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PANCYCLIC ARCS IN HAMILTONIAN CYCLES OF
HYPERTOURNAMENTS

YUBAO GUO AND MICHEL SURMACS

ABSTRACT. A k-hypertournament H on n vertices, where 2 < k < n,
is a pair H = (V, A), where V is the vertex set of H and A is a set of
k-tuples of vertices, called arcs, such that for all subsets S C V with
|S| = k, A contains exactly one permutation of S as an arc. Recently, Li
et al. showed that any strong k-hypertournament H on n vertices, where
3 < k < n—2, is vertex-pancyclic, an extension of Moon’s theorem for
tournaments.

In this paper, we prove the following generalization of another of
Moon’s theorems: If H is a strong k-hypertournament on n vertices,
where 3 < k < n—2, and C is a Hamiltonian cycle in H, then C contains
at least three pancyclic arcs.

1. Introduction and terminology

A directed k-hypergraph D on n wvertices, for integers n and k > 2, is a
pair D = (V, A), where the cardinality of the vertex set V of D is n and the
arc set A of D is a subset of V¥ such that no arc in A contains the same
vertex in V twice. If not otherwise specified, we will denote the vertex set (arc
set, respectively) of an arbitrary directed k-hypergraph D by V(D) (A(D),
respectively).

For the rest of this section, let D = (V, A) be a directed k-hypergraph on n
vertices. For two distinct vertices z,y € V, Ap(x,y) C A(D) denotes the set
of all arcs a = (x1,...,2x) € A, such that there are indices 1 < ig < i; < k
with z;, = z and x;;, =y. An arc a = (z1,...,2x) € A is called an out-arc of
the vertex xy.

Let X C V. Then D[X] := (X, ANX¥) is the subhypergraph of D induced by
X (note that A(D[X]) =0 if |X| < k) and D — X denotes the subhypergraph
DIV(D)\ X]. We write D — x instead of D — {z}.
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A (v1,vi41)-path of length 1 or an l-path from v to vj41 in D is a sequence
P = viayvs - - - aqui41, such that vy, ..., vi4+1 € V are pairwise distinct vertices,
ai,...,a; € A are pairwise distinct arcs and a; € Ap(v;,v;41) holds for all
1 < i < 1. An l-cycle in D is defined analogously, with the exception of
v1 = vi41. For convenience, we will consider v;4; to be vy in the context of
an l-cycle C' = vy ---vvy. Let P = xja1---a;_1x; be a path in D and let
x;,x; € V(P) be two vertices with ¢ < j. Then z;Pz; denotes the unique
(x;,z;)-subpath of P. zCy is defined analogously for a cycle C' in D and
vertices x,y € V(C). In the case k = 2, if P is an (z,y)-path and Q is an
(v,w)-path in D such that V(P)NV(Q) = 0 and Ap(y,v) # 0, then PQ is
the path obtained by appending the path @ to P. An n-cycle ((n — 1)-path,
respectively) in D is called Hamiltonian or Hamiltonian cycle (Hamiltonian
path, respectively) in D.

A vertex (an arc, respectively) of D is pancyclic, if it is contained in an
l-cycle for all I € {3,...,n}. D is called pancyclic, if it contains an [-cycle for
all I € {3,...,n} and vertex-pancyclic, if all of its vertices are pancyclic. A
vertex is called out-arc pancyclic, if all of its out-arcs are pancyclic.

A digraph D is strongly connected or strong, if there is an (z,y)-path in D
for all distinct vertices z,y € V. A strong component D' of D is a maximal
induced subhypergraph of D which is strong.

A digraph D is called d-strong, if [V (D)| > d+ 1 holds and D — U is strong
for all U C V(D) with |U| < d. Two paths in D are edge-disjoint, if they do
not have a shared arc. A digraph D is called d-edge-connected, if there are d
edge-disjoint (z,y)-paths in D for all distinct vertices z,y € V.

A k-hypertournament H is a directed k-hypergraph, such that for all subsets
S C V(H) with |S| = k, A(H) contains exactly one permutation of S as an
arc. A tournament is a 2-hypertournament.

It is the strong structure of tournaments which has made them the best
studied class of digraphs. It is only natural to try to reduce this structure to
its core properties necessary to maintain at least most of the results for tour-
naments, while broadening the scope of considered directed hypergraphs. One
of the generalizations of tournaments is the class of directed 2-hypergraphs
which contain a spanning tournament as a subhypergraph, called semicomplete
digraphs. In other words, every pair of distinct vertices of a semicomplete di-
graph is connected by at least one arc. Many results for tournaments also hold
for the larger class of semicomplete digraphs. Because of the similarities in their
definition, one would hope that the same is true for the class of hypertourna-
ments. But there are some obstacles which arise from the loosened structure
of hypertournaments and the fact that an arc no longer connects exactly two
vertices. To give an example, we will first add some notation for the case k = 2.

In this case, we will omit the arcs in our notation of a path or a cycle, since
the sequence of vertices imply the arcs connecting them. Furthermore, we will
use ry € A(D) and sometimes x — y instead of (z,y) € A(D). For two disjoint
sets X, Y C V(D), X = Y denotes that there is no arc from a vertex in ¥ to
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one in X in D. By X — Y, we denote that xy € A(D) for all x € X and all
yeyY.

A strong property of tournaments (and semicomplete digraphs) and integral
part of many proofs is the fact that the strong components D1, ..., D, of D are
pairwise disjoint and can be ordered, such that both D; = D; and D; — D;
hold for all 1 < ¢ < 57 < r. This unique order is called the strong decomposition
of D.

Example 1.1. Let the 4-hypertournament Hy := (V, A) be defined through

V = {x1,...,25} and A := {ai1,a9,as,aq4,as}, where
a1 = (x3,T4,21,%2),
ay = (x5,x3,22,71),
as = (x4,x5,T2,11),
ay = (x4,x5,T3,71),
and a5 = (z4,25,%2,T3).

H, is not strong, since, for example, there is no path from z; to {z4,x5}.
Suppose that there is such a path P. Obviously, P starts with the subpath
P’ = zja1w0a5x3. Now we see that aq, the only arc from zs to {z4, x5},
is already contained in P’ and thus, we cannot extend P’, a contradiction.
Furthermore, for all X C V such that 2 < |X| < 4, A(H,[X]) contains at most
one arc. Therefore, Hy[X] is not strong. Consequently, the strong components
of H, are its vertices and since there are arcs from x; to xo and vice versa,
there is no strong decomposition of Hy.

Even if we weaken the definition of a strong component of a hypertourna-
ment, we still do not obtain a suitable structure. A strong® component of D
is a maximal induced subhypergraph D’ such that there is an (z,y)-path in D
for all distinct vertices z,y € V(D').

Since H, contains the cycles z1a1x2a5x302%1 and xaa5x301 404250222 but
no path from z; to {z4, x5}, the vertex sets of the strong* components of Hy
are {1, 22,23} and {x9, x5, 24,25} and are therefore not disjoint, much less is
there a strong® decomposition of Hy.

To account for this fact and to restore some of the structure, in 1997, Gutin
and Yeo [3] introduced the majority digraph of a hypertournament.

For a k-hypertournament H = (V, A) on n vertices, the majority digraph
M(H) = (V,Amaj(H)) of H is a digraph on the same vertex set and for a
pair z,y € V of distinct vertices, zy is in Amaj(H) if and only if |Ax(z,y)| >
|Am (y, 2)|, which is equivalent to

1/n—-2
A > — .

By definition, there is an arc between every pair of distinct vertices, thus M (H)
is a semicomplete digraph.
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This substructure allowed for Gutin and Yeo to prove the following general-
izations of Redei’s [9] and Camion’s [1] theorem, respectively, two of the most
fundamental results on tournaments.

Theorem 1.2 ([3]). Every k-hypertournament on n > k > 2 vertices contains
a Hamiltonian path.

Theorem 1.3 ([3]). Every strong k-hypertournament on n vertices, where 3 <
k <n —2, contains a Hamziltonian cycle.

Furthermore, Gutin and Yeo posed the question whether Moon’s theorem
[6], which states that every strong tournament is vertex-pancyclic, could be
extended to hypertournaments as well. In addition to giving some sufficient
conditions for a hypertournament to be vertex-pancyclic, in 2006, Petrovic and
Thomassen showed the following.

Theorem 1.4 ([8]). Let H be a d-edge-connected k-hypertournament on n
vertices. If k =3 andn >30d+2 ork >4 andn > k+ 1+ 24d, then H
contains d edge-disjoint Hamiltonian cycles.

Amongst other results, in 2009, Yang gave an improvement of this theorem.

Theorem 1.5 ([10]). Let H be a d-edge-connected k-hypertournament on n
vertices. If k =3 andn > 14d+1 ork > 8 andn > k+ 2d + 1, then H
is d-edge-disjoint vertex-pancyclic, i.e., every vertex of H is contained in d
edge-disjoint l-cycles for all l € {3,...,n}.

Recently, Li et al. showed the following generalization of Moon’s theorem
and that its bound is best possible, thereby answering Gutin and Yeo’s initial
question.

Theorem 1.6 ([5]). Every strong k-hypertournament with n vertices, where
3 <k <n-—2, s vertex-pancyclic.

Goal of this paper, is the generalization of another of Moon’s theorems on
tournaments.

Theorem 1.7 ([7]). Let T be a strong tournament. Then there is a Hamilton-
ian cycle in T that contains at least three pancyclic arcs.

In fact, we will show that every Hamiltonian cycle of a hypertournament
contains at least three pancyclic arcs.

Since the majority digraph of a strong hypertournament H is not necessarily
strong, much less contains a specific Hamiltonian cycle corresponding to one
in H, we will introduce a modified substructure, better suited for our own
purposes.

Definition 1.8. Let H = (V, A) be a strong k-hypertournament on n > k > 3
vertices and let C' = y1a1y2 - - - ynany1 be a Hamiltonian cycle in H. We define
the C-majority-digraph M (H,C) := (V, AC,.(H)) of H through

maj

AG i (H) = (Amai (H)\{it1¥i, y19n | 1 <0 <n}) U{yiiz1, ynpn | 1 < i <n}.
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Foranie {1,...,n—1} we call ay,y,., := a; the C-arc corresponding to y;yit1.
Ay, y, = G corresponds to y,yi.

Remark 1.9. In general, the C-majority-digraph of H does not have the prop-
erty Amaj(H) C Agaj(H ). It still is semicomplete by definition and strong,
since it contains the Hamiltonian cycle C' = y; - - - yp 1.

Let us now consider the following preliminaries.

2. Preliminaries

First of all, we note that Moon’s theorem holds for semicomplete digraphs.
Corollary 2.1. Every strong semicomplete digraph is vertex-pancyclic.

Before we show the generalized version for hypertournaments, we will prove
a stronger version of Theorem 1.7 for semicomplete digraphs. We will use the
following results in the process.

Theorem 2.2 ([2]). Let T be a 2-strong tournament. Then T contains at least
three out-arc pancyclic vertices.

Theorem 2.3 ([11]). Let T be a non-strong tournament and let Ty, ..., T, be
the strong decomposition of T. Then there is an (x,y)-path of length | in T for
dl1<I<|V(D)| -1,z V(1) and y € V(T}).

Corollary 2.4. Let D = (V,A) be a non-strong semicomplete digraph, let
Dy, ..., D, be the strong decomposition of D, 1 < i < j < r, x € V(D;),
y € V(D;) andl € {1,...,|U;<cs<; V(Dr)| — 1}. Then there is an (z,y)-path
of length I in D.

Theorem 2.5. Let D = (V,A) be a strong semicomplete digraph and C a
Hamiltonian cycle in D. Then C' contains at least three pancyclic arcs.

Proof. Let C = x1x2 -+ xpx1. Without loss of generality, we may assume that
D is a tournament, since we can destroy all 2-cycles in D such that the resulting
tournament still contains the Hamiltonian cycle C. If D is 2-strong, D contains
at least three out-arc pancyclic vertices, by Theorem 2.2. Suppose that D is
not 2-strong, x; is a cut-vertex and D1, ..., D, is the strong decomposition of
D — xy. Since xax3-- Ty, is a path in D — z1, xo is obviously contained in
D, and z,, in D,. By Corollary 2.4, there is an (x2, x,)-path PIZZ7In of length
lin D — a4 for alll € {1,...,n —2}. Thus, z122 and z,x; are contained in
the I-cycle 21 PL;2 x1 in D for all | € {3,...,n} and are therefore pancyclic.
Without loss of generality, we may assume that [V (D,)| < [251].
We define the following indices.

iop :=max{i|2<i<n-—1, z1z; € Aforall 2 <j <i}.
ip :=min{i | 2<i<n, x; € V(D,)}.
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We obviously have V(D) = {z; | iy < j < n} and iy > [251] + 2. 25,25,41 is

contained in the l-cycle x12;,43-1 - @iy Tig+121 in D for alll € {3,...,ig+1}.
If i > L"Tflj +1, then we have n+2—1g < [%1 +1 <ig+2. Thus, z;,Tiy+1 is
contained in the l-cycle 212540 2,21 in D for alll € {n+2—1p,...,n} 2

{ip + 2,...,n} and is therefore pancyclic.
Suppose that i9 < |%5%]. Then we have i + 1 < i; and hence z; 41 ¢

V(D;). Consequently, D — {z1,...,2;} is not strong. Furthermore, x;,1
is contained in the first and z, is contained in the last component of the
strong decomposition of D — {x1,..., 2}, since x;,41 - x, is a path in D —
{z1,...,z;,}. By Corollary 2.4, there is an (2,41, T, )-path P1li0+17zn of length
lin D—{x1,...,x4} foralll € {1,...,n—ig—1}. Hence, ;,2;,+1 is contained
in the l-cycle 2 - - - xiOPii_U(ﬁj;?zl in D for alll € {igp+2,...,n} and is therefore
pancyclic. O

Lemma 2.6. Let k>4 andn >k + 2.
o If (n,k) ¢ {(6,4),(7,4),(7,5)}, then (}~3) > 2n — 1 holds.
o If (n, k) # (6,4), then (Z:g) > 2n — 4 holds.

Theorem 2.7 ([4]). Let S be a set, let J be a finite index set and let (T;)ic.
be a family of subsets of S. Then there is an injective function r : J — S with
r(i) € T; for all i € J if and only if |I| < |U,;c; Ti| for all I C J holds.

Corollary 2.8. Let H be a k-hypertournament (k > 3), C a Hamiltonian cycle
in H, Cyr a cycle in M(H,C) and Ay C A (v,w) for all vw € A(Cyy). If
| < [Upwer Avwl for all I C A(Chr), then every arc in UuweA(CM)Avw 18
contained in a cycle C'y in H on the same vertexr set as Cyy.

Lemma 2.9. Let H be a strong 3-hypertournament on n > 5 wvertices, let D
be a strong semicomplete digraph on the vertex set of H, Bp C A(D) with
A(D)\ Bp C Awaj(H) and v : Bp — A(H) an injective function, such that
r(zy) € Au(x,y) holds for all xy € Bp. Then for every cycle C in D, there
is a cycle Cg in H on the same vertex set. Furthermore, if C' contains an arc
xy € Bp, then Cy can be chosen such that r(zy) is contained in Ch.

Proof. Let C = 21 --- 2321 be an l-cycle in D with I € {2,...,n}. If C contains
an arc xy € Bp (without loss of generality, we may assume that xy = z1x9)
we define ai := r(zy). Otherwise, all arcs of C' are contained in A(D) \ Bp C
Amaj(H), in particular |[Ag (z1,z2)| > %("12) > % holds, by the definition of
Amaj(H) and therefore, there is an af € Ay (z1,72). An l-cycle Cy in H on
the vertex set of C, which contains af, can be constructed as follows. We start
with a 1-path zjai2e := z1al29 in H. Let z1a122---a;_12; be an (i — 1)-path
in H for an ¢ € {2,...,1} such that the following conditions are met:

(1) ARRERER 2} S {1‘1,...,:61'}.

(2) 21 =1, z; = 2; and a1 = al.

(3) If TiTiy1 € Bp, then a;_4 75 T($i$i+1).
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Suppose that ¢ < I — 2. If z;x;41 € Bp, we define a; := r(xz;x;41) and
Zi+1 = Z;+1 and gain an i-path z1a122---a;2;41 in H, because for all j €
{1,...,i—2} we have a; # aj, since a; € Ay (x;,zi11), a; € Au(z;,z;11) and

xi, Tig1, ¢; and x 41 are pairwise distinct. Furthermore, a;—1 # r(z;zi41) = a;
holds by condition (3) for z1a122 - - a;—1z;. Obviously, z1a122 - - a;z;+1 meets
conditions (1) and (2). Condition (3) is met, since r is injective by assumption.

If TiTir1 € A(D) \ Bp and Tir1Ti42 € A(D) \BD, then |AH(.Ti,.Ti+1)| >2
and thus, there is an arc a; € Ay (x;, xit1) \ {ai—1}. With z;41 := 2,41, the
path zjaiz9---a;z;41 is a suitable é-path in H, since condition (3) obviously
holds.

If ;2,41 € A(D) \ Bp, but z;112,42 € Bp, we define a := r(x;412:42).
If there is an a; € Ay (i, zi4+1) \ {ai—1,a}, we proceed as in the case where
Tip1Zip2 € A(D) \ Bp. Otherwise, we consequently have Ap(z;,x;41) =
{a;—1,a} and hence |Ag(xiy1,2;)] = 1. Then a;—1 = (wi—1, 2, ®it1) and
a = (x;,xit+1,Ti+2) hold and there exists an arc b € Ay (x;y1,x;). Therefore,
we have a # a; for all j € {1,...,i — 1}, by representation of a, b # a; for all
j € {1, . .,i — 2}, since b € AH(zi+17xi)7 a; € AH(SCj,ZL'jJrl) and Ly i1, Ly
and z;+1 are pairwise distinct, and b ¢ {a;_1,a}, since b € Ay (x;41,x;) and
ai—1,a € Apg(x;, 2;41). We gain an (i + 1)-path z1a1 -+ - 2;-10;,-1 %41 bx;02, 42
in H, which obviously meets conditions (1) and (2). Condition (3) holds, since
a = r(x;412i12) and r is injective by assumption.

Suppose that ¢ = I — 1. Then the same arguments give us an (I — 1)-path
z1a1%22 -+ -aj—12; in H, which meets the conditions above, or a suitable I-cycle
Cy = z1a1 -+ - zi_1a;_1x;br;_1a0z1 in H. Note that in the latter case, we have
r;x1 € Bp. As a direct consequence, we have x1x2 € Bp and therefore,
a = r(zx1) # r(z122) = @ = ay, since r is injective by assumption. In the
case where ¢ = [, we find an arc a;j € Ag(z;,21) \ {a1—1,a1} and thereby a
suitable l-cycle Cy = z1a;1 - - - z1a;21 in H, or otherwise, a corresponding [-cycle
Cy = z9a9 - z1—1a;—121bz101 22 in H, analogously. O

3. Main results

Theorem 3.1. Let H = (V, A) be a strong k-hypertournament onn > k+2 > 5
vertices and let C' be a Hamiltonian cycle in H. Then C contains at least three
pancyclic arcs.

We will give the proof of Theorem 3.1 in form of four lemmas, where Lemmas
3.4 and 3.5 cover almost all hypertournaments and in Lemmas 3.7 and 3.6 the
result is shown for a finite number of rather tedious exceptions. But first, let
us consider the following corollaries to Theorem 3.1.

Corollary 3.2. Let H = (V, A) be a strong k-hypertournament onn > k+2 >
5 vertices. Then H contains at least three pancyclic arcs.

Furthermore, Theorems 1.4 and 1.5 allow for a better bound of the pancyclic
arcs contained in a d-edge-connected hypertournament.
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Corollary 3.3. Let H = (V, A) be a d-edge-connected k-hypertournament on
n vertices, with k =3 andn > 14d+1 or4 <k <7 andn > 24d+ 1+ k or
k>8 andn >2d+ k+ 1. Then H contains at least 3d pancyclic arcs.

Lemma 3.4. Let H = (V, A) be a strong 3-hypertournament on n > 5 vertices
and let C be a Hamiltonian cycle in H. Then C' contains at least three pancyclic
arcs.

Proof. Let C' = x1a129 - - - xpayx1. We consider the C-majority-digraph D =
M(H,C) of H. By Theorem 2.5, C := x129- - xypw1 contains at least three
arcs that are pancyclic in D. Let x; 2,41 be such an arc for an ig in {1,...,1}.
We will show that a;, is pancyclic in H. Let Cy = y1---yiy1 be an l-cycle
in D that contains x;,x;,+1 for an | € {3,...,n — 1}. We define Bp :=
{z122, 2223, ..., Tp—1Zn,Tpx1} and r : Bp — A(H), zizit1 — a; for all
in {1,...,n}. By Definition 1.8 of D, the conditions of Lemma 2.9 are met
and thus, there is an l-cycle Cy in H, that contains a;,. Since z;,x;,+1 and
l€{3,...,n— 1} were arbitrarily chosen, C' contains at least three pancyclic
arcs. Il

Lemma 3.5. Let H = (V, A) be a strong k-hypertournament onn > k+2 > 6
vertices, with (n, k) ¢ {(6,4),(7,4),(7,5)} and let C be a Hamiltonian cycle in

H. Then C contains at least three pancyclic arcs.

Proof. Let C' = xjaix2a2 - x,. We consider the C-majority-digraph D :=
M(H,C) of H. By Lemma 2.6 we have |Ag(z,y)| > [4 (Z:gﬂ > n for all
Y € Amaj(H).

D is a strong semicomplete digraph. By Theorem 2.5, the Hamiltonian cycle
C = T1x2 -+ - Ty in D contains three pancyclic arcs. Let x;,2;,4+1 be such an
arc for an ig € {1,...,1}. We will show that a;, is pancyclic in H. Let C, =
y1+--yiy1 be an l-cycle in D that contains z;,x;,4+1 for an l € {3,...,n— 1}.
Furthermore, let Iy C {1,...,l} be the set of indices ¢ such that y;y;+1 =
T;() Ty for a j(i) € {1,...,n}. For an i € Iy we chose b; := aj(;). By
Definition 1.8 of D, these b; are pairwise distinct and we have |Ag (y;, yj+1)] >
[A(p=2)] > nforall j € {1,...,1}\ Ip. Thus, we can chose b; € A (y;,yj+1)
for all j € {1,...,1} \ Iy, such that all b; for ¢ € {1,...,1} are pairwise distinct
and therefore, a;, is contained in the [-cycle y1b1y2b2 - - - y1byr in H. O

Lemma 3.6. Let H = (V, A) be a strong 4- or 5-hypertournament on T vertices
and let C be a Hamiltonian cycle in H. Then C' contains at least three pancyclic
arcs.

Proof. Let C = z1a1 - - - zgagrrazri. We consider the C-majority-digraph D :=
M(H,C). Let to denote the smallest integer t € {1,...,5}, such that D—V(T)
is strong for all (¢ — 2)-subpaths of xjxozsxsx5262721 but there exists such
a (t — 1)-subpath T (without loss of generality, we may assume that T =
Ty ---1y,), such that D — V(T') is not strong.
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(%) If z,y € V are distinct vertices with xy ¢ Aglaj(H) U{zipiz; |1 <
i < T}, then |Ag(x,y)| > %(2:3) + 1 = 6. This is particularly true for
distinct vertices z,y € V(D) \ V(T), such that zy ¢ {x;412; |1 <i <
7} and y is contained in a component of the strong decomposition of

D — V(T that precedes z.

Case 1. tg = 1.

By Definition 1.8 of D, the strong decomposition of D — 1 does not contain
components of cardinality 2 and for all 2 < i < j < 6, the vertex x; is either
contained in the same component as x; or in one that succeeds it. Therefore,
we only need to consider the following subcases.

Case 1.1. The first or the last component (without loss of generality, we
may assume the last) of the strong decomposition of D — z; contains ex-
actly 1 vertex. For all i € {2,...,5}, the arcs a; and a7 are contained in the
(i 4+ 1)-cycle x1ag - - - z;ax7a72z1 in H for an a € Ay (z;,27) \ {a1,...,ai—1,a7}
and therefore are pancyclic. Note, that |Ag (x5, 27)| > 6, by (x). Let ig :=
min{i | 2 <i <6, ziz € AS,(H)}. For all i € {2,...,io}, the arc ay,
is contained in the (3 + ig — i)-cycle zyax;a; - - - ;a0 iy +1b21 for an arc a €
Ap(z1,2)\{ai,...,a;,} and an arc b € Ag(xiy+1,21) \{as,...,ai,,a}. Note,
that |Ag (z1,23)] > 3(}23)+1 = 6, ifig = 6, since z3a1 ¢ AS,,;(H), by the defi-
nition of ig. Furthermore, for alli € {io+1,...,5}, a;, is contained in the (i+1)-
cycle z1aq - - - wjaxrarzy in H for anarca € Ay (z;,27)\{a1,...,a;-1,a7}, since
|Apm(zi,27)| > 6, by (x). Thus, a;, is pancyclic as well.

Case 1.2. The strong decomposition of D — x; contains two components of
cardinality 3. a1 and a7 are contained in the 3-cycle x7a7x1a1x2a27 in H for an
arc a € Ay (x2,27) \ {a1,ar}. Since D[{zs,xs,x7}] is strong, we consequently
have |Ag(z7,25)| > 5. Thus, there is an arc a € Ay (27, z5) \ {as, a6} and ag

is contained in the 3-cycle xsasxsasxraxrs in H. For all i € {2,...,4}, a1, a6
and a7 are contained in the (i + 2)-cycle x1a; - z;ax6a6z7a721 for an arcs
a € Ag(zi,z6) \ {a1,...,ai—1, a6, a7}, which exists by (x). Therefore, a1, ag
and a7 are pancyclic.

Case 2. tg = 2.

Without loss of generality, we may assume that the last component of the
strong decomposition of D — {x1, 22} contains exactly 1 vertex. Since D —xy is
strong, we have z7xy € Aglaj(H). as is contained in the 3-cycle xrazxsasxsbay
in H for arcs a € Ag(x7,22) \ {az} and b € Ag(xs,x7) \ {az,a}. If x321 €
Agaj(H), then ap is contained in the 3-cycle z1a1x2a0x3ax1 in H for an a €
Ag(xs,x1) \ {a1,a2}. If z125 € Agaj(H), then a7 is contained in the 3-cycle
xrarxiarzbry in H for arcs a € Ap(z1,23) \ {ar} and b € {a7,a}. For all
1 €{3,...,5}, a1, a2 and ay are contained in the (i+1)-cycle z1a; - - - x;ax7a721
in H for an arc a € Ay (x;,z7) \ {a1,...,ai—1,a7}, which exists by (*). Thus

as and a; or a; are pancyclic.
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Let i := min{i | 3 < i < 6, zip112 € A, ;(H)}. Then ay, is contained
in the 3-cycle zoax;,a;,xiy+1bx2 in H, for arcs a € Ag(xa,x4,) \ {ai,} and
b e Apg(zig41,22) \ {ai,,a}. If ig = 3, then a;, is contained in the 4-cycle
X2G2%iy Ui Tig+10L7bxe in H for arcs a € Ap(xiy+1,27) \ {a2,a;,} and b €
Ap(z7,22) \ {a2,a;,,a}. For all i € {4,5}, a;, is contained in the (i + 1)-cycle
T2y 4y + + + Tiaxrazrra1xe in H for an arc a € Ay (x;,z7) \ {a1,...,a:,ar},
which exists by (). Suppose that igp > 3. Then a;, is contained in the 4-cycle
xgazio,laio,lscioaiozi0+1bz2 in H for arcs a € AH(ZL'Q, ZL'Z'O,1) \ {aiofl, aio} and
be Ag(xigt1,o2) \ {@ig—1, iy, a}, in the 5-cycle zocriasxsasrsasrrdrs in H
for arcs ¢ € Ap(xo,x4) \ {a4,a5,a6} and d € Ap(x7,22) \ {a4,as,as,c} and
in the 6-cycle xaexqasxsasx5a6z7arr1a122 in H for an arc e € Ag(xa,x4) \
{a1, a4, as,a¢s,ar}, which exists, since there are no arcs from x4 to x2 in D,
by the definition of ig and thus, |Ay (22, z4)| > %(2:5) + 1 = 6. Therefore,
ai, € {as, a4, as,ap} is the third pancyclic arc.

Case 3. tg = 3.

Without loss of generality, we may assume that the last component of the
strong decomposition of D — {1, z2,x3} contains exactly 1 vertex. Since D —
{x1, 2} is strong, we have x7xs € Aglaj(H). For all ¢ € {4,...,6}, the arc as
is contained in the (i — 1)-cycle zsas - - - x;ax7brs in H for arcs a € Ay (x;, x7)\
{as,...,a;—1} and b € Ag(z7,23) \ {as,...,a,—1,a}. With the exception of
i = 4, the arc a4 is also contained in said cycles. Furthermore, as and a4
are contained in the 6-cycle x3azria4x502x707T1012202x3 in H for an arc a €
Apg(xs,27) \ {a1, a2, as, aq, ar}, which exists by (x). Therefore, ag is pancyclic.

Let i := min{i | 4 < i < 6, z123 € AS,;(H)}. Then ay, is contained
in the 3-cycle xszax;,ai,xi,+1bxrs in H for arcs a € Apy(xs,z;,) \ {a;} and
b € Ag(mig+1,23) \ {aiy,a}. If ig =4, then we have already shown a;, to
be pancyclic. Suppose that ig € {5,6}. Then a;, is contained in the 4-cycle
x3ars5a5Lea6T7bxs in H for arcs a € Ap(xs,x5) \ {as, a6} and b € Ap(x7,23)\
{as,ap,a}, it is contained in the 5-cycle x3azxia4x5a5x6a6x7cxs in H for an
arc ¢ € Ag(x7,x3) \ {as, aq,as5,a6} and finally, it is contained in the 6-cycle
x3drsasTeastrarriaixaasxs for an arc d € Ap(xs,xs) \ {a1,a9,as,a6,ar},
which exists by the definition of iy and (). Thus, a;, € {a4, a5, as} is pancyclic.

Since D — {xg,z3} is strong, we have x1z;, € AS,;(H) for an index jo €
{4,5,6}, such that z;, is contained in the first component of the strong de-
composition of D — {x1,x2,x3}. a7 is contained in the 3-cycle z7arxiax;, by
in H for arcs a € Ag(x1,25,) \ {a7} and b € Apy(zjy,z7) \ {a7,a}. For
jo € {4,5}, ar is contained in the 4-cycle zrarxiaxj,aj,xj,+1bx7 in H for
arcs a € A (x1,z5,) \ {ar,aj,} and b € Ag(zjo+1,27) \ {ar, a5y, a}. If jo =6,
then xg is contained in the first component of the strong decomposition of D —
{1, 22, 23} and thus, zex4 € AS,;(H). Therefore, a7 is contained in the 4-cycle
xrarziaz,bracrr in H for arcs a € Ap(z1,x5,)\{ar}, b € Au(xjy,z4) \ {a7,a}
and ¢ € Ay (x4,27) \ {ar,a,b}. Furthermore, for all ¢ € {4,5}, there exists an
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a € Ag(x;,z7)\{a1,...,a;—1,ar}, such that a7 is contained in the (i +1)-cycle
xrarxiay - - xiaxy in H, by (x). Hence, a7 is pancyclic as well.

Case 4. tg = 4.

We have z7x4, 125 € Agaj (H), since D — {x1,z2,23} and D — {xa, 23,24}
are strong, by the definition of .

Ifxyx ¢ Agaj(H), we also have x40, 2321 € Agaj(H), since D—{xs, xg, 7}
is strong by the definition of #y. a4 is contained in the 3- and in the 4-cycle
z4a425027bxy and ryaqwsasxreacrrbay in H, for arcs a € Ag (x5, x7)\ {as} and
b e Ap(x7,24)\{aq,as,a6,a}. a7 is contained in the 3-cycle x7a721axsbry and
in the 4-cycle zrarziaxsaszeagry in H for arcs a € Ay (x1,x5) \ {as, a6, a7}
and b € Ay (x5,27) \ {az,a}. Furthermore, a4 and a7 are contained in the 5-
cycle zqa45a5T60627a701024 in H for an a € Ay (x1,x4) \ {a4, a5, ag, a7} and
in the 6-cycle zqa4x5brrarxiaixsasrsaszy in H for an arc b € Ag(xs,27) \
{a1,as,as, as,ar}, which exists by (x). Therefore, ay and a7 are pancyclic.

If zgxy ¢ Agaj(H), then ag is contained in the 3-cycle xgagrrarsibarg and
in the 4-cycle zgasrraxsasrsasze in H for arcs a € Ay (x7,24) \ {a4,as,a6}
and b € Ay (x4, 26)\ {a4,as,as,a}. Furthermore, ag is contained in the 5-cycle
TaeT7a7T10T4042505%6 Tor an a € Ap(x1,24) \ {a4, a5, a6,a7} and in the 6-
cycle zgagxrarriairoasxsasrsbae for some b € Ay (xy, x6)\{a1,a2,as,ag,ar},
which exists by (x). Thus, ag is the third pancyclic arc.

Suppose that zexry € AS (H). For all i € {6,7}, as is contained in the

maj

(i — 3)-cycle xsas - - - wjaxqaqws in H for an a € Ag(x;,x4) \ {a4,...,a;-1}.
Furthermore, as is contained in the 5-cycle xsasrsasrrriazrsasxs for an a €
Ap(z1,24) \ {a4,...,a7}. Since a5 contains only four vertices, we have a5 ¢

Ap(xe,x4) N A (zg,x2) N Ap(xs,21) N Ag(z1,25). Without loss of gener-
ality, we may assume that as ¢ Ag(x1,x5). Then as is contained in the
6-cycle xsasrgaxsbroasxscridrs in H for arcs a € Ay (xg,x4) \ {az,a5}, b €
Ap(zg,22) \ {a2,a5,a}, ¢ € Ag(zs,21) \ {a2,as,a,b} and d € Ag(x1,25) \
{ag, as,a,b, c}. Therefore, as is pancyclic.

Suppose now that x4z € Agaj(H). For arcs a € Ag(xs,27) \ {as} and
b € Ap(z7,24) \ {aa,as5,a6,a}, ay is contained in the 3-cycle xja4x5027b14
and in the 4-cycle xja4x505x60627bx4 in H. a7 is contained in the 3- and
the 4-cycle x7arx1ax5bxy and rrarriarsasxrgagxry in H, respectively, for arcs
a € Ag(x1,x5) \ {as,a6,a7} and b € Ay (x5, 27) \ {ar,a}.

If z123 € Aglaj(H), then as is contained in the 3-cycle xsaszzsaxibxs and
in the 4-cycle zsazzsaxiaizeasrs in H for arcs a € Ay (xq,21) \ {a1,a2,a3}
and b € Ap(x1,23) \ {as,a}. Furthermore, a3, a4 and a; are contained in the
5-cycle xsasrqaqsrsarrarxibrs and in the 6-cycle xsasxqaqrsar7072101T20973
in H for arcs a € Ag(xs,27) \ {a1,a2,as,a4,ar}, which exists by (), and
be Ay(z1,z3) \ {as,aq,ar,a}. Thus, as,as and a7 are pancyclic. If zoxy €
Agaj(H ), then a1, a4 and a7 are pancyclic by analogous arguments.

Suppose that x123, 2224 ¢ Agaj(H). Then a; and a9 are contained in the
3-cycle xya1x2a0r3az1 and in the 4-cycle xiaix2a2z3a324bx1 in H for arcs
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a € Ap(xs,z1) \ {a1,a2} and b € Ag(zs,21) \ {a1,a2,a3}. a3 is contained in
the 3-cycle xoasx3a3r4az2 and in the 4-cycle zoasxsaszribriaixe in H for an
a € Apg(x4,22) \ {a2,a3} and an arc b € A (x4,21) \ {a1,a2,a3}.

If x326 € Agaj(H), then the three arcs a1, as and a7 are contained in the 5-
cycle xya1x2a0r30T6a6T7a7x1 and in the 6-cycle xiairsasrsasriasxsbrraray
in H for an a € Ag(x2,24) \ {a1,02,a6,a7} and an arc b € Ap(rs,x7) \
{a1,as,as, a4, a7}, which exists by (x). Hence, a1, a2 and a7 are pancyclic. If
Texo € Agaj(H ), then as, a3 and a4 are pancyclic by analogous arguments.
Thus, we may assume that z3zg, zezo ¢ AS,;(H). Consequently, there are
arcs a € Ap(xa,x6) \ {a1,a3}, b € Ap(zg,x3) \ {a1,as3,a}, ¢ € Apg(zq,21) \
{a1,as3,a,b} and d € Ag(x5,27) \ {a1, a2, a3, aq,az}, by (%), such that a; and
a3 are contained in the 5-cycle xiaizsaxgbrsasrice, as well as in the 6-cycle
T1a1T2a0x3a3T40425dxrarx, in H. Therefore, a; and as are pancyclic.

If 2723 € Agaj(H), then, for an a € Ay (x7,23) \ {as,a4,as,a6}, a4 is con-
tained in the 5-cycle zsasria4r505T650627023 and it is contained in the 6-cycle
2101%202%303T4a4T5bx7a7x1 in H for an arcb € Ay (x5, x7)\{a1, az, as, aq, a7},
which exists by (x). Hence, a4 is pancyclic as well.

For z7xs ¢ Agaj (H), ag is contained in the 5-cycle xoaszsazrrbricriarxs
and in the 6-cycle z1a1z2a9x3a304a4w5dx7a721 in H for an a € Ag(xs,x7) \
{a1,a2},an arcb € Ay (x7,24)\{a1,a2,a}, an arc c € Ag (x4, 21)\{a1,a2,a,b}
and an arc d € Ag(zs,27) \ {@1,a2,a3,a4,a7}, which exists by (*). Thus, as
is the third pancyclic arc.

Case 5. tg = 5.
By the definition of ty, we have xsx1, 42, T523, T4, T7T5, T1Xg, T2y €
C
Amaj (H>

We will show the following: For all i € {1,...,7} and | € {3,4,5}, the
arc a; is contained in an [-cycle in H. Without loss of generality, we may
assume that ¢ = 1. Then ay is contained in the 3-cycle zia1x2a2x3ax1 for an
a € Ag(zs,z1) \ {a1,a2}. If 327 € AS,;(H), then a; is contained in the 4-
cycle zya122a2230x7a7x1 in H for an a € Ay (xs,x7) \ {a1,az,ar7}. Otherwise,
ay is contained in the 4-cycle z1a1zeax7brsce; in H for an a € Ag(xa,x7) \
{a1}, an arc b € Ay (x7,23) \ {a1,a} and an arc ¢ € Ag(xs,x1) \ {a1,a,b}.
Furthermore, a; is contained in the 5-cycle x1a1x2ax7bxs5cr3dr; in H for arcs
a € Ap(xa,27) \ {a1}, b € Ap(x7,25) \ {a1,a}, c € Ag(xs,23) \ {a1,a,b} and
de Ag(xs,z1) \ {a1,a,b,c}.

To prove the existence of suitable 6-cycles, we will show the following: If
rix; ¢ Aglaj(H) for a pair of indices 4,5 € {1,...,7}, such that j —i €
{3, —4}, then a; is contained in a 6-cycle in H. Without loss of generality,
we may assume that ¢ = 1 and j = 4. Then a; is contained in the 6-cycle
r1a122027bxscrsazxsdry for arcs a € Ag(xe,x7) \ {a1,as}, b € Ag(xr,25) \
{a1,as3,a}, c € Apg(xs,23) \ {a1,a3,a,b} and d € Ay (xq,21) \ {a1,as3,a,b,c},
which exists by (). Thus, if there are three such pairs, we are finished.
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Otherwise, there are indices i1,142,71,j2 € {1,...,7}, such that io —i; €
{1,—6}, Jj1— 11 € {3,—4}, Jo — g € {3,—4} and Tiy Ty, TinTj, € Arcr;aj(H)‘
Without loss of generality, we may assume that i; = 1,45 = 2,1 = 4 and jo = 5.
Furthermore, we have ag ¢ Ap (21, 24)NAp (24, 22)NAg (22, 25), since ag would
otherwise contain six vertices, a contradiction. Without loss of generality, we
may assume that ag ¢ Ay (22, x5). Therefore, as, ag and a7 are contained in the
6-cycle xjaxsbracrsasreasrrazry in H for arcs a € Ap(x1,24) \ {as, ag, ar},
be Ag(xa,x2) \ {as,a6,a7,a} and ¢ € Ay (z2,25) \ {as, as, ar, a,b}. Thus, we
have found three pancyclic arcs. (I

Lemma 3.7. Let H = (V, A) be a strong 4-hypertournament on 6 vertices and
let C' be a Hamiltonian cycle in H. Then C contains at least three pancyclic
arcs.

Since it is similar in structure to, but far exceeding the length of the proof
of Lemma 3.6, we will omit our proof of Lemma 3.7.
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