. Under the alternative hypothesis with
break point t0, we write yt = µ(1) + σ(δ0I{t > t0} + ut) where ut is a sequence with mean zero and
variance one, and δ0 = (µ(2)−µ(1))/σ > 0. Let Zn(z) =

∑[nz]
t=1 (yt− ȳn). We observe Zn(z) for z ∈ [0, t0/n]

and z ∈ (t0/n, 1], respectively. It can be shown straightforward that

Zn(z) = σ̃

 [nz]∑
t=1

ut −
[nz]

n

n∑
t=1

ut

 + σ̃λn(z),
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where

λn(z) =


−δ0

[nz](n − t0)
n

, if 0 ≤ [nz] ≤ t0,

−δ0
t0(n − [nz])

n
, if t0 < [nz] ≤ n.

Noting that QM
n = sup0≤z≤1 |Zn(z)|/(σ̂y,n

√
n), for the second desired limiting, we may show that

sup0≤z≤1 |λn(z)|/
√

n→ ∞ as n→ ∞.
For t0 = t0(n) we denote

τ := lim inf
n→∞

t0
n
, τ̄ := lim sup

n→∞

t0
n
.

By the assumption, 0 < τ ≤ τ̄ < 1. In case that 0 ≤ [nz] ≤ t0, we have

1
√

n
|λn(z)| ≥ [nz]

√
n
|δ0| (1 − τ̄).

Also in case that t0 < [Tz] ≤ T , we have

1
√

n
|λn(z)| ≥ n − [nz]

√
n
|δ0| τ.

Thus

sup
0≤z≤1

1
√

n
|λn(z)| ≥ max

 sup
0≤z≤ t0

n

[nz]
√

n
|δ0| (1 − τ̄), sup

t0
n <z≤1

n − [nz]
√

n
|δ0| τ

 .
Note that since 1 − τ̄ > 0 and τ > 0, we have

lim
n→∞

max

 sup
0≤z≤ t0

n

[nz]
√

n
|δ0| (1 − τ̄), sup

t0
n <z≤1

n − [nz]
√

n
|δ0| τ

 = C lim
n→∞

√
n |δ0|

for some positive C. Since δ0 > 0 under the alternative hypothesis, the right-hand side is∞. Thus the
desired consistency result for Q∗Mn is obtained. For other R∗n = Q∗Vn , P∗Mn , or P∗Vn , similar arguments
can be given to prove the consistencies, and here we omit the details because the discussions are
almost the same except for yt, replaced by Y2

t , ât, or b̂t. �
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Ploberger W and Krämer W (1990). The local power of the CUSUM and CUSUM of squares tests,

Econometric Theory, 6, 335–347.
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