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PANCYCLIC ARCS IN HAMILTONIAN CYCLES OF

HYPERTOURNAMENTS

Yubao Guo and Michel Surmacs

Abstract. A k-hypertournament H on n vertices, where 2 ≤ k ≤ n,
is a pair H = (V,A), where V is the vertex set of H and A is a set of
k-tuples of vertices, called arcs, such that for all subsets S ⊆ V with
|S| = k, A contains exactly one permutation of S as an arc. Recently, Li
et al. showed that any strong k-hypertournament H on n vertices, where
3 ≤ k ≤ n − 2, is vertex-pancyclic, an extension of Moon’s theorem for
tournaments.

In this paper, we prove the following generalization of another of

Moon’s theorems: If H is a strong k-hypertournament on n vertices,
where 3 ≤ k ≤ n−2, and C is a Hamiltonian cycle in H, then C contains
at least three pancyclic arcs.

1. Introduction and terminology

A directed k-hypergraph D on n vertices, for integers n and k ≥ 2, is a
pair D = (V,A), where the cardinality of the vertex set V of D is n and the
arc set A of D is a subset of V k, such that no arc in A contains the same
vertex in V twice. If not otherwise specified, we will denote the vertex set (arc
set, respectively) of an arbitrary directed k-hypergraph D by V (D) (A(D),
respectively).

For the rest of this section, let D = (V,A) be a directed k-hypergraph on n
vertices. For two distinct vertices x, y ∈ V , AD(x, y) ⊆ A(D) denotes the set
of all arcs a = (x1, . . . , xk) ∈ A, such that there are indices 1 ≤ i0 < i1 ≤ k
with xi0 = x and xi1 = y. An arc a = (x1, . . . , xk) ∈ A is called an out-arc of
the vertex x1.

Let X ⊆ V . Then D[X ] := (X,A∩Xk) is the subhypergraph of D induced by

X (note that A(D[X ]) = ∅ if |X | < k) and D −X denotes the subhypergraph
D[V (D) \X ]. We write D − x instead of D − {x}.
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A (v1, vl+1)-path of length l or an l-path from v1 to vl+1 in D is a sequence
P = v1a1v2 · · · alvl+1, such that v1, . . . , vl+1 ∈ V are pairwise distinct vertices,
a1, . . . , al ∈ A are pairwise distinct arcs and ai ∈ AD(vi, vi+1) holds for all
1 ≤ i ≤ l. An l-cycle in D is defined analogously, with the exception of
v1 = vl+1. For convenience, we will consider vl+1 to be v1 in the context of
an l-cycle C = v1 · · · vlv1. Let P = x1a1 · · · al−1xl be a path in D and let
xi, xj ∈ V (P ) be two vertices with i ≤ j. Then xiPxj denotes the unique
(xi, xj)-subpath of P . xCy is defined analogously for a cycle C in D and
vertices x, y ∈ V (C). In the case k = 2, if P is an (x, y)-path and Q is an
(v, w)-path in D such that V (P ) ∩ V (Q) = ∅ and AD(y, v) 6= ∅, then PQ is
the path obtained by appending the path Q to P . An n-cycle ((n − 1)-path,
respectively) in D is called Hamiltonian or Hamiltonian cycle (Hamiltonian

path, respectively) in D.
A vertex (an arc, respectively) of D is pancyclic, if it is contained in an

l-cycle for all l ∈ {3, . . . , n}. D is called pancyclic, if it contains an l-cycle for
all l ∈ {3, . . . , n} and vertex-pancyclic, if all of its vertices are pancyclic. A
vertex is called out-arc pancyclic, if all of its out-arcs are pancyclic.

A digraph D is strongly connected or strong, if there is an (x, y)-path in D
for all distinct vertices x, y ∈ V . A strong component D′ of D is a maximal
induced subhypergraph of D which is strong.

A digraph D is called d-strong, if |V (D)| ≥ d+1 holds and D−U is strong
for all U ⊆ V (D) with |U | < d. Two paths in D are edge-disjoint, if they do
not have a shared arc. A digraph D is called d-edge-connected, if there are d
edge-disjoint (x, y)-paths in D for all distinct vertices x, y ∈ V .

A k-hypertournament H is a directed k-hypergraph, such that for all subsets
S ⊆ V (H) with |S| = k, A(H) contains exactly one permutation of S as an
arc. A tournament is a 2-hypertournament.

It is the strong structure of tournaments which has made them the best
studied class of digraphs. It is only natural to try to reduce this structure to
its core properties necessary to maintain at least most of the results for tour-
naments, while broadening the scope of considered directed hypergraphs. One
of the generalizations of tournaments is the class of directed 2-hypergraphs
which contain a spanning tournament as a subhypergraph, called semicomplete

digraphs. In other words, every pair of distinct vertices of a semicomplete di-
graph is connected by at least one arc. Many results for tournaments also hold
for the larger class of semicomplete digraphs. Because of the similarities in their
definition, one would hope that the same is true for the class of hypertourna-
ments. But there are some obstacles which arise from the loosened structure
of hypertournaments and the fact that an arc no longer connects exactly two
vertices. To give an example, we will first add some notation for the case k = 2.

In this case, we will omit the arcs in our notation of a path or a cycle, since
the sequence of vertices imply the arcs connecting them. Furthermore, we will
use xy ∈ A(D) and sometimes x → y instead of (x, y) ∈ A(D). For two disjoint
sets X,Y ⊆ V (D), X ⇒ Y denotes that there is no arc from a vertex in Y to
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one in X in D. By X → Y , we denote that xy ∈ A(D) for all x ∈ X and all
y ∈ Y .

A strong property of tournaments (and semicomplete digraphs) and integral
part of many proofs is the fact that the strong components D1, . . . , Dr of D are
pairwise disjoint and can be ordered, such that both Di ⇒ Dj and Di → Dj

hold for all 1 ≤ i < j ≤ r. This unique order is called the strong decomposition

of D.

Example 1.1. Let the 4-hypertournament H4 := (V,A) be defined through

V := {x1, . . . , x5} and A := {a1, a2, a3, a4, a5}, where

a1 := (x3, x4, x1, x2),

a2 := (x5, x3, x2, x1),

a3 := (x4, x5, x2, x1),

a4 := (x4, x5, x3, x1),

and a5 := (x4, x5, x2, x3).

H4 is not strong, since, for example, there is no path from x1 to {x4, x5}.
Suppose that there is such a path P . Obviously, P starts with the subpath
P ′ = x1a1x2a5x3. Now we see that a1, the only arc from x3 to {x4, x5},
is already contained in P ′ and thus, we cannot extend P ′, a contradiction.
Furthermore, for all X ⊆ V such that 2 ≤ |X | ≤ 4, A(H4[X ]) contains at most
one arc. Therefore, H4[X ] is not strong. Consequently, the strong components
of H4 are its vertices and since there are arcs from x1 to x2 and vice versa,
there is no strong decomposition of H4.

Even if we weaken the definition of a strong component of a hypertourna-
ment, we still do not obtain a suitable structure. A strong∗ component of D
is a maximal induced subhypergraph D′ such that there is an (x, y)-path in D
for all distinct vertices x, y ∈ V (D′).

Since H4 contains the cycles x1a1x2a5x3a2x1 and x2a5x3a1x4a4x5a2x2 but
no path from x1 to {x4, x5}, the vertex sets of the strong∗ components of H4

are {x1, x2, x3} and {x2, x3, x4, x5} and are therefore not disjoint, much less is
there a strong∗ decomposition of H4.

To account for this fact and to restore some of the structure, in 1997, Gutin
and Yeo [3] introduced the majority digraph of a hypertournament.

For a k-hypertournament H = (V,A) on n vertices, the majority digraph

M(H) = (V,Amaj(H)) of H is a digraph on the same vertex set and for a
pair x, y ∈ V of distinct vertices, xy is in Amaj(H) if and only if |AH(x, y)| ≥
|AH(y, x)|, which is equivalent to

|AH(x, y)| ≥
1

2

(

n− 2

k − 2

)

.

By definition, there is an arc between every pair of distinct vertices, thus M(H)
is a semicomplete digraph.
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This substructure allowed for Gutin and Yeo to prove the following general-
izations of Redei’s [9] and Camion’s [1] theorem, respectively, two of the most
fundamental results on tournaments.

Theorem 1.2 ([3]). Every k-hypertournament on n > k ≥ 2 vertices contains

a Hamiltonian path.

Theorem 1.3 ([3]). Every strong k-hypertournament on n vertices, where 3 ≤
k ≤ n− 2, contains a Hamiltonian cycle.

Furthermore, Gutin and Yeo posed the question whether Moon’s theorem
[6], which states that every strong tournament is vertex-pancyclic, could be
extended to hypertournaments as well. In addition to giving some sufficient
conditions for a hypertournament to be vertex-pancyclic, in 2006, Petrovic and
Thomassen showed the following.

Theorem 1.4 ([8]). Let H be a d-edge-connected k-hypertournament on n
vertices. If k = 3 and n ≥ 30d + 2 or k ≥ 4 and n ≥ k + 1 + 24d, then H
contains d edge-disjoint Hamiltonian cycles.

Amongst other results, in 2009, Yang gave an improvement of this theorem.

Theorem 1.5 ([10]). Let H be a d-edge-connected k-hypertournament on n
vertices. If k = 3 and n ≥ 14d + 1 or k ≥ 8 and n ≥ k + 2d + 1, then H
is d-edge-disjoint vertex-pancyclic, i.e., every vertex of H is contained in d
edge-disjoint l-cycles for all l ∈ {3, . . . , n}.

Recently, Li et al. showed the following generalization of Moon’s theorem
and that its bound is best possible, thereby answering Gutin and Yeo’s initial
question.

Theorem 1.6 ([5]). Every strong k-hypertournament with n vertices, where

3 ≤ k ≤ n− 2, is vertex-pancyclic.

Goal of this paper, is the generalization of another of Moon’s theorems on
tournaments.

Theorem 1.7 ([7]). Let T be a strong tournament. Then there is a Hamilton-

ian cycle in T that contains at least three pancyclic arcs.

In fact, we will show that every Hamiltonian cycle of a hypertournament
contains at least three pancyclic arcs.

Since the majority digraph of a strong hypertournament H is not necessarily
strong, much less contains a specific Hamiltonian cycle corresponding to one
in H , we will introduce a modified substructure, better suited for our own
purposes.

Definition 1.8. Let H = (V,A) be a strong k-hypertournament on n ≥ k ≥ 3
vertices and let C = y1a1y2 · · · ynany1 be a Hamiltonian cycle in H . We define
the C-majority-digraph M(H,C) := (V,AC

maj(H)) of H through

AC
maj(H) := (Amaj(H)\ {yi+1yi, y1yn | 1 ≤ i < n})∪{yiyi+1, yny1 | 1 ≤ i < n}.
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For an i ∈ {1, . . . , n−1} we call ayiyi+1
:= ai the C-arc corresponding to yiyi+1.

ayny1
:= an corresponds to yny1.

Remark 1.9. In general, the C-majority-digraph of H does not have the prop-
erty Amaj(H) ⊆ AC

maj(H). It still is semicomplete by definition and strong,
since it contains the Hamiltonian cycle C = y1 · · · yny1.

Let us now consider the following preliminaries.

2. Preliminaries

First of all, we note that Moon’s theorem holds for semicomplete digraphs.

Corollary 2.1. Every strong semicomplete digraph is vertex-pancyclic.

Before we show the generalized version for hypertournaments, we will prove
a stronger version of Theorem 1.7 for semicomplete digraphs. We will use the
following results in the process.

Theorem 2.2 ([2]). Let T be a 2-strong tournament. Then T contains at least

three out-arc pancyclic vertices.

Theorem 2.3 ([11]). Let T be a non-strong tournament and let T1, . . . , Tr be

the strong decomposition of T . Then there is an (x, y)-path of length l in T for

all 1 ≤ l ≤ |V (T )| − 1, x ∈ V (T1) and y ∈ V (Tr).

Corollary 2.4. Let D = (V,A) be a non-strong semicomplete digraph, let

D1, . . . , Dr be the strong decomposition of D, 1 ≤ i < j ≤ r, x ∈ V (Di),
y ∈ V (Dj) and l ∈ {1, . . . , |

⋃

i≤s≤j V (Dr)| − 1}. Then there is an (x, y)-path
of length l in D.

Theorem 2.5. Let D = (V,A) be a strong semicomplete digraph and C a

Hamiltonian cycle in D. Then C contains at least three pancyclic arcs.

Proof. Let C = x1x2 · · ·xnx1. Without loss of generality, we may assume that
D is a tournament, since we can destroy all 2-cycles in D such that the resulting
tournament still contains the Hamiltonian cycle C. If D is 2-strong, D contains
at least three out-arc pancyclic vertices, by Theorem 2.2. Suppose that D is
not 2-strong, x1 is a cut-vertex and D1, . . . , Dr is the strong decomposition of
D − x1. Since x2x3 · · ·xn is a path in D − x1, x2 is obviously contained in
D1 and xn in Dr. By Corollary 2.4, there is an (x2, xn)-path P l

x2,xn
of length

l in D − x1 for all l ∈ {1, . . . , n − 2}. Thus, x1x2 and xnx1 are contained in
the l-cycle x1P

l−2
x2,xn

x1 in D for all l ∈ {3, . . . , n} and are therefore pancyclic.

Without loss of generality, we may assume that |V (Dr)| ≤ ⌊n−1
2 ⌋.

We define the following indices.

i0 := max{i | 2 ≤ i ≤ n− 1, x1xj ∈ A for all 2 ≤ j ≤ i}.
i1 := min{i | 2 ≤ i ≤ n, xi ∈ V (Dr)}.
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We obviously have V (Dr) = {xj | i1 ≤ j ≤ n} and i1 ≥ ⌈n−1
2 ⌉+ 2. xi0xi0+1 is

contained in the l-cycle x1xi0+3−l · · ·xi0xi0+1x1 in D for all l ∈ {3, . . . , i0+1}.
If i0 ≥ ⌊n−1

2 ⌋+1, then we have n+2−i0 ≤ ⌈n−1
2 ⌉+1 ≤ i0+2. Thus, xi0xi0+1 is

contained in the l-cycle x1xn+2−l · · ·xnx1 in D for all l ∈ {n+2− i0, . . . , n} ⊇
{i0 + 2, . . . , n} and is therefore pancyclic.

Suppose that i0 ≤ ⌊n−1
2 ⌋. Then we have i0 + 1 < i1 and hence xi0+1 /∈

V (Dr). Consequently, D − {x1, . . . , xi0} is not strong. Furthermore, xi0+1

is contained in the first and xn is contained in the last component of the
strong decomposition of D − {x1, . . . , xi0}, since xi0+1 · · ·xn is a path in D −
{x1, . . . , xi0}. By Corollary 2.4, there is an (xi0+1, xn)-path P l

xi0+1,xn
of length

l in D−{x1, . . . , xi0} for all l ∈ {1, . . . , n−i0−1}. Hence, xi0xi0+1 is contained

in the l-cycle x1 · · ·xi0P
l−(i0+1)
xi0+1,xn

x1 inD for all l ∈ {i0+2, . . . , n} and is therefore
pancyclic. �

Lemma 2.6. Let k ≥ 4 and n ≥ k + 2.

• If (n, k) /∈ {(6, 4), (7, 4), (7, 5)}, then
(

n−2
k−2

)

≥ 2n− 1 holds.

• If (n, k) 6= (6, 4), then
(

n−2
k−2

)

≥ 2n− 4 holds.

Theorem 2.7 ([4]). Let S be a set, let J be a finite index set and let (Ti)i∈J

be a family of subsets of S. Then there is an injective function r : J → S with

r(i) ∈ Ti for all i ∈ J if and only if |I| ≤ |
⋃

i∈I Ti| for all I ⊆ J holds.

Corollary 2.8. Let H be a k-hypertournament (k ≥ 3), C a Hamiltonian cycle

in H, CM a cycle in M(H,C) and Avw ⊆ AH(v, w) for all vw ∈ A(CM ). If

|I| ≤ |
⋃

vw∈I Avw| for all I ⊆ A(CM ), then every arc in
⋃

vw∈A(CM) Avw is

contained in a cycle CH in H on the same vertex set as CM .

Lemma 2.9. Let H be a strong 3-hypertournament on n ≥ 5 vertices, let D
be a strong semicomplete digraph on the vertex set of H, BD ⊆ A(D) with

A(D) \ BD ⊆ Amaj(H) and r : BD → A(H) an injective function, such that

r(xy) ∈ AH(x, y) holds for all xy ∈ BD. Then for every cycle C in D, there

is a cycle CH in H on the same vertex set. Furthermore, if C contains an arc

xy ∈ BD, then CH can be chosen such that r(xy) is contained in CH .

Proof. Let C = x1 · · ·xlx1 be an l-cycle in D with l ∈ {2, . . . , n}. If C contains
an arc xy ∈ BD (without loss of generality, we may assume that xy = x1x2)
we define a01 := r(xy). Otherwise, all arcs of C are contained in A(D) \ BD ⊆
Amaj(H), in particular |AH(x1, x2)| ≥

1
2

(

n−2
1

)

≥ 3
2 holds, by the definition of

Amaj(H) and therefore, there is an a01 ∈ AH(x1, x2). An l-cycle CH in H on
the vertex set of C, which contains a01, can be constructed as follows. We start
with a 1-path z1a1z2 := x1a

0
1x2 in H . Let z1a1z2 · · ·ai−1zi be an (i − 1)-path

in H for an i ∈ {2, . . . , l} such that the following conditions are met:

(1) z1, . . . , zi ∈ {x1, . . . , xi}.
(2) z1 = x1, zi = xi and a1 = a01.
(3) If xixi+1 ∈ BD, then ai−1 6= r(xixi+1).
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Suppose that i ≤ l − 2. If xixi+1 ∈ BD, we define ai := r(xixi+1) and
zi+1 := xi+1 and gain an i-path z1a1z2 · · · aizi+1 in H , because for all j ∈
{1, . . . , i− 2} we have ai 6= aj , since ai ∈ AH(xi, xi+1), aj ∈ AH(xj , xj+1) and
xi, xi+1, xj and xj+1 are pairwise distinct. Furthermore, ai−1 6= r(xixi+1) = ai
holds by condition (3) for z1a1z2 · · · ai−1zi. Obviously, z1a1z2 · · · aizi+1 meets
conditions (1) and (2). Condition (3) is met, since r is injective by assumption.

If xixi+1 ∈ A(D) \ BD and xi+1xi+2 ∈ A(D) \BD, then |AH(xi, xi+1)| ≥ 2
and thus, there is an arc ai ∈ AH(xi, xi+1) \ {ai−1}. With zi+1 := xi+1, the
path z1a1z2 · · · aizi+1 is a suitable i-path in H , since condition (3) obviously
holds.

If xixi+1 ∈ A(D) \ BD, but xi+1xi+2 ∈ BD, we define a := r(xi+1xi+2).
If there is an ai ∈ AH(xi, xi+1) \ {ai−1, a}, we proceed as in the case where
xi+1xi+2 ∈ A(D) \ BD. Otherwise, we consequently have AH(xi, xi+1) =
{ai−1, a} and hence |AH(xi+1, xi)| = 1. Then ai−1 = (xi−1, xi, xi+1) and
a = (xi, xi+1, xi+2) hold and there exists an arc b ∈ AH(xi+1, xi). Therefore,
we have a 6= aj for all j ∈ {1, . . . , i − 1}, by representation of a, b 6= aj for all
j ∈ {1, . . . , i − 2}, since b ∈ AH(xi+1, xi), aj ∈ AH(xj , xj+1) and xi, xi+1, xj

and xj+1 are pairwise distinct, and b /∈ {ai−1, a}, since b ∈ AH(xi+1, xi) and
ai−1, a ∈ AH(xi, xi+1). We gain an (i + 1)-path z1a1 · · · zi−1ai−1xi+1bxiaxi+2

in H , which obviously meets conditions (1) and (2). Condition (3) holds, since
a = r(xi+1xi+2) and r is injective by assumption.

Suppose that i = l − 1. Then the same arguments give us an (l − 1)-path
z1a1z2 · · ·al−1zl in H , which meets the conditions above, or a suitable l-cycle
CH = z1a1 · · · zi−1ai−1xlbxl−1az1 in H . Note that in the latter case, we have
xlx1 ∈ BD. As a direct consequence, we have x1x2 ∈ BD and therefore,
a = r(xlx1) 6= r(x1x2) = a01 = a1, since r is injective by assumption. In the
case where i = l, we find an arc al ∈ AH(zl, z1) \ {al−1, a1} and thereby a
suitable l-cycle CH = z1a1 · · · zlalz1 in H , or otherwise, a corresponding l-cycle
CH = z2a2 · · · zl−1al−1z1bzla1z2 in H , analogously. �

3. Main results

Theorem 3.1. Let H = (V,A) be a strong k-hypertournament on n ≥ k+2 ≥ 5
vertices and let C be a Hamiltonian cycle in H. Then C contains at least three

pancyclic arcs.

We will give the proof of Theorem 3.1 in form of four lemmas, where Lemmas
3.4 and 3.5 cover almost all hypertournaments and in Lemmas 3.7 and 3.6 the
result is shown for a finite number of rather tedious exceptions. But first, let
us consider the following corollaries to Theorem 3.1.

Corollary 3.2. Let H = (V,A) be a strong k-hypertournament on n ≥ k+2 ≥
5 vertices. Then H contains at least three pancyclic arcs.

Furthermore, Theorems 1.4 and 1.5 allow for a better bound of the pancyclic
arcs contained in a d-edge-connected hypertournament.



1148 Y. GUO AND M. SURMACS

Corollary 3.3. Let H = (V,A) be a d-edge-connected k-hypertournament on

n vertices, with k = 3 and n ≥ 14d+ 1 or 4 ≤ k ≤ 7 and n ≥ 24d+ 1 + k or

k ≥ 8 and n ≥ 2d+ k + 1. Then H contains at least 3d pancyclic arcs.

Lemma 3.4. Let H = (V,A) be a strong 3-hypertournament on n ≥ 5 vertices

and let C be a Hamiltonian cycle in H. Then C contains at least three pancyclic

arcs.

Proof. Let C = x1a1x2 · · ·xnanx1. We consider the C-majority-digraph D :=
M(H,C) of H . By Theorem 2.5, C̃ := x1x2 · · ·xnx1 contains at least three
arcs that are pancyclic in D. Let xi0xi0+1 be such an arc for an i0 in {1, . . . , l}.
We will show that ai0 is pancyclic in H . Let C̃l = y1 · · · yly1 be an l-cycle
in D that contains xi0xi0+1 for an l ∈ {3, . . . , n − 1}. We define BD :=
{x1x2, x2x3, . . . , xn−1xn, xnx1} and r : BD → A(H), xixi+1 7→ ai for all i
in {1, . . . , n}. By Definition 1.8 of D, the conditions of Lemma 2.9 are met
and thus, there is an l-cycle CH in H , that contains ai0 . Since xi0xi0+1 and
l ∈ {3, . . . , n − 1} were arbitrarily chosen, C contains at least three pancyclic
arcs. �

Lemma 3.5. Let H = (V,A) be a strong k-hypertournament on n ≥ k+2 ≥ 6
vertices, with (n, k) /∈ {(6, 4), (7, 4), (7, 5)} and let C be a Hamiltonian cycle in

H. Then C contains at least three pancyclic arcs.

Proof. Let C = x1a1x2a2 · · ·xn. We consider the C-majority-digraph D :=
M(H,C) of H . By Lemma 2.6 we have |AH(x, y)| ≥ ⌈ 1

2

(

n−2
k−2

)

⌉ ≥ n for all

xy ∈ Amaj(H).
D is a strong semicomplete digraph. By Theorem 2.5, the Hamiltonian cycle

C̃ = x1x2 · · ·xn in D contains three pancyclic arcs. Let xi0xi0+1 be such an

arc for an i0 ∈ {1, . . . , l}. We will show that ai0 is pancyclic in H . Let C̃l =
y1 · · · yly1 be an l-cycle in D that contains xi0xi0+1 for an l ∈ {3, . . . , n − 1}.
Furthermore, let I0 ⊆ {1, . . . , l} be the set of indices i such that yiyi+1 =
xj(i)xj(i)+1 for a j(i) ∈ {1, . . . , n}. For an i ∈ I0 we chose bi := aj(i). By
Definition 1.8 of D, these bi are pairwise distinct and we have |AH(yj , yj+1)| ≥

⌈ 1
2

(

n−2
k−2

)

⌉ ≥ n for all j ∈ {1, . . . , l} \ I0. Thus, we can chose bj ∈ AH(yj , yj+1)

for all j ∈ {1, . . . , l} \ I0, such that all bi for i ∈ {1, . . . , l} are pairwise distinct
and therefore, ai0 is contained in the l-cycle y1b1y2b2 · · · ylbly1 in H . �

Lemma 3.6. Let H = (V,A) be a strong 4- or 5-hypertournament on 7 vertices

and let C be a Hamiltonian cycle in H. Then C contains at least three pancyclic

arcs.

Proof. Let C = x1a1 · · ·x6a6x7a7x1. We consider the C-majority-digraphD :=
M(H,C). Let t0 denote the smallest integer t ∈ {1, . . . , 5}, such that D−V (T )
is strong for all (t − 2)-subpaths of x1x2x3x4x5x6x7x1 but there exists such

a (t − 1)-subpath T̃ (without loss of generality, we may assume that T̃ =

x1 · · ·xt0), such that D − V (T̃ ) is not strong.
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(∗) If x, y ∈ V are distinct vertices with xy /∈ AC
maj(H) ∪ {xi+1xi | 1 ≤

i ≤ 7}, then |AH(x, y)| ≥ 1
2

(

n−2
k−2

)

+ 1 = 6. This is particularly true for

distinct vertices x, y ∈ V (D) \ V (T̃ ), such that xy /∈ {xi+1xi | 1 ≤ i ≤
7} and y is contained in a component of the strong decomposition of

D − V (T̃ ) that precedes x.

Case 1. t0 = 1.

By Definition 1.8 of D, the strong decomposition of D−x1 does not contain
components of cardinality 2 and for all 2 ≤ i < j ≤ 6, the vertex xj is either
contained in the same component as xi or in one that succeeds it. Therefore,
we only need to consider the following subcases.

Case 1.1. The first or the last component (without loss of generality, we
may assume the last) of the strong decomposition of D − x1 contains ex-
actly 1 vertex. For all i ∈ {2, . . . , 5}, the arcs a1 and a7 are contained in the
(i+ 1)-cycle x1a1 · · ·xiax7a7x1 in H for an a ∈ AH(xi, x7) \ {a1, . . . , ai−1, a7}
and therefore are pancyclic. Note, that |AH(x5, x7)| ≥ 6, by (∗). Let i0 :=
min{i | 2 ≤ i ≤ 6, xi+1x1 ∈ AC

maj(H)}. For all i ∈ {2, . . . , i0}, the arc ai0
is contained in the (3 + i0 − i)-cycle x1axiai · · ·xi0ai0xi0+1bx1 for an arc a ∈
AH(x1, xi0 )\{ai, . . . , ai0} and an arc b ∈ AH(xi0+1, x1)\{ai, . . . , ai0 , a}. Note,
that |AH(x1, x3)| ≥

1
2

(

n−2
k−2

)

+1 = 6, if i0 = 6, since x3x1 /∈ AC
maj(H), by the defi-

nition of i0. Furthermore, for all i ∈ {i0+1, . . . , 5}, ai0 is contained in the (i+1)-
cycle x1a1 · · ·xiax7a7x1 inH for an arc a ∈ AH(xi, x7)\{a1, . . . , ai−1, a7}, since
|AH(xi, x7)| ≥ 6, by (∗). Thus, ai0 is pancyclic as well.

Case 1.2. The strong decomposition of D − x1 contains two components of
cardinality 3. a1 and a7 are contained in the 3-cycle x7a7x1a1x2ax7 in H for an
arc a ∈ AH(x2, x7) \ {a1, a7}. Since D[{x5, x6, x7}] is strong, we consequently
have |AH(x7, x5)| ≥ 5. Thus, there is an arc a ∈ AH(x7, x5) \ {a5, a6} and a6
is contained in the 3-cycle x5a5x6a6x7ax5 in H . For all i ∈ {2, . . . , 4}, a1, a6
and a7 are contained in the (i + 2)-cycle x1a1 · · ·xiax6a6x7a7x1 for an arcs
a ∈ AH(xi, x6) \ {a1, . . . , ai−1, a6, a7}, which exists by (∗). Therefore, a1, a6
and a7 are pancyclic.

Case 2. t0 = 2.

Without loss of generality, we may assume that the last component of the
strong decomposition of D−{x1, x2} contains exactly 1 vertex. Since D−x1 is
strong, we have x7x2 ∈ AC

maj(H). a2 is contained in the 3-cycle x7ax2a2x3bx7

in H for arcs a ∈ AH(x7, x2) \ {a2} and b ∈ AH(x3, x7) \ {a2, a}. If x3x1 ∈
AC

maj(H), then a1 is contained in the 3-cycle x1a1x2a2x3ax1 in H for an a ∈

AH(x3, x1) \ {a1, a2}. If x1x3 ∈ AC
maj(H), then a7 is contained in the 3-cycle

x7a7x1ax3bx7 in H for arcs a ∈ AH(x1, x3) \ {a7} and b ∈ {a7, a}. For all
i ∈ {3, . . . , 5}, a1, a2 and a7 are contained in the (i+1)-cycle x1a1 · · ·xiax7a7x1

in H for an arc a ∈ AH(xi, x7) \ {a1, . . . , ai−1, a7}, which exists by (∗). Thus
a2 and a1 or a7 are pancyclic.
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Let i0 := min{i | 3 ≤ i ≤ 6, xi+1x2 ∈ AC
maj(H)}. Then ai0 is contained

in the 3-cycle x2axi0ai0xi0+1bx2 in H , for arcs a ∈ AH(x2, xi0) \ {ai0} and
b ∈ AH(xi0+1, x2) \ {ai0 , a}. If i0 = 3, then ai0 is contained in the 4-cycle
x2a2xi0ai0xi0+1ax7bx2 in H for arcs a ∈ AH(xi0+1, x7) \ {a2, ai0} and b ∈
AH(x7, x2) \ {a2, ai0 , a}. For all i ∈ {4, 5}, ai0 is contained in the (i+ 1)-cycle
x2a2xi0ai0 · · ·xiax7a7x1a1x2 in H for an arc a ∈ AH(xi, x7) \ {a1, . . . , ai, a7},
which exists by (∗). Suppose that i0 > 3. Then ai0 is contained in the 4-cycle
x2axi0−1ai0−1xi0ai0xi0+1bx2 in H for arcs a ∈ AH(x2, xi0−1) \ {ai0−1, ai0} and
b ∈ AH(xi0+1, x2) \ {ai0−1, ai0 , a}, in the 5-cycle x2cx4a4x5a5x6a6x7dx2 in H
for arcs c ∈ AH(x2, x4) \ {a4, a5, a6} and d ∈ AH(x7, x2) \ {a4, a5, a6, c} and
in the 6-cycle x2ex4a4x5a5x6a6x7a7x1a1x2 in H for an arc e ∈ AH(x2, x4) \
{a1, a4, a5, a6, a7}, which exists, since there are no arcs from x4 to x2 in D,
by the definition of i0 and thus, |AH(x2, x4)| ≥

1
2

(

n−2
k−2

)

+ 1 = 6. Therefore,

ai0 ∈ {a3, a4, a5, a6} is the third pancyclic arc.

Case 3. t0 = 3.

Without loss of generality, we may assume that the last component of the
strong decomposition of D − {x1, x2, x3} contains exactly 1 vertex. Since D−
{x1, x2} is strong, we have x7x3 ∈ AC

maj(H). For all i ∈ {4, . . . , 6}, the arc a3
is contained in the (i−1)-cycle x3a3 · · ·xiax7bx3 in H for arcs a ∈ AH(xi, x7)\
{a3, . . . , ai−1} and b ∈ AH(x7, x3) \ {a3, . . . , ai−1, a}. With the exception of
i = 4, the arc a4 is also contained in said cycles. Furthermore, a3 and a4
are contained in the 6-cycle x3a3x4a4x5ax7a7x1a1x2a2x3 in H for an arc a ∈
AH(x5, x7) \ {a1, a2, a3, a4, a7}, which exists by (∗). Therefore, a3 is pancyclic.

Let i0 := min{i | 4 ≤ i ≤ 6, xi+1x3 ∈ AC
maj(H)}. Then ai0 is contained

in the 3-cycle x3axi0ai0xi0+1bx3 in H for arcs a ∈ AH(x3, xi0 ) \ {ai0} and
b ∈ AH(xi0+1, x3) \ {ai0 , a}. If i0 = 4, then we have already shown ai0 to
be pancyclic. Suppose that i0 ∈ {5, 6}. Then ai0 is contained in the 4-cycle
x3ax5a5x6a6x7bx3 in H for arcs a ∈ AH(x3, x5) \ {a5, a6} and b ∈ AH(x7, x3)\
{a5, a6, a}, it is contained in the 5-cycle x3a3x4a4x5a5x6a6x7cx3 in H for an
arc c ∈ AH(x7, x3) \ {a3, a4, a5, a6} and finally, it is contained in the 6-cycle
x3dx5a5x6a6x7a7x1a1x2a2x3 for an arc d ∈ AH(x3, x5) \ {a1, a2, a5, a6, a7},
which exists by the definition of i0 and (∗). Thus, ai0 ∈ {a4, a5, a6} is pancyclic.

Since D − {x2, x3} is strong, we have x1xj0 ∈ AC
maj(H) for an index j0 ∈

{4, 5, 6}, such that xj0 is contained in the first component of the strong de-
composition of D − {x1, x2, x3}. a7 is contained in the 3-cycle x7a7x1axj0bx7

in H for arcs a ∈ AH(x1, xj0) \ {a7} and b ∈ AH(xj0 , x7) \ {a7, a}. For
j0 ∈ {4, 5}, a7 is contained in the 4-cycle x7a7x1axj0aj0xj0+1bx7 in H for
arcs a ∈ AH(x1, xj0) \ {a7, aj0} and b ∈ AH(xj0+1, x7) \ {a7, aj0 , a}. If j0 = 6,
then x6 is contained in the first component of the strong decomposition of D−
{x1, x2, x3} and thus, x6x4 ∈ AC

maj(H). Therefore, a7 is contained in the 4-cycle

x7a7x1axj0bx4cx7 inH for arcs a ∈ AH(x1, xj0 )\{a7}, b ∈ AH(xj0 , x4) \ {a7, a}
and c ∈ AH(x4, x7) \ {a7, a, b}. Furthermore, for all i ∈ {4, 5}, there exists an
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a ∈ AH(xi, x7)\{a1, . . . , ai−1, a7}, such that a7 is contained in the (i+1)-cycle
x7a7x1a1 · · ·xiax7 in H , by (∗). Hence, a7 is pancyclic as well.

Case 4. t0 = 4.

We have x7x4, x1x5 ∈ AC
maj(H), since D − {x1, x2, x3} and D− {x2, x3, x4}

are strong, by the definition of t0.
If x4x1 /∈ AC

maj(H), we also have x4x2, x3x1 ∈ AC
maj(H), sinceD−{x5, x6, x7}

is strong by the definition of t0. a4 is contained in the 3- and in the 4-cycle
x4a4x5ax7bx4 and x4a4x5a5x6a6x7bx4 in H , for arcs a ∈ AH(x5, x7)\{a4} and
b ∈ AH(x7, x4)\{a4, a5, a6, a}. a7 is contained in the 3-cycle x7a7x1ax5bx7 and
in the 4-cycle x7a7x1ax5a5x6a6x7 in H for arcs a ∈ AH(x1, x5) \ {a5, a6, a7}
and b ∈ AH(x5, x7) \ {a7, a}. Furthermore, a4 and a7 are contained in the 5-
cycle x4a4x5a5x6a6x7a7x1ax4 in H for an a ∈ AH(x1, x4) \ {a4, a5, a6, a7} and
in the 6-cycle x4a4x5bx7a7x1a1x2a2x3a3x4 in H for an arc b ∈ AH(x5, x7) \
{a1, a2, a3, a4, a7}, which exists by (∗). Therefore, a4 and a7 are pancyclic.

If x6x4 /∈ AC
maj(H), then a6 is contained in the 3-cycle x6a6x7ax4bx6 and

in the 4-cycle x6a6x7ax4a4x5a5x6 in H for arcs a ∈ AH(x7, x4) \ {a4, a5, a6}
and b ∈ AH(x4, x6)\{a4, a5, a6, a}. Furthermore, a6 is contained in the 5-cycle
x6a6x7a7x1ax4a4x5a5x6 for an a ∈ AH(x1, x4) \ {a4, a5, a6, a7} and in the 6-
cycle x6a6x7a7x1a1x2a2x3a3x4bx6 for some b ∈ AH(x4, x6)\{a1, a2, a3, a6, a7},
which exists by (∗). Thus, a6 is the third pancyclic arc.

Suppose that x6x4 ∈ AC
maj(H). For all i ∈ {6, 7}, a5 is contained in the

(i − 3)-cycle x5a5 · · ·xiax4a4x5 in H for an a ∈ AH(xi, x4) \ {a4, . . . , ai−1}.
Furthermore, a5 is contained in the 5-cycle x5a5x6a6x7x1ax4a4x5 for an a ∈
AH(x1, x4) \ {a4, . . . , a7}. Since a5 contains only four vertices, we have a5 /∈
AH(x6, x4) ∩ AH(x4, x2) ∩ AH(x3, x1) ∩ AH(x1, x5). Without loss of gener-
ality, we may assume that a5 /∈ AH(x1, x5). Then a5 is contained in the
6-cycle x5a5x6ax4bx2a2x3cx1dx5 in H for arcs a ∈ AH(x6, x4) \ {a2, a5}, b ∈
AH(x4, x2) \ {a2, a5, a}, c ∈ AH(x3, x1) \ {a2, a5, a, b} and d ∈ AH(x1, x5) \
{a2, a5, a, b, c}. Therefore, a5 is pancyclic.

Suppose now that x4x1 ∈ AC
maj(H). For arcs a ∈ AH(x5, x7) \ {a4} and

b ∈ AH(x7, x4) \ {a4, a5, a6, a}, a4 is contained in the 3-cycle x4a4x5ax7bx4

and in the 4-cycle x4a4x5a5x6a6x7bx4 in H . a7 is contained in the 3- and
the 4-cycle x7a7x1ax5bx7 and x7a7x1ax5a5x6a6x7 in H , respectively, for arcs
a ∈ AH(x1, x5) \ {a5, a6, a7} and b ∈ AH(x5, x7) \ {a7, a}.

If x1x3 ∈ AC
maj(H), then a3 is contained in the 3-cycle x3a3x4ax1bx3 and

in the 4-cycle x3a3x4ax1a1x2a2x3 in H for arcs a ∈ AH(x4, x1) \ {a1, a2, a3}
and b ∈ AH(x1, x3) \ {a3, a}. Furthermore, a3, a4 and a7 are contained in the
5-cycle x3a3x4a4x5ax7a7x1bx3 and in the 6-cycle x3a3x4a4x5ax7a7x1a1x2a2x3

in H for arcs a ∈ AH(x5, x7) \ {a1, a2, a3, a4, a7}, which exists by (∗), and
b ∈ AH(x1, x3) \ {a3, a4, a7, a}. Thus, a3, a4 and a7 are pancyclic. If x2x4 ∈
AC

maj(H), then a1, a4 and a7 are pancyclic by analogous arguments.

Suppose that x1x3, x2x4 /∈ AC
maj(H). Then a1 and a2 are contained in the

3-cycle x1a1x2a2x3ax1 and in the 4-cycle x1a1x2a2x3a3x4bx1 in H for arcs
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a ∈ AH(x3, x1) \ {a1, a2} and b ∈ AH(x4, x1) \ {a1, a2, a3}. a3 is contained in
the 3-cycle x2a2x3a3x4ax2 and in the 4-cycle x2a2x3a3x4bx1a1x2 in H for an
a ∈ AH(x4, x2) \ {a2, a3} and an arc b ∈ AH(x4, x1) \ {a1, a2, a3}.

If x3x6 ∈ AC
maj(H), then the three arcs a1, a2 and a7 are contained in the 5-

cycle x1a1x2a2x3ax6a6x7a7x1 and in the 6-cycle x1a1x2a2x3a3x4a4x5bx7a7x1

in H for an a ∈ AH(x2, x4) \ {a1, a2, a6, a7} and an arc b ∈ AH(x5, x7) \
{a1, a2, a3, a4, a7}, which exists by (∗). Hence, a1, a2 and a7 are pancyclic. If
x6x2 ∈ AC

maj(H), then a2, a3 and a4 are pancyclic by analogous arguments.

Thus, we may assume that x3x6, x6x2 /∈ AC
maj(H). Consequently, there are

arcs a ∈ AH(x2, x6) \ {a1, a3}, b ∈ AH(x6, x3) \ {a1, a3, a}, c ∈ AH(x4, x1) \
{a1, a3, a, b} and d ∈ AH(x5, x7) \ {a1, a2, a3, a4, a7}, by (∗), such that a1 and
a3 are contained in the 5-cycle x1a1x2ax6bx3a3x4cx1 as well as in the 6-cycle
x1a1x2a2x3a3x4a4x5dx7a7x1 in H . Therefore, a1 and a3 are pancyclic.

If x7x3 ∈ AC
maj(H), then, for an a ∈ AH(x7, x3) \ {a3, a4, a5, a6}, a4 is con-

tained in the 5-cycle x3a3x4a4x5a5x6a6x7ax3 and it is contained in the 6-cycle
x1a1x2a2x3a3x4a4x5bx7a7x1 inH for an arc b ∈ AH(x5, x7)\{a1, a2, a3, a4, a7},
which exists by (∗). Hence, a4 is pancyclic as well.

For x7x3 /∈ AC
maj(H), a2 is contained in the 5-cycle x2a2x3ax7bx4cx1a1x2

and in the 6-cycle x1a1x2a2x3a3x4a4x5dx7a7x1 in H for an a ∈ AH(x3, x7) \
{a1, a2}, an arc b ∈ AH(x7, x4)\{a1, a2, a}, an arc c ∈ AH(x4, x1)\{a1, a2, a, b}
and an arc d ∈ AH(x5, x7) \ {a1, a2, a3, a4, a7}, which exists by (∗). Thus, a2
is the third pancyclic arc.

Case 5. t0 = 5.

By the definition of t0, we have x3x1, x4x2, x5x3, x6x4, x7x5, x1x6, x2x7 ∈
AC

maj(H).

We will show the following: For all i ∈ {1, . . . , 7} and l ∈ {3, 4, 5}, the
arc ai is contained in an l-cycle in H . Without loss of generality, we may
assume that i = 1. Then a1 is contained in the 3-cycle x1a1x2a2x3ax1 for an
a ∈ AH(x3, x1) \ {a1, a2}. If x3x7 ∈ AC

maj(H), then a1 is contained in the 4-

cycle x1a1x2a2x3ax7a7x1 in H for an a ∈ AH(x3, x7) \ {a1, a2, a7}. Otherwise,
a1 is contained in the 4-cycle x1a1x2ax7bx3cx1 in H for an a ∈ AH(x2, x7) \
{a1}, an arc b ∈ AH(x7, x3) \ {a1, a} and an arc c ∈ AH(x3, x1) \ {a1, a, b}.
Furthermore, a1 is contained in the 5-cycle x1a1x2ax7bx5cx3dx1 in H for arcs
a ∈ AH(x2, x7) \ {a1}, b ∈ AH(x7, x5) \ {a1, a}, c ∈ AH(x5, x3) \ {a1, a, b} and
d ∈ AH(x3, x1) \ {a1, a, b, c}.

To prove the existence of suitable 6-cycles, we will show the following: If
xixj /∈ AC

maj(H) for a pair of indices i, j ∈ {1, . . . , 7}, such that j − i ∈
{3,−4}, then ai is contained in a 6-cycle in H . Without loss of generality,
we may assume that i = 1 and j = 4. Then a1 is contained in the 6-cycle
x1a1x2ax7bx5cx3a3x4dx1 for arcs a ∈ AH(x2, x7) \ {a1, a3}, b ∈ AH(x7, x5) \
{a1, a3, a}, c ∈ AH(x5, x3) \ {a1, a3, a, b} and d ∈ AH(x4, x1) \ {a1, a3, a, b, c},
which exists by (∗). Thus, if there are three such pairs, we are finished.
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Otherwise, there are indices i1, i2, j1, j2 ∈ {1, . . . , 7}, such that i2 − i1 ∈
{1,−6}, j1 − i1 ∈ {3,−4}, j2 − i2 ∈ {3,−4} and xi1xj1 , xi2xj2 ∈ AC

maj(H).
Without loss of generality, we may assume that i1 = 1, i2 = 2, j1 = 4 and j2 = 5.
Furthermore, we have a6 /∈ AH(x1, x4)∩AH(x4, x2)∩AH(x2, x5), since a6 would
otherwise contain six vertices, a contradiction. Without loss of generality, we
may assume that a6 /∈ AH(x2, x5). Therefore, a5, a6 and a7 are contained in the
6-cycle x1ax4bx2cx5a5x6a6x7a7x1 in H for arcs a ∈ AH(x1, x4) \ {a5, a6, a7},
b ∈ AH(x4, x2) \ {a5, a6, a7, a} and c ∈ AH(x2, x5) \ {a5, a6, a7, a, b}. Thus, we
have found three pancyclic arcs. �

Lemma 3.7. Let H = (V,A) be a strong 4-hypertournament on 6 vertices and

let C be a Hamiltonian cycle in H. Then C contains at least three pancyclic

arcs.

Since it is similar in structure to, but far exceeding the length of the proof
of Lemma 3.6, we will omit our proof of Lemma 3.7.
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