PANCYCLIC ARCS IN HAMILTONIAN CYCLES OF HYPERTOURNAMENTS

Yubao Guo and Michel Surmacs

Abstract

A k-hypertournament H on n vertices, where $2 \leq k \leq n$ is a pair $H=(V, A)$, where V is the vertex set of H and A is a set of k-tuples of vertices, called arcs, such that for all subsets $S \subseteq V$ with $|S|=k, A$ contains exactly one permutation of S as an arc. Recently, Li et al. showed that any strong k-hypertournament H on n vertices, where $3 \leq k \leq n-2$, is vertex-pancyclic, an extension of Moon's theorem for tournaments.

In this paper, we prove the following generalization of another of Moon's theorems: If H is a strong k-hypertournament on n vertices, where $3 \leq k \leq n-2$, and C is a Hamiltonian cycle in H, then C contains at least three pancyclic arcs.

1. Introduction and terminology

A directed k-hypergraph D on n vertices, for integers n and $k \geq 2$, is a pair $D=(V, A)$, where the cardinality of the vertex set V of D is n and the arc set A of D is a subset of V^{k}, such that no arc in A contains the same vertex in V twice. If not otherwise specified, we will denote the vertex set (arc set, respectively) of an arbitrary directed k-hypergraph D by $V(D)(A(D)$, respectively).

For the rest of this section, let $D=(V, A)$ be a directed k-hypergraph on n vertices. For two distinct vertices $x, y \in V, A_{D}(x, y) \subseteq A(D)$ denotes the set of all arcs $a=\left(x_{1}, \ldots, x_{k}\right) \in A$, such that there are indices $1 \leq i_{0}<i_{1} \leq k$ with $x_{i_{0}}=x$ and $x_{i_{1}}=y$. An arc $a=\left(x_{1}, \ldots, x_{k}\right) \in A$ is called an out-arc of the vertex x_{1}.

Let $X \subseteq V$. Then $D[X]:=\left(X, A \cap X^{k}\right)$ is the subhypergraph of D induced by X (note that $A(D[X])=\emptyset$ if $|X|<k$) and $D-X$ denotes the subhypergraph $D[V(D) \backslash X]$. We write $D-x$ instead of $D-\{x\}$.

Received September 9, 2013; Revised May 15, 2014.
2010 Mathematics Subject Classification. 05C65, 05C20.
Key words and phrases. tournament, hypertournament, semicomplete digraph, pancyclic arc, Hamiltonian cycle.

The author was supported by the Excellence Initiative of the German Federal and State Governments.

A $\left(v_{1}, v_{l+1}\right)$-path of length l or an l-path from v_{1} to v_{l+1} in D is a sequence $P=v_{1} a_{1} v_{2} \cdots a_{l} v_{l+1}$, such that $v_{1}, \ldots, v_{l+1} \in V$ are pairwise distinct vertices, $a_{1}, \ldots, a_{l} \in A$ are pairwise distinct arcs and $a_{i} \in A_{D}\left(v_{i}, v_{i+1}\right)$ holds for all $1 \leq i \leq l$. An l-cycle in D is defined analogously, with the exception of $v_{1}=v_{l+1}$. For convenience, we will consider v_{l+1} to be v_{1} in the context of an l-cycle $C=v_{1} \cdots v_{l} v_{1}$. Let $P=x_{1} a_{1} \cdots a_{l-1} x_{l}$ be a path in D and let $x_{i}, x_{j} \in V(P)$ be two vertices with $i \leq j$. Then $x_{i} P x_{j}$ denotes the unique $\left(x_{i}, x_{j}\right)$-subpath of $P . x C y$ is defined analogously for a cycle C in D and vertices $x, y \in V(C)$. In the case $k=2$, if P is an (x, y)-path and Q is an (v, w)-path in D such that $V(P) \cap V(Q)=\emptyset$ and $A_{D}(y, v) \neq \emptyset$, then $P Q$ is the path obtained by appending the path Q to P. An n-cycle ($(n-1)$-path, respectively) in D is called Hamiltonian or Hamiltonian cycle (Hamiltonian path, respectively) in D.

A vertex (an arc, respectively) of D is pancyclic, if it is contained in an l-cycle for all $l \in\{3, \ldots, n\} . D$ is called pancyclic, if it contains an l-cycle for all $l \in\{3, \ldots, n\}$ and vertex-pancyclic, if all of its vertices are pancyclic. A vertex is called out-arc pancyclic, if all of its out-arcs are pancyclic.

A digraph D is strongly connected or strong, if there is an (x, y)-path in D for all distinct vertices $x, y \in V$. A strong component D^{\prime} of D is a maximal induced subhypergraph of D which is strong.

A digraph D is called d-strong, if $|V(D)| \geq d+1$ holds and $D-U$ is strong for all $U \subseteq V(D)$ with $|U|<d$. Two paths in D are edge-disjoint, if they do not have a shared arc. A digraph D is called d-edge-connected, if there are d edge-disjoint (x, y)-paths in D for all distinct vertices $x, y \in V$.

A k-hypertournament H is a directed k-hypergraph, such that for all subsets $S \subseteq V(H)$ with $|S|=k, A(H)$ contains exactly one permutation of S as an arc. A tournament is a 2-hypertournament.

It is the strong structure of tournaments which has made them the best studied class of digraphs. It is only natural to try to reduce this structure to its core properties necessary to maintain at least most of the results for tournaments, while broadening the scope of considered directed hypergraphs. One of the generalizations of tournaments is the class of directed 2-hypergraphs which contain a spanning tournament as a subhypergraph, called semicomplete digraphs. In other words, every pair of distinct vertices of a semicomplete digraph is connected by at least one arc. Many results for tournaments also hold for the larger class of semicomplete digraphs. Because of the similarities in their definition, one would hope that the same is true for the class of hypertournaments. But there are some obstacles which arise from the loosened structure of hypertournaments and the fact that an arc no longer connects exactly two vertices. To give an example, we will first add some notation for the case $k=2$.

In this case, we will omit the arcs in our notation of a path or a cycle, since the sequence of vertices imply the arcs connecting them. Furthermore, we will use $x y \in A(D)$ and sometimes $x \rightarrow y$ instead of $(x, y) \in A(D)$. For two disjoint sets $X, Y \subseteq V(D), X \Rightarrow Y$ denotes that there is no arc from a vertex in Y to
one in X in D. By $X \rightarrow Y$, we denote that $x y \in A(D)$ for all $x \in X$ and all $y \in Y$.

A strong property of tournaments (and semicomplete digraphs) and integral part of many proofs is the fact that the strong components D_{1}, \ldots, D_{r} of D are pairwise disjoint and can be ordered, such that both $D_{i} \Rightarrow D_{j}$ and $D_{i} \rightarrow D_{j}$ hold for all $1 \leq i<j \leq r$. This unique order is called the strong decomposition of D.

Example 1.1. Let the 4-hypertournament $H_{4}:=(V, A)$ be defined through

$$
\begin{aligned}
V:=\left\{x_{1}, \ldots, x_{5}\right\} \text { and } A & :=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\}, \text { where } \\
a_{1} & :=\left(x_{3}, x_{4}, x_{1}, x_{2}\right), \\
a_{2} & :=\left(x_{5}, x_{3}, x_{2}, x_{1}\right), \\
a_{3} & :=\left(x_{4}, x_{5}, x_{2}, x_{1}\right), \\
a_{4} & :=\left(x_{4}, x_{5}, x_{3}, x_{1}\right), \\
\text { and } a_{5} & :=\left(x_{4}, x_{5}, x_{2}, x_{3}\right) .
\end{aligned}
$$

H_{4} is not strong, since, for example, there is no path from x_{1} to $\left\{x_{4}, x_{5}\right\}$. Suppose that there is such a path P. Obviously, P starts with the subpath $P^{\prime}=x_{1} a_{1} x_{2} a_{5} x_{3}$. Now we see that a_{1}, the only arc from x_{3} to $\left\{x_{4}, x_{5}\right\}$, is already contained in P^{\prime} and thus, we cannot extend P^{\prime}, a contradiction. Furthermore, for all $X \subseteq V$ such that $2 \leq|X| \leq 4, A\left(H_{4}[X]\right)$ contains at most one arc. Therefore, $H_{4}[X]$ is not strong. Consequently, the strong components of H_{4} are its vertices and since there are arcs from x_{1} to x_{2} and vice versa, there is no strong decomposition of H_{4}.

Even if we weaken the definition of a strong component of a hypertournament, we still do not obtain a suitable structure. A strong* component of D is a maximal induced subhypergraph D^{\prime} such that there is an (x, y)-path in D for all distinct vertices $x, y \in V\left(D^{\prime}\right)$.

Since H_{4} contains the cycles $x_{1} a_{1} x_{2} a_{5} x_{3} a_{2} x_{1}$ and $x_{2} a_{5} x_{3} a_{1} x_{4} a_{4} x_{5} a_{2} x_{2}$ but no path from x_{1} to $\left\{x_{4}, x_{5}\right\}$, the vertex sets of the strong* components of H_{4} are $\left\{x_{1}, x_{2}, x_{3}\right\}$ and $\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\}$ and are therefore not disjoint, much less is there a strong* decomposition of H_{4}.

To account for this fact and to restore some of the structure, in 1997, Gutin and Yeo [3] introduced the majority digraph of a hypertournament.

For a k-hypertournament $H=(V, A)$ on n vertices, the majority digraph $M(H)=\left(V, A_{\text {maj }}(H)\right)$ of H is a digraph on the same vertex set and for a pair $x, y \in V$ of distinct vertices, $x y$ is in $A_{\text {maj }}(H)$ if and only if $\left|A_{H}(x, y)\right| \geq$ $\left|A_{H}(y, x)\right|$, which is equivalent to

$$
\left|A_{H}(x, y)\right| \geq \frac{1}{2}\binom{n-2}{k-2}
$$

By definition, there is an arc between every pair of distinct vertices, thus $M(H)$ is a semicomplete digraph.

This substructure allowed for Gutin and Yeo to prove the following generalizations of Redei's [9] and Camion's [1] theorem, respectively, two of the most fundamental results on tournaments.
Theorem 1.2 ([3]). Every k-hypertournament on $n>k \geq 2$ vertices contains a Hamiltonian path.
Theorem 1.3 ([3]). Every strong k-hypertournament on n vertices, where $3 \leq$ $k \leq n-2$, contains a Hamiltonian cycle.

Furthermore, Gutin and Yeo posed the question whether Moon's theorem [6], which states that every strong tournament is vertex-pancyclic, could be extended to hypertournaments as well. In addition to giving some sufficient conditions for a hypertournament to be vertex-pancyclic, in 2006, Petrovic and Thomassen showed the following.

Theorem 1.4 ([8]). Let H be a d-edge-connected k-hypertournament on n vertices. If $k=3$ and $n \geq 30 d+2$ or $k \geq 4$ and $n \geq k+1+24 d$, then H contains d edge-disjoint Hamiltonian cycles.

Amongst other results, in 2009, Yang gave an improvement of this theorem.
Theorem 1.5 ([10]). Let H be a d-edge-connected k-hypertournament on n vertices. If $k=3$ and $n \geq 14 d+1$ or $k \geq 8$ and $n \geq k+2 d+1$, then H is d-edge-disjoint vertex-pancyclic, i.e., every vertex of H is contained in d edge-disjoint l-cycles for all $l \in\{3, \ldots, n\}$.

Recently, Li et al. showed the following generalization of Moon's theorem and that its bound is best possible, thereby answering Gutin and Yeo's initial question.
Theorem 1.6 ([5]). Every strong k-hypertournament with n vertices, where $3 \leq k \leq n-2$, is vertex-pancyclic.

Goal of this paper, is the generalization of another of Moon's theorems on tournaments.

Theorem 1.7 ([7]). Let T be a strong tournament. Then there is a Hamiltonian cycle in T that contains at least three pancyclic arcs.

In fact, we will show that every Hamiltonian cycle of a hypertournament contains at least three pancyclic arcs.

Since the majority digraph of a strong hypertournament H is not necessarily strong, much less contains a specific Hamiltonian cycle corresponding to one in H, we will introduce a modified substructure, better suited for our own purposes.

Definition 1.8. Let $H=(V, A)$ be a strong k-hypertournament on $n \geq k \geq 3$ vertices and let $C=y_{1} a_{1} y_{2} \cdots y_{n} a_{n} y_{1}$ be a Hamiltonian cycle in H. We define the C-majority-digraph $M(H, C):=\left(V, A_{\mathrm{maj}}^{C}(H)\right)$ of H through
$A_{\text {maj }}^{C}(H):=\left(A_{\text {maj }}(H) \backslash\left\{y_{i+1} y_{i}, y_{1} y_{n} \mid 1 \leq i<n\right\}\right) \cup\left\{y_{i} y_{i+1}, y_{n} y_{1} \mid 1 \leq i<n\right\}$.

For an $i \in\{1, \ldots, n-1\}$ we call $a_{y_{i} y_{i+1}}:=a_{i}$ the C-arc corresponding to $y_{i} y_{i+1}$. $a_{y_{n} y_{1}}:=a_{n}$ corresponds to $y_{n} y_{1}$.

Remark 1.9. In general, the C-majority-digraph of H does not have the property $A_{\text {maj }}(H) \subseteq A_{\text {maj }}^{C}(H)$. It still is semicomplete by definition and strong, since it contains the Hamiltonian cycle $C=y_{1} \cdots y_{n} y_{1}$.

Let us now consider the following preliminaries.

2. Preliminaries

First of all, we note that Moon's theorem holds for semicomplete digraphs.
Corollary 2.1. Every strong semicomplete digraph is vertex-pancyclic.
Before we show the generalized version for hypertournaments, we will prove a stronger version of Theorem 1.7 for semicomplete digraphs. We will use the following results in the process.

Theorem 2.2 ([2]). Let T be a 2-strong tournament. Then T contains at least three out-arc pancyclic vertices.

Theorem 2.3 ([11]). Let T be a non-strong tournament and let T_{1}, \ldots, T_{r} be the strong decomposition of T. Then there is an (x, y)-path of length l in T for all $1 \leq l \leq|V(T)|-1, x \in V\left(T_{1}\right)$ and $y \in V\left(T_{r}\right)$.

Corollary 2.4. Let $D=(V, A)$ be a non-strong semicomplete digraph, let D_{1}, \ldots, D_{r} be the strong decomposition of $D, 1 \leq i<j \leq r, x \in V\left(D_{i}\right)$, $y \in V\left(D_{j}\right)$ and $l \in\left\{1, \ldots,\left|\bigcup_{i \leq s \leq j} V\left(D_{r}\right)\right|-1\right\}$. Then there is an (x, y)-path of length l in D.

Theorem 2.5. Let $D=(V, A)$ be a strong semicomplete digraph and C a Hamiltonian cycle in D. Then C contains at least three pancyclic arcs.

Proof. Let $C=x_{1} x_{2} \cdots x_{n} x_{1}$. Without loss of generality, we may assume that D is a tournament, since we can destroy all 2-cycles in D such that the resulting tournament still contains the Hamiltonian cycle C. If D is 2 -strong, D contains at least three out-arc pancyclic vertices, by Theorem 2.2. Suppose that D is not 2-strong, x_{1} is a cut-vertex and D_{1}, \ldots, D_{r} is the strong decomposition of $D-x_{1}$. Since $x_{2} x_{3} \cdots x_{n}$ is a path in $D-x_{1}, x_{2}$ is obviously contained in D_{1} and x_{n} in D_{r}. By Corollary 2.4, there is an $\left(x_{2}, x_{n}\right)$-path $P_{x_{2}, x_{n}}^{l}$ of length l in $D-x_{1}$ for all $l \in\{1, \ldots, n-2\}$. Thus, $x_{1} x_{2}$ and $x_{n} x_{1}$ are contained in the l-cycle $x_{1} P_{x_{2}, x_{n}}^{l-2} x_{1}$ in D for all $l \in\{3, \ldots, n\}$ and are therefore pancyclic. Without loss of generality, we may assume that $\left|V\left(D_{r}\right)\right| \leq\left\lfloor\frac{n-1}{2}\right\rfloor$.

We define the following indices.

$$
\begin{aligned}
& i_{0}:=\max \left\{i \mid 2 \leq i \leq n-1, x_{1} x_{j} \in A \text { for all } 2 \leq j \leq i\right\} . \\
& i_{1}:=\min \left\{i \mid 2 \leq i \leq n, x_{i} \in V\left(D_{r}\right)\right\} .
\end{aligned}
$$

We obviously have $V\left(D_{r}\right)=\left\{x_{j} \mid i_{1} \leq j \leq n\right\}$ and $i_{1} \geq\left\lceil\frac{n-1}{2}\right\rceil+2 . x_{i_{0}} x_{i_{0}+1}$ is contained in the l-cycle $x_{1} x_{i_{0}+3-l} \cdots x_{i_{0}} x_{i_{0}+1} x_{1}$ in D for all $l \in\left\{3, \ldots, i_{0}+1\right\}$. If $i_{0} \geq\left\lfloor\frac{n-1}{2}\right\rfloor+1$, then we have $n+2-i_{0} \leq\left\lceil\frac{n-1}{2}\right\rceil+1 \leq i_{0}+2$. Thus, $x_{i_{0}} x_{i_{0}+1}$ is contained in the l-cycle $x_{1} x_{n+2-l} \cdots x_{n} x_{1}$ in D for all $l \in\left\{n+2-i_{0}, \ldots, n\right\} \supseteq$ $\left\{i_{0}+2, \ldots, n\right\}$ and is therefore pancyclic.

Suppose that $i_{0} \leq\left\lfloor\frac{n-1}{2}\right\rfloor$. Then we have $i_{0}+1<i_{1}$ and hence $x_{i_{0}+1} \notin$ $V\left(D_{r}\right)$. Consequently, $D-\left\{x_{1}, \ldots, x_{i_{0}}\right\}$ is not strong. Furthermore, $x_{i_{0}+1}$ is contained in the first and x_{n} is contained in the last component of the strong decomposition of $D-\left\{x_{1}, \ldots, x_{i_{0}}\right\}$, since $x_{i_{0}+1} \cdots x_{n}$ is a path in $D-$ $\left\{x_{1}, \ldots, x_{i_{0}}\right\}$. By Corollary 2.4, there is an $\left(x_{i_{0}+1}, x_{n}\right)$-path $P_{x_{i_{0}+1}, x_{n}}^{l}$ of length l in $D-\left\{x_{1}, \ldots, x_{i_{0}}\right\}$ for all $l \in\left\{1, \ldots, n-i_{0}-1\right\}$. Hence, $x_{i_{0}} x_{i_{0}+1}$ is contained in the l-cycle $x_{1} \cdots x_{i_{0}} P_{x_{i_{0}}+1}^{l-\left(x_{n}\right.}+\left(i_{n}+1\right)$ in D for all $l \in\left\{i_{0}+2, \ldots, n\right\}$ and is therefore pancyclic.

Lemma 2.6. Let $k \geq 4$ and $n \geq k+2$.

- If $(n, k) \notin\{(6,4),(7,4),(7,5)\}$, then $\binom{n-2}{k-2} \geq 2 n-1$ holds.
- If $(n, k) \neq(6,4)$, then $\binom{n-2}{k-2} \geq 2 n-4$ holds.

Theorem 2.7 ([4]). Let S be a set, let J be a finite index set and let $\left(T_{i}\right)_{i \in J}$ be a family of subsets of S. Then there is an injective function $r: J \rightarrow S$ with $r(i) \in T_{i}$ for all $i \in J$ if and only if $|I| \leq\left|\bigcup_{i \in I} T_{i}\right|$ for all $I \subseteq J$ holds.

Corollary 2.8. Let H be a k-hypertournament $(k \geq 3)$, C a Hamiltonian cycle in H, C_{M} a cycle in $M(H, C)$ and $A_{v w} \subseteq A_{H}(v, w)$ for all $v w \in A\left(C_{M}\right)$. If $|I| \leq\left|\bigcup_{v w \in I} A_{v w}\right|$ for all $I \subseteq A\left(C_{M}\right)$, then every arc in $\bigcup_{v w \in A\left(C_{M}\right)} A_{v w}$ is contained in a cycle C_{H} in H on the same vertex set as C_{M}.
Lemma 2.9. Let H be a strong 3-hypertournament on $n \geq 5$ vertices, let D be a strong semicomplete digraph on the vertex set of $H, B_{D} \subseteq A(D)$ with $A(D) \backslash B_{D} \subseteq A_{\text {maj }}(H)$ and $r: B_{D} \rightarrow A(H)$ an injective function, such that $r(x y) \in A_{H}(x, y)$ holds for all $x y \in B_{D}$. Then for every cycle C in D, there is a cycle C_{H} in H on the same vertex set. Furthermore, if C contains an arc $x y \in B_{D}$, then C_{H} can be chosen such that $r(x y)$ is contained in C_{H}.
Proof. Let $C=x_{1} \cdots x_{l} x_{1}$ be an l-cycle in D with $l \in\{2, \ldots, n\}$. If C contains an arc $x y \in B_{D}$ (without loss of generality, we may assume that $x y=x_{1} x_{2}$) we define $a_{1}^{0}:=r(x y)$. Otherwise, all arcs of C are contained in $A(D) \backslash B_{D} \subseteq$ $A_{\text {maj }}(H)$, in particular $\left|A_{H}\left(x_{1}, x_{2}\right)\right| \geq \frac{1}{2}\binom{n-2}{1} \geq \frac{3}{2}$ holds, by the definition of $A_{\text {maj }}(H)$ and therefore, there is an $a_{1}^{0} \in A_{H}\left(x_{1}, x_{2}\right)$. An l-cycle C_{H} in H on the vertex set of C, which contains a_{1}^{0}, can be constructed as follows. We start with a 1-path $z_{1} a_{1} z_{2}:=x_{1} a_{1}^{0} x_{2}$ in H. Let $z_{1} a_{1} z_{2} \cdots a_{i-1} z_{i}$ be an $(i-1)$-path in H for an $i \in\{2, \ldots, l\}$ such that the following conditions are met:
(1) $z_{1}, \ldots, z_{i} \in\left\{x_{1}, \ldots, x_{i}\right\}$.
(2) $z_{1}=x_{1}, z_{i}=x_{i}$ and $a_{1}=a_{1}^{0}$.
(3) If $x_{i} x_{i+1} \in B_{D}$, then $a_{i-1} \neq r\left(x_{i} x_{i+1}\right)$.

Suppose that $i \leq l-2$. If $x_{i} x_{i+1} \in B_{D}$, we define $a_{i}:=r\left(x_{i} x_{i+1}\right)$ and $z_{i+1}:=x_{i+1}$ and gain an i-path $z_{1} a_{1} z_{2} \cdots a_{i} z_{i+1}$ in H, because for all $j \in$ $\{1, \ldots, i-2\}$ we have $a_{i} \neq a_{j}$, since $a_{i} \in A_{H}\left(x_{i}, x_{i+1}\right), a_{j} \in A_{H}\left(x_{j}, x_{j+1}\right)$ and x_{i}, x_{i+1}, x_{j} and x_{j+1} are pairwise distinct. Furthermore, $a_{i-1} \neq r\left(x_{i} x_{i+1}\right)=a_{i}$ holds by condition (3) for $z_{1} a_{1} z_{2} \cdots a_{i-1} z_{i}$. Obviously, $z_{1} a_{1} z_{2} \cdots a_{i} z_{i+1}$ meets conditions (1) and (2). Condition (3) is met, since r is injective by assumption.

If $x_{i} x_{i+1} \in A(D) \backslash B_{D}$ and $x_{i+1} x_{i+2} \in A(D) \backslash B_{D}$, then $\left|A_{H}\left(x_{i}, x_{i+1}\right)\right| \geq 2$ and thus, there is an arc $a_{i} \in A_{H}\left(x_{i}, x_{i+1}\right) \backslash\left\{a_{i-1}\right\}$. With $z_{i+1}:=x_{i+1}$, the path $z_{1} a_{1} z_{2} \cdots a_{i} z_{i+1}$ is a suitable i-path in H, since condition (3) obviously holds.

If $x_{i} x_{i+1} \in A(D) \backslash B_{D}$, but $x_{i+1} x_{i+2} \in B_{D}$, we define $a:=r\left(x_{i+1} x_{i+2}\right)$. If there is an $a_{i} \in A_{H}\left(x_{i}, x_{i+1}\right) \backslash\left\{a_{i-1}, a\right\}$, we proceed as in the case where $x_{i+1} x_{i+2} \in A(D) \backslash B_{D}$. Otherwise, we consequently have $A_{H}\left(x_{i}, x_{i+1}\right)=$ $\left\{a_{i-1}, a\right\}$ and hence $\left|A_{H}\left(x_{i+1}, x_{i}\right)\right|=1$. Then $a_{i-1}=\left(x_{i-1}, x_{i}, x_{i+1}\right)$ and $a=\left(x_{i}, x_{i+1}, x_{i+2}\right)$ hold and there exists an arc $b \in A_{H}\left(x_{i+1}, x_{i}\right)$. Therefore, we have $a \neq a_{j}$ for all $j \in\{1, \ldots, i-1\}$, by representation of $a, b \neq a_{j}$ for all $j \in\{1, \ldots, i-2\}$, since $b \in A_{H}\left(x_{i+1}, x_{i}\right), a_{j} \in A_{H}\left(x_{j}, x_{j+1}\right)$ and x_{i}, x_{i+1}, x_{j} and x_{j+1} are pairwise distinct, and $b \notin\left\{a_{i-1}, a\right\}$, since $b \in A_{H}\left(x_{i+1}, x_{i}\right)$ and $a_{i-1}, a \in A_{H}\left(x_{i}, x_{i+1}\right)$. We gain an ($i+1$)-path $z_{1} a_{1} \cdots z_{i-1} a_{i-1} x_{i+1} b x_{i} a x_{i+2}$ in H, which obviously meets conditions (1) and (2). Condition (3) holds, since $a=r\left(x_{i+1} x_{i+2}\right)$ and r is injective by assumption.

Suppose that $i=l-1$. Then the same arguments give us an $(l-1)$-path $z_{1} a_{1} z_{2} \cdots a_{l-1} z_{l}$ in H, which meets the conditions above, or a suitable l-cycle $C_{H}=z_{1} a_{1} \cdots z_{i-1} a_{i-1} x_{l} b x_{l-1} a z_{1}$ in H. Note that in the latter case, we have $x_{l} x_{1} \in B_{D}$. As a direct consequence, we have $x_{1} x_{2} \in B_{D}$ and therefore, $a=r\left(x_{l} x_{1}\right) \neq r\left(x_{1} x_{2}\right)=a_{1}^{0}=a_{1}$, since r is injective by assumption. In the case where $i=l$, we find an $\operatorname{arc} a_{l} \in A_{H}\left(z_{l}, z_{1}\right) \backslash\left\{a_{l-1}, a_{1}\right\}$ and thereby a suitable l-cycle $C_{H}=z_{1} a_{1} \cdots z_{l} a_{l} z_{1}$ in H, or otherwise, a corresponding l-cycle $C_{H}=z_{2} a_{2} \cdots z_{l-1} a_{l-1} z_{1} b z_{l} a_{1} z_{2}$ in H, analogously.

3. Main results

Theorem 3.1. Let $H=(V, A)$ be a strong k-hypertournament on $n \geq k+2 \geq 5$ vertices and let C be a Hamiltonian cycle in H. Then C contains at least three pancyclic arcs.

We will give the proof of Theorem 3.1 in form of four lemmas, where Lemmas 3.4 and 3.5 cover almost all hypertournaments and in Lemmas 3.7 and 3.6 the result is shown for a finite number of rather tedious exceptions. But first, let us consider the following corollaries to Theorem 3.1.

Corollary 3.2. Let $H=(V, A)$ be a strong k-hypertournament on $n \geq k+2 \geq$ 5 vertices. Then H contains at least three pancyclic arcs.

Furthermore, Theorems 1.4 and 1.5 allow for a better bound of the pancyclic arcs contained in a d-edge-connected hypertournament.

Corollary 3.3. Let $H=(V, A)$ be a d-edge-connected k-hypertournament on n vertices, with $k=3$ and $n \geq 14 d+1$ or $4 \leq k \leq 7$ and $n \geq 24 d+1+k$ or $k \geq 8$ and $n \geq 2 d+k+1$. Then H contains at least $3 d$ pancyclic arcs.

Lemma 3.4. Let $H=(V, A)$ be a strong 3 -hypertournament on $n \geq 5$ vertices and let C be a Hamiltonian cycle in H. Then C contains at least three pancyclic arcs.

Proof. Let $C=x_{1} a_{1} x_{2} \cdots x_{n} a_{n} x_{1}$. We consider the C-majority-digraph $D:=$ $M(H, C)$ of H. By Theorem 2.5, $\tilde{C}:=x_{1} x_{2} \cdots x_{n} x_{1}$ contains at least three arcs that are pancyclic in D. Let $x_{i_{0}} x_{i_{0}+1}$ be such an arc for an i_{0} in $\{1, \ldots, l\}$. We will show that $a_{i_{0}}$ is pancyclic in H. Let $\tilde{C}_{l}=y_{1} \cdots y_{l} y_{1}$ be an l-cycle in D that contains $x_{i_{0}} x_{i_{0}+1}$ for an $l \in\{3, \ldots, n-1\}$. We define $B_{D}:=$ $\left\{x_{1} x_{2}, x_{2} x_{3}, \ldots, x_{n-1} x_{n}, x_{n} x_{1}\right\}$ and $r: B_{D} \rightarrow A(H), x_{i} x_{i+1} \mapsto a_{i}$ for all i in $\{1, \ldots, n\}$. By Definition 1.8 of D, the conditions of Lemma 2.9 are met and thus, there is an l-cycle C_{H} in H, that contains $a_{i_{0}}$. Since $x_{i_{0}} x_{i_{0}+1}$ and $l \in\{3, \ldots, n-1\}$ were arbitrarily chosen, C contains at least three pancyclic arcs.

Lemma 3.5. Let $H=(V, A)$ be a strong k-hypertournament on $n \geq k+2 \geq 6$ vertices, with $(n, k) \notin\{(6,4),(7,4),(7,5)\}$ and let C be a Hamiltonian cycle in H. Then C contains at least three pancyclic arcs.

Proof. Let $C=x_{1} a_{1} x_{2} a_{2} \cdots x_{n}$. We consider the C-majority-digraph $D:=$ $M(H, C)$ of H. By Lemma 2.6 we have $\left|A_{H}(x, y)\right| \geq\left\lceil\frac{1}{2}\binom{n-2}{k-2}\right\rceil \geq n$ for all $x y \in A_{\mathrm{maj}}(H)$.
D is a strong semicomplete digraph. By Theorem 2.5, the Hamiltonian cycle $\tilde{C}=x_{1} x_{2} \cdots x_{n}$ in D contains three pancyclic arcs. Let $x_{i_{0}} x_{i_{0}+1}$ be such an arc for an $i_{0} \in\{1, \ldots, l\}$. We will show that $a_{i_{0}}$ is pancyclic in H. Let $\tilde{C}_{l}=$ $y_{1} \cdots y_{l} y_{1}$ be an l-cycle in D that contains $x_{i_{0}} x_{i_{0}+1}$ for an $l \in\{3, \ldots, n-1\}$. Furthermore, let $I_{0} \subseteq\{1, \ldots, l\}$ be the set of indices i such that $y_{i} y_{i+1}=$ $x_{j(i)} x_{j(i)+1}$ for a $j(i) \in\{1, \ldots, n\}$. For an $i \in I_{0}$ we chose $b_{i}:=a_{j(i)}$. By Definition 1.8 of D, these b_{i} are pairwise distinct and we have $\left|A_{H}\left(y_{j}, y_{j+1}\right)\right| \geq$ $\left\lceil\frac{1}{2}\binom{n-2}{k-2}\right\rceil \geq n$ for all $j \in\{1, \ldots, l\} \backslash I_{0}$. Thus, we can chose $b_{j} \in A_{H}\left(y_{j}, y_{j+1}\right)$ for all $j \in\{1, \ldots, l\} \backslash I_{0}$, such that all b_{i} for $i \in\{1, \ldots, l\}$ are pairwise distinct and therefore, $a_{i_{0}}$ is contained in the l-cycle $y_{1} b_{1} y_{2} b_{2} \cdots y_{l} b_{l} y_{1}$ in H.

Lemma 3.6. Let $H=(V, A)$ be a strong 4- or 5 -hypertournament on 7 vertices and let C be a Hamiltonian cycle in H. Then C contains at least three pancyclic arcs.

Proof. Let $C=x_{1} a_{1} \cdots x_{6} a_{6} x_{7} a_{7} x_{1}$. We consider the C-majority-digraph $D:=$ $M(H, C)$. Let t_{0} denote the smallest integer $t \in\{1, \ldots, 5\}$, such that $D-V(T)$ is strong for all $(t-2)$-subpaths of $x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{1}$ but there exists such a $(t-1$)-subpath \tilde{T} (without loss of generality, we may assume that $\tilde{T}=$ $\left.x_{1} \cdots x_{t_{0}}\right)$, such that $D-V(\tilde{T})$ is not strong.
(*) If $x, y \in V$ are distinct vertices with $x y \notin A_{\text {maj }}^{C}(H) \cup\left\{x_{i+1} x_{i} \mid 1 \leq\right.$ $i \leq 7\}$, then $\left|A_{H}(x, y)\right| \geq \frac{1}{2}\binom{n-2}{k-2}+1=6$. This is particularly true for distinct vertices $x, y \in V(D) \backslash V(\tilde{T})$, such that $x y \notin\left\{x_{i+1} x_{i} \mid 1 \leq i \leq\right.$ $7\}$ and y is contained in a component of the strong decomposition of $D-V(\tilde{T})$ that precedes x.

Case 1. $t_{0}=1$.

By Definition 1.8 of D, the strong decomposition of $D-x_{1}$ does not contain components of cardinality 2 and for all $2 \leq i<j \leq 6$, the vertex x_{j} is either contained in the same component as x_{i} or in one that succeeds it. Therefore, we only need to consider the following subcases.

Case 1.1. The first or the last component (without loss of generality, we may assume the last) of the strong decomposition of $D-x_{1}$ contains exactly 1 vertex. For all $i \in\{2, \ldots, 5\}$, the arcs a_{1} and a_{7} are contained in the $(i+1)$-cycle $x_{1} a_{1} \cdots x_{i} a x_{7} a_{7} x_{1}$ in H for an $a \in A_{H}\left(x_{i}, x_{7}\right) \backslash\left\{a_{1}, \ldots, a_{i-1}, a_{7}\right\}$ and therefore are pancyclic. Note, that $\left|A_{H}\left(x_{5}, x_{7}\right)\right| \geq 6$, by (*). Let $i_{0}:=$ $\min \left\{i \mid 2 \leq i \leq 6, x_{i+1} x_{1} \in A_{\text {maj }}^{C}(H)\right\}$. For all $i \in\left\{2, \ldots, i_{0}\right\}$, the arc $a_{i_{0}}$ is contained in the $\left(3+i_{0}-i\right)$-cycle $x_{1} a x_{i} a_{i} \cdots x_{i_{0}} a_{i_{0}} x_{i_{0}+1} b x_{1}$ for an arc $a \in$ $A_{H}\left(x_{1}, x_{i_{0}}\right) \backslash\left\{a_{i}, \ldots, a_{i_{0}}\right\}$ and an arc $b \in A_{H}\left(x_{i_{0}+1}, x_{1}\right) \backslash\left\{a_{i}, \ldots, a_{i_{0}}, a\right\}$. Note, that $\left|A_{H}\left(x_{1}, x_{3}\right)\right| \geq \frac{1}{2}\binom{n-2}{k-2}+1=6$, if $i_{0}=6$, since $x_{3} x_{1} \notin A_{\text {maj }}^{C}(H)$, by the definition of i_{0}. Furthermore, for all $i \in\left\{i_{0}+1, \ldots, 5\right\}, a_{i_{0}}$ is contained in the ($i+1$)cycle $x_{1} a_{1} \cdots x_{i} a x_{7} a_{7} x_{1}$ in H for an arc $a \in A_{H}\left(x_{i}, x_{7}\right) \backslash\left\{a_{1}, \ldots, a_{i-1}, a_{7}\right\}$, since $\left|A_{H}\left(x_{i}, x_{7}\right)\right| \geq 6$, by (*). Thus, $a_{i_{0}}$ is pancyclic as well.

Case 1.2. The strong decomposition of $D-x_{1}$ contains two components of cardinality 3. a_{1} and a_{7} are contained in the 3 -cycle $x_{7} a_{7} x_{1} a_{1} x_{2} a x_{7}$ in H for an $\operatorname{arc} a \in A_{H}\left(x_{2}, x_{7}\right) \backslash\left\{a_{1}, a_{7}\right\}$. Since $D\left[\left\{x_{5}, x_{6}, x_{7}\right\}\right]$ is strong, we consequently have $\left|A_{H}\left(x_{7}, x_{5}\right)\right| \geq 5$. Thus, there is an arc $a \in A_{H}\left(x_{7}, x_{5}\right) \backslash\left\{a_{5}, a_{6}\right\}$ and a_{6} is contained in the 3 -cycle $x_{5} a_{5} x_{6} a_{6} x_{7} a x_{5}$ in H. For all $i \in\{2, \ldots, 4\}, a_{1}, a_{6}$ and a_{7} are contained in the $(i+2)$-cycle $x_{1} a_{1} \cdots x_{i} a x_{6} a_{6} x_{7} a_{7} x_{1}$ for an arcs $a \in A_{H}\left(x_{i}, x_{6}\right) \backslash\left\{a_{1}, \ldots, a_{i-1}, a_{6}, a_{7}\right\}$, which exists by $(*)$. Therefore, a_{1}, a_{6} and a_{7} are pancyclic.

Case 2. $t_{0}=2$.
Without loss of generality, we may assume that the last component of the strong decomposition of $D-\left\{x_{1}, x_{2}\right\}$ contains exactly 1 vertex. Since $D-x_{1}$ is strong, we have $x_{7} x_{2} \in A_{\text {maj }}^{C}(H) . a_{2}$ is contained in the 3 -cycle $x_{7} a x_{2} a_{2} x_{3} b x_{7}$ in H for arcs $a \in A_{H}\left(x_{7}, x_{2}\right) \backslash\left\{a_{2}\right\}$ and $b \in A_{H}\left(x_{3}, x_{7}\right) \backslash\left\{a_{2}, a\right\}$. If $x_{3} x_{1} \in$ $A_{\text {maj }}^{C}(H)$, then a_{1} is contained in the 3 -cycle $x_{1} a_{1} x_{2} a_{2} x_{3} a x_{1}$ in H for an $a \in$ $A_{H}\left(x_{3}, x_{1}\right) \backslash\left\{a_{1}, a_{2}\right\}$. If $x_{1} x_{3} \in A_{\text {maj }}^{C}(H)$, then a_{7} is contained in the 3 -cycle $x_{7} a_{7} x_{1} a x_{3} b x_{7}$ in H for $\operatorname{arcs} a \in A_{H}\left(x_{1}, x_{3}\right) \backslash\left\{a_{7}\right\}$ and $b \in\left\{a_{7}, a\right\}$. For all $i \in\{3, \ldots, 5\}, a_{1}, a_{2}$ and a_{7} are contained in the $(i+1)$-cycle $x_{1} a_{1} \cdots x_{i} a x_{7} a_{7} x_{1}$ in H for an arc $a \in A_{H}\left(x_{i}, x_{7}\right) \backslash\left\{a_{1}, \ldots, a_{i-1}, a_{7}\right\}$, which exists by (*). Thus a_{2} and a_{1} or a_{7} are pancyclic.

Let $i_{0}:=\min \left\{i \mid 3 \leq i \leq 6, x_{i+1} x_{2} \in A_{\text {maj }}^{C}(H)\right\}$. Then $a_{i_{0}}$ is contained in the 3 -cycle $x_{2} a x_{i_{0}} a_{i_{0}} x_{i_{0}+1} b x_{2}$ in H, for $\operatorname{arcs} a \in A_{H}\left(x_{2}, x_{i_{0}}\right) \backslash\left\{a_{i_{0}}\right\}$ and $b \in A_{H}\left(x_{i_{0}+1}, x_{2}\right) \backslash\left\{a_{i_{0}}, a\right\}$. If $i_{0}=3$, then $a_{i_{0}}$ is contained in the 4 -cycle $x_{2} a_{2} x_{i_{0}} a_{i_{0}} x_{i_{0}+1} a x_{7} b x_{2}$ in H for arcs $a \in A_{H}\left(x_{i_{0}+1}, x_{7}\right) \backslash\left\{a_{2}, a_{i_{0}}\right\}$ and $b \in$ $A_{H}\left(x_{7}, x_{2}\right) \backslash\left\{a_{2}, a_{i_{0}}, a\right\}$. For all $i \in\{4,5\}, a_{i_{0}}$ is contained in the $(i+1)$-cycle $x_{2} a_{2} x_{i_{0}} a_{i_{0}} \cdots x_{i} a x_{7} a_{7} x_{1} a_{1} x_{2}$ in H for an arc $a \in A_{H}\left(x_{i}, x_{7}\right) \backslash\left\{a_{1}, \ldots, a_{i}, a_{7}\right\}$, which exists by $(*)$. Suppose that $i_{0}>3$. Then $a_{i_{0}}$ is contained in the 4 -cycle $x_{2} a x_{i_{0}-1} a_{i_{0}-1} x_{i_{0}} a_{i_{0}} x_{i_{0}+1} b x_{2}$ in H for arcs $a \in A_{H}\left(x_{2}, x_{i_{0}-1}\right) \backslash\left\{a_{i_{0}-1}, a_{i_{0}}\right\}$ and $b \in A_{H}\left(x_{i_{0}+1}, x_{2}\right) \backslash\left\{a_{i_{0}-1}, a_{i_{0}}, a\right\}$, in the 5 -cycle $x_{2} c x_{4} a_{4} x_{5} a_{5} x_{6} a_{6} x_{7} d x_{2}$ in H for $\operatorname{arcs} c \in A_{H}\left(x_{2}, x_{4}\right) \backslash\left\{a_{4}, a_{5}, a_{6}\right\}$ and $d \in A_{H}\left(x_{7}, x_{2}\right) \backslash\left\{a_{4}, a_{5}, a_{6}, c\right\}$ and in the 6 -cycle $x_{2} e x_{4} a_{4} x_{5} a_{5} x_{6} a_{6} x_{7} a_{7} x_{1} a_{1} x_{2}$ in H for an $\operatorname{arc} e \in A_{H}\left(x_{2}, x_{4}\right) \backslash$ $\left\{a_{1}, a_{4}, a_{5}, a_{6}, a_{7}\right\}$, which exists, since there are no arcs from x_{4} to x_{2} in D, by the definition of i_{0} and thus, $\left|A_{H}\left(x_{2}, x_{4}\right)\right| \geq \frac{1}{2}\binom{n-2}{k-2}+1=6$. Therefore, $a_{i_{0}} \in\left\{a_{3}, a_{4}, a_{5}, a_{6}\right\}$ is the third pancyclic arc.

Case 3. $t_{0}=3$.
Without loss of generality, we may assume that the last component of the strong decomposition of $D-\left\{x_{1}, x_{2}, x_{3}\right\}$ contains exactly 1 vertex. Since $D-$ $\left\{x_{1}, x_{2}\right\}$ is strong, we have $x_{7} x_{3} \in A_{\mathrm{maj}}^{C}(H)$. For all $i \in\{4, \ldots, 6\}$, the arc a_{3} is contained in the $(i-1)$-cycle $x_{3} a_{3} \cdots x_{i} a x_{7} b x_{3}$ in H for $\operatorname{arcs} a \in A_{H}\left(x_{i}, x_{7}\right) \backslash$ $\left\{a_{3}, \ldots, a_{i-1}\right\}$ and $b \in A_{H}\left(x_{7}, x_{3}\right) \backslash\left\{a_{3}, \ldots, a_{i-1}, a\right\}$. With the exception of $i=4$, the arc a_{4} is also contained in said cycles. Furthermore, a_{3} and a_{4} are contained in the 6 -cycle $x_{3} a_{3} x_{4} a_{4} x_{5} a x_{7} a_{7} x_{1} a_{1} x_{2} a_{2} x_{3}$ in H for an arc $a \in$ $A_{H}\left(x_{5}, x_{7}\right) \backslash\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{7}\right\}$, which exists by $(*)$. Therefore, a_{3} is pancyclic.

Let $i_{0}:=\min \left\{i \mid 4 \leq i \leq 6, x_{i+1} x_{3} \in A_{\mathrm{maj}}^{C}(H)\right\}$. Then $a_{i_{0}}$ is contained in the 3 -cycle $x_{3} a x_{i_{0}} a_{i_{0}} x_{i_{0}+1} b x_{3}$ in H for $\operatorname{arcs} a \in A_{H}\left(x_{3}, x_{i_{0}}\right) \backslash\left\{a_{i_{0}}\right\}$ and $b \in A_{H}\left(x_{i_{0}+1}, x_{3}\right) \backslash\left\{a_{i_{0}}, a\right\}$. If $i_{0}=4$, then we have already shown $a_{i_{0}}$ to be pancyclic. Suppose that $i_{0} \in\{5,6\}$. Then $a_{i_{0}}$ is contained in the 4 -cycle $x_{3} a x_{5} a_{5} x_{6} a_{6} x_{7} b x_{3}$ in H for $\operatorname{arcs} a \in A_{H}\left(x_{3}, x_{5}\right) \backslash\left\{a_{5}, a_{6}\right\}$ and $b \in A_{H}\left(x_{7}, x_{3}\right) \backslash$ $\left\{a_{5}, a_{6}, a\right\}$, it is contained in the 5 -cycle $x_{3} a_{3} x_{4} a_{4} x_{5} a_{5} x_{6} a_{6} x_{7} c x_{3}$ in H for an $\operatorname{arc} c \in A_{H}\left(x_{7}, x_{3}\right) \backslash\left\{a_{3}, a_{4}, a_{5}, a_{6}\right\}$ and finally, it is contained in the 6 -cycle $x_{3} d x_{5} a_{5} x_{6} a_{6} x_{7} a_{7} x_{1} a_{1} x_{2} a_{2} x_{3}$ for an arc $d \in A_{H}\left(x_{3}, x_{5}\right) \backslash\left\{a_{1}, a_{2}, a_{5}, a_{6}, a_{7}\right\}$, which exists by the definition of i_{0} and $(*)$. Thus, $a_{i_{0}} \in\left\{a_{4}, a_{5}, a_{6}\right\}$ is pancyclic.

Since $D-\left\{x_{2}, x_{3}\right\}$ is strong, we have $x_{1} x_{j_{0}} \in A_{\text {maj }}^{C}(H)$ for an index $j_{0} \in$ $\{4,5,6\}$, such that $x_{j_{0}}$ is contained in the first component of the strong decomposition of $D-\left\{x_{1}, x_{2}, x_{3}\right\} . a_{7}$ is contained in the 3 -cycle $x_{7} a_{7} x_{1} a x_{j_{0}} b x_{7}$ in H for $\operatorname{arcs} a \in A_{H}\left(x_{1}, x_{j_{0}}\right) \backslash\left\{a_{7}\right\}$ and $b \in A_{H}\left(x_{j_{0}}, x_{7}\right) \backslash\left\{a_{7}, a\right\}$. For $j_{0} \in\{4,5\}, a_{7}$ is contained in the 4 -cycle $x_{7} a_{7} x_{1} a x_{j_{0}} a_{j_{0}} x_{j_{0}+1} b x_{7}$ in H for $\operatorname{arcs} a \in A_{H}\left(x_{1}, x_{j_{0}}\right) \backslash\left\{a_{7}, a_{j_{0}}\right\}$ and $b \in A_{H}\left(x_{j_{0}+1}, x_{7}\right) \backslash\left\{a_{7}, a_{j_{0}}, a\right\}$. If $j_{0}=6$, then x_{6} is contained in the first component of the strong decomposition of D $\left\{x_{1}, x_{2}, x_{3}\right\}$ and thus, $x_{6} x_{4} \in A_{\text {maj }}^{C}(H)$. Therefore, a_{7} is contained in the 4-cycle $x_{7} a_{7} x_{1} a x_{j_{0}} b x_{4} c x_{7}$ in H for $\operatorname{arcs} a \in A_{H}\left(x_{1}, x_{j_{0}}\right) \backslash\left\{a_{7}\right\}, b \in A_{H}\left(x_{j_{0}}, x_{4}\right) \backslash\left\{a_{7}, a\right\}$ and $c \in A_{H}\left(x_{4}, x_{7}\right) \backslash\left\{a_{7}, a, b\right\}$. Furthermore, for all $i \in\{4,5\}$, there exists an
$a \in A_{H}\left(x_{i}, x_{7}\right) \backslash\left\{a_{1}, \ldots, a_{i-1}, a_{7}\right\}$, such that a_{7} is contained in the $(i+1)$-cycle $x_{7} a_{7} x_{1} a_{1} \cdots x_{i} a x_{7}$ in H, by (*). Hence, a_{7} is pancyclic as well.

Case 4. $t_{0}=4$.
We have $x_{7} x_{4}, x_{1} x_{5} \in A_{\text {maj }}^{C}(H)$, since $D-\left\{x_{1}, x_{2}, x_{3}\right\}$ and $D-\left\{x_{2}, x_{3}, x_{4}\right\}$ are strong, by the definition of t_{0}.

If $x_{4} x_{1} \notin A_{\mathrm{maj}}^{C}(H)$, we also have $x_{4} x_{2}, x_{3} x_{1} \in A_{\mathrm{maj}}^{C}(H)$, since $D-\left\{x_{5}, x_{6}, x_{7}\right\}$ is strong by the definition of $t_{0} . a_{4}$ is contained in the 3 - and in the 4 -cycle $x_{4} a_{4} x_{5} a x_{7} b x_{4}$ and $x_{4} a_{4} x_{5} a_{5} x_{6} a_{6} x_{7} b x_{4}$ in H, for $\operatorname{arcs} a \in A_{H}\left(x_{5}, x_{7}\right) \backslash\left\{a_{4}\right\}$ and $b \in A_{H}\left(x_{7}, x_{4}\right) \backslash\left\{a_{4}, a_{5}, a_{6}, a\right\} . a_{7}$ is contained in the 3 -cycle $x_{7} a_{7} x_{1} a x_{5} b x_{7}$ and in the 4-cycle $x_{7} a_{7} x_{1} a x_{5} a_{5} x_{6} a_{6} x_{7}$ in H for arcs $a \in A_{H}\left(x_{1}, x_{5}\right) \backslash\left\{a_{5}, a_{6}, a_{7}\right\}$ and $b \in A_{H}\left(x_{5}, x_{7}\right) \backslash\left\{a_{7}, a\right\}$. Furthermore, a_{4} and a_{7} are contained in the 5cycle $x_{4} a_{4} x_{5} a_{5} x_{6} a_{6} x_{7} a_{7} x_{1} a x_{4}$ in H for an $a \in A_{H}\left(x_{1}, x_{4}\right) \backslash\left\{a_{4}, a_{5}, a_{6}, a_{7}\right\}$ and in the 6 -cycle $x_{4} a_{4} x_{5} b x_{7} a_{7} x_{1} a_{1} x_{2} a_{2} x_{3} a_{3} x_{4}$ in H for an $\operatorname{arc} b \in A_{H}\left(x_{5}, x_{7}\right) \backslash$ $\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{7}\right\}$, which exists by (*). Therefore, a_{4} and a_{7} are pancyclic.

If $x_{6} x_{4} \notin A_{\text {maj }}^{C}(H)$, then a_{6} is contained in the 3 -cycle $x_{6} a_{6} x_{7} a x_{4} b x_{6}$ and in the 4 -cycle $x_{6} a_{6} x_{7} a x_{4} a_{4} x_{5} a_{5} x_{6}$ in H for arcs $a \in A_{H}\left(x_{7}, x_{4}\right) \backslash\left\{a_{4}, a_{5}, a_{6}\right\}$ and $b \in A_{H}\left(x_{4}, x_{6}\right) \backslash\left\{a_{4}, a_{5}, a_{6}, a\right\}$. Furthermore, a_{6} is contained in the 5 -cycle $x_{6} a_{6} x_{7} a_{7} x_{1} a x_{4} a_{4} x_{5} a_{5} x_{6}$ for an $a \in A_{H}\left(x_{1}, x_{4}\right) \backslash\left\{a_{4}, a_{5}, a_{6}, a_{7}\right\}$ and in the 6cycle $x_{6} a_{6} x_{7} a_{7} x_{1} a_{1} x_{2} a_{2} x_{3} a_{3} x_{4} b x_{6}$ for some $b \in A_{H}\left(x_{4}, x_{6}\right) \backslash\left\{a_{1}, a_{2}, a_{3}, a_{6}, a_{7}\right\}$, which exists by $(*)$. Thus, a_{6} is the third pancyclic arc.

Suppose that $x_{6} x_{4} \in A_{\text {maj }}^{C}(H)$. For all $i \in\{6,7\}, a_{5}$ is contained in the $(i-3)$-cycle $x_{5} a_{5} \cdots x_{i} a x_{4} a_{4} x_{5}$ in H for an $a \in A_{H}\left(x_{i}, x_{4}\right) \backslash\left\{a_{4}, \ldots, a_{i-1}\right\}$. Furthermore, a_{5} is contained in the 5 -cycle $x_{5} a_{5} x_{6} a_{6} x_{7} x_{1} a x_{4} a_{4} x_{5}$ for an $a \in$ $A_{H}\left(x_{1}, x_{4}\right) \backslash\left\{a_{4}, \ldots, a_{7}\right\}$. Since a_{5} contains only four vertices, we have $a_{5} \notin$ $A_{H}\left(x_{6}, x_{4}\right) \cap A_{H}\left(x_{4}, x_{2}\right) \cap A_{H}\left(x_{3}, x_{1}\right) \cap A_{H}\left(x_{1}, x_{5}\right)$. Without loss of generality, we may assume that $a_{5} \notin A_{H}\left(x_{1}, x_{5}\right)$. Then a_{5} is contained in the 6 -cycle $x_{5} a_{5} x_{6} a x_{4} b x_{2} a_{2} x_{3} c x_{1} d x_{5}$ in H for arcs $a \in A_{H}\left(x_{6}, x_{4}\right) \backslash\left\{a_{2}, a_{5}\right\}, b \in$ $A_{H}\left(x_{4}, x_{2}\right) \backslash\left\{a_{2}, a_{5}, a\right\}, c \in A_{H}\left(x_{3}, x_{1}\right) \backslash\left\{a_{2}, a_{5}, a, b\right\}$ and $d \in A_{H}\left(x_{1}, x_{5}\right) \backslash$ $\left\{a_{2}, a_{5}, a, b, c\right\}$. Therefore, a_{5} is pancyclic.

Suppose now that $x_{4} x_{1} \in A_{\text {maj }}^{C}(H)$. For arcs $a \in A_{H}\left(x_{5}, x_{7}\right) \backslash\left\{a_{4}\right\}$ and $b \in A_{H}\left(x_{7}, x_{4}\right) \backslash\left\{a_{4}, a_{5}, a_{6}, a\right\}, a_{4}$ is contained in the 3 -cycle $x_{4} a_{4} x_{5} a x_{7} b x_{4}$ and in the 4 -cycle $x_{4} a_{4} x_{5} a_{5} x_{6} a_{6} x_{7} b x_{4}$ in $H . a_{7}$ is contained in the 3 - and the 4 -cycle $x_{7} a_{7} x_{1} a x_{5} b x_{7}$ and $x_{7} a_{7} x_{1} a x_{5} a_{5} x_{6} a_{6} x_{7}$ in H, respectively, for arcs $a \in A_{H}\left(x_{1}, x_{5}\right) \backslash\left\{a_{5}, a_{6}, a_{7}\right\}$ and $b \in A_{H}\left(x_{5}, x_{7}\right) \backslash\left\{a_{7}, a\right\}$.

If $x_{1} x_{3} \in A_{\text {maj }}^{C}(H)$, then a_{3} is contained in the 3 -cycle $x_{3} a_{3} x_{4} a x_{1} b x_{3}$ and in the 4 -cycle $x_{3} a_{3} x_{4} a x_{1} a_{1} x_{2} a_{2} x_{3}$ in H for arcs $a \in A_{H}\left(x_{4}, x_{1}\right) \backslash\left\{a_{1}, a_{2}, a_{3}\right\}$ and $b \in A_{H}\left(x_{1}, x_{3}\right) \backslash\left\{a_{3}, a\right\}$. Furthermore, a_{3}, a_{4} and a_{7} are contained in the 5 -cycle $x_{3} a_{3} x_{4} a_{4} x_{5} a x_{7} a_{7} x_{1} b x_{3}$ and in the 6 -cycle $x_{3} a_{3} x_{4} a_{4} x_{5} a x_{7} a_{7} x_{1} a_{1} x_{2} a_{2} x_{3}$ in H for arcs $a \in A_{H}\left(x_{5}, x_{7}\right) \backslash\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{7}\right\}$, which exists by (*), and $b \in A_{H}\left(x_{1}, x_{3}\right) \backslash\left\{a_{3}, a_{4}, a_{7}, a\right\}$. Thus, a_{3}, a_{4} and a_{7} are pancyclic. If $x_{2} x_{4} \in$ $A_{\mathrm{maj}}^{C}(H)$, then a_{1}, a_{4} and a_{7} are pancyclic by analogous arguments.

Suppose that $x_{1} x_{3}, x_{2} x_{4} \notin A_{\mathrm{maj}}^{C}(H)$. Then a_{1} and a_{2} are contained in the 3 -cycle $x_{1} a_{1} x_{2} a_{2} x_{3} a x_{1}$ and in the 4 -cycle $x_{1} a_{1} x_{2} a_{2} x_{3} a_{3} x_{4} b x_{1}$ in H for arcs
$a \in A_{H}\left(x_{3}, x_{1}\right) \backslash\left\{a_{1}, a_{2}\right\}$ and $b \in A_{H}\left(x_{4}, x_{1}\right) \backslash\left\{a_{1}, a_{2}, a_{3}\right\} . a_{3}$ is contained in the 3 -cycle $x_{2} a_{2} x_{3} a_{3} x_{4} a x_{2}$ and in the 4 -cycle $x_{2} a_{2} x_{3} a_{3} x_{4} b x_{1} a_{1} x_{2}$ in H for an $a \in A_{H}\left(x_{4}, x_{2}\right) \backslash\left\{a_{2}, a_{3}\right\}$ and an arc $b \in A_{H}\left(x_{4}, x_{1}\right) \backslash\left\{a_{1}, a_{2}, a_{3}\right\}$.

If $x_{3} x_{6} \in A_{\text {maj }}^{C}(H)$, then the three arcs a_{1}, a_{2} and a_{7} are contained in the 5cycle $x_{1} a_{1} x_{2} a_{2} x_{3} a x_{6} a_{6} x_{7} a_{7} x_{1}$ and in the 6 -cycle $x_{1} a_{1} x_{2} a_{2} x_{3} a_{3} x_{4} a_{4} x_{5} b x_{7} a_{7} x_{1}$ in H for an $a \in A_{H}\left(x_{2}, x_{4}\right) \backslash\left\{a_{1}, a_{2}, a_{6}, a_{7}\right\}$ and an $\operatorname{arc} b \in A_{H}\left(x_{5}, x_{7}\right) \backslash$ $\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{7}\right\}$, which exists by $(*)$. Hence, a_{1}, a_{2} and a_{7} are pancyclic. If $x_{6} x_{2} \in A_{\mathrm{maj}}^{C}(H)$, then a_{2}, a_{3} and a_{4} are pancyclic by analogous arguments.

Thus, we may assume that $x_{3} x_{6}, x_{6} x_{2} \notin A_{\text {maj }}^{C}(H)$. Consequently, there are $\operatorname{arcs} a \in A_{H}\left(x_{2}, x_{6}\right) \backslash\left\{a_{1}, a_{3}\right\}, b \in A_{H}\left(x_{6}, x_{3}\right) \backslash\left\{a_{1}, a_{3}, a\right\}, c \in A_{H}\left(x_{4}, x_{1}\right) \backslash$ $\left\{a_{1}, a_{3}, a, b\right\}$ and $d \in A_{H}\left(x_{5}, x_{7}\right) \backslash\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{7}\right\}$, by (*), such that a_{1} and a_{3} are contained in the 5 -cycle $x_{1} a_{1} x_{2} a x_{6} b x_{3} a_{3} x_{4} c x_{1}$ as well as in the 6 -cycle $x_{1} a_{1} x_{2} a_{2} x_{3} a_{3} x_{4} a_{4} x_{5} d x_{7} a_{7} x_{1}$ in H. Therefore, a_{1} and a_{3} are pancyclic.

If $x_{7} x_{3} \in A_{\text {maj }}^{C}(H)$, then, for an $a \in A_{H}\left(x_{7}, x_{3}\right) \backslash\left\{a_{3}, a_{4}, a_{5}, a_{6}\right\}, a_{4}$ is contained in the 5 -cycle $x_{3} a_{3} x_{4} a_{4} x_{5} a_{5} x_{6} a_{6} x_{7} a x_{3}$ and it is contained in the 6 -cycle $x_{1} a_{1} x_{2} a_{2} x_{3} a_{3} x_{4} a_{4} x_{5} b x_{7} a_{7} x_{1}$ in H for an arc $b \in A_{H}\left(x_{5}, x_{7}\right) \backslash\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{7}\right\}$, which exists by $(*)$. Hence, a_{4} is pancyclic as well.

For $x_{7} x_{3} \notin A_{\mathrm{maj}}^{C}(H), a_{2}$ is contained in the 5 -cycle $x_{2} a_{2} x_{3} a x_{7} b x_{4} c x_{1} a_{1} x_{2}$ and in the 6 -cycle $x_{1} a_{1} x_{2} a_{2} x_{3} a_{3} x_{4} a_{4} x_{5} d x_{7} a_{7} x_{1}$ in H for an $a \in A_{H}\left(x_{3}, x_{7}\right) \backslash$ $\left\{a_{1}, a_{2}\right\}$, an $\operatorname{arc} b \in A_{H}\left(x_{7}, x_{4}\right) \backslash\left\{a_{1}, a_{2}, a\right\}$, an $\operatorname{arc} c \in A_{H}\left(x_{4}, x_{1}\right) \backslash\left\{a_{1}, a_{2}, a, b\right\}$ and an arc $d \in A_{H}\left(x_{5}, x_{7}\right) \backslash\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{7}\right\}$, which exists by (*). Thus, a_{2} is the third pancyclic arc.

Case 5. $t_{0}=5$.
By the definition of t_{0}, we have $x_{3} x_{1}, x_{4} x_{2}, x_{5} x_{3}, x_{6} x_{4}, x_{7} x_{5}, x_{1} x_{6}, x_{2} x_{7} \in$ $A_{\text {maj }}^{C}(H)$.

We will show the following: For all $i \in\{1, \ldots, 7\}$ and $l \in\{3,4,5\}$, the $\operatorname{arc} a_{i}$ is contained in an l-cycle in H. Without loss of generality, we may assume that $i=1$. Then a_{1} is contained in the 3 -cycle $x_{1} a_{1} x_{2} a_{2} x_{3} a x_{1}$ for an $a \in A_{H}\left(x_{3}, x_{1}\right) \backslash\left\{a_{1}, a_{2}\right\}$. If $x_{3} x_{7} \in A_{\text {maj }}^{C}(H)$, then a_{1} is contained in the 4cycle $x_{1} a_{1} x_{2} a_{2} x_{3} a x_{7} a_{7} x_{1}$ in H for an $a \in A_{H}\left(x_{3}, x_{7}\right) \backslash\left\{a_{1}, a_{2}, a_{7}\right\}$. Otherwise, a_{1} is contained in the 4 -cycle $x_{1} a_{1} x_{2} a x_{7} b x_{3} c x_{1}$ in H for an $a \in A_{H}\left(x_{2}, x_{7}\right) \backslash$ $\left\{a_{1}\right\}$, an $\operatorname{arc} b \in A_{H}\left(x_{7}, x_{3}\right) \backslash\left\{a_{1}, a\right\}$ and an arc $c \in A_{H}\left(x_{3}, x_{1}\right) \backslash\left\{a_{1}, a, b\right\}$. Furthermore, a_{1} is contained in the 5-cycle $x_{1} a_{1} x_{2} a x_{7} b x_{5} c x_{3} d x_{1}$ in H for arcs $a \in A_{H}\left(x_{2}, x_{7}\right) \backslash\left\{a_{1}\right\}, b \in A_{H}\left(x_{7}, x_{5}\right) \backslash\left\{a_{1}, a\right\}, c \in A_{H}\left(x_{5}, x_{3}\right) \backslash\left\{a_{1}, a, b\right\}$ and $d \in A_{H}\left(x_{3}, x_{1}\right) \backslash\left\{a_{1}, a, b, c\right\}$.

To prove the existence of suitable 6 -cycles, we will show the following: If $x_{i} x_{j} \notin A_{\mathrm{maj}}^{C}(H)$ for a pair of indices $i, j \in\{1, \ldots, 7\}$, such that $j-i \in$ $\{3,-4\}$, then a_{i} is contained in a 6 -cycle in H. Without loss of generality, we may assume that $i=1$ and $j=4$. Then a_{1} is contained in the 6 -cycle $x_{1} a_{1} x_{2} a x_{7} b x_{5} c x_{3} a_{3} x_{4} d x_{1}$ for $\operatorname{arcs} a \in A_{H}\left(x_{2}, x_{7}\right) \backslash\left\{a_{1}, a_{3}\right\}, b \in A_{H}\left(x_{7}, x_{5}\right) \backslash$ $\left\{a_{1}, a_{3}, a\right\}, c \in A_{H}\left(x_{5}, x_{3}\right) \backslash\left\{a_{1}, a_{3}, a, b\right\}$ and $d \in A_{H}\left(x_{4}, x_{1}\right) \backslash\left\{a_{1}, a_{3}, a, b, c\right\}$, which exists by $(*)$. Thus, if there are three such pairs, we are finished.

Otherwise, there are indices $i_{1}, i_{2}, j_{1}, j_{2} \in\{1, \ldots, 7\}$, such that $i_{2}-i_{1} \in$ $\{1,-6\}, j_{1}-i_{1} \in\{3,-4\}, j_{2}-i_{2} \in\{3,-4\}$ and $x_{i_{1}} x_{j_{1}}, x_{i_{2}} x_{j_{2}} \in A_{\operatorname{maj}}^{C}(H)$. Without loss of generality, we may assume that $i_{1}=1, i_{2}=2, j_{1}=4$ and $j_{2}=5$. Furthermore, we have $a_{6} \notin A_{H}\left(x_{1}, x_{4}\right) \cap A_{H}\left(x_{4}, x_{2}\right) \cap A_{H}\left(x_{2}, x_{5}\right)$, since a_{6} would otherwise contain six vertices, a contradiction. Without loss of generality, we may assume that $a_{6} \notin A_{H}\left(x_{2}, x_{5}\right)$. Therefore, a_{5}, a_{6} and a_{7} are contained in the 6 -cycle $x_{1} a x_{4} b x_{2} c x_{5} a_{5} x_{6} a_{6} x_{7} a_{7} x_{1}$ in H for arcs $a \in A_{H}\left(x_{1}, x_{4}\right) \backslash\left\{a_{5}, a_{6}, a_{7}\right\}$, $b \in A_{H}\left(x_{4}, x_{2}\right) \backslash\left\{a_{5}, a_{6}, a_{7}, a\right\}$ and $c \in A_{H}\left(x_{2}, x_{5}\right) \backslash\left\{a_{5}, a_{6}, a_{7}, a, b\right\}$. Thus, we have found three pancyclic arcs.

Lemma 3.7. Let $H=(V, A)$ be a strong 4-hypertournament on 6 vertices and let C be a Hamiltonian cycle in H. Then C contains at least three pancyclic arcs.

Since it is similar in structure to, but far exceeding the length of the proof of Lemma 3.6, we will omit our proof of Lemma 3.7.
Acknowledgment. We are grateful to the anonymous referees for their useful comments.

References

[1] P. Camion, Chemins et circuits hamiltoniens des graphes complets, C. R. Acad. Sci. Paris 249 (1959), 2151-2152.
[2] Q. Guo, S. Li, Y. Guo, and H. Li, Out-arc pancyclicity of vertices in tournaments, Discrete Appl. Math. 158 (2010), no. 9, 996-1005.
[3] G. Gutin and A. Yeo, Hamiltonian paths and cycles in hypertournaments, J. Graph Theory 25 (1997), no. 4, 277-286.
[4] P. Hall, On representatives of subsets, J. London Math. Soc. 10 (1935), 26-30.
[5] H. Li, S. Li, Y. Guo, and M. Surmacs, On the vertex-pancyclicity of hypertournaments, Discrete Appl. Math. 161 (2013), no. 16-17, 2749-2752.
[6] J. W. Moon, On subtournaments of a tournament, Canad. Math. Bull. 9 (1966), 297301.
[7] _, On k-cyclic and pancyclic arcs in strong tournaments, J. Combin. Inform. System Sci. 19 (1994), no. 3-4, 207-214.
[8] V. Petrovic and C. Thomassen, Edge disjoint Hamiltonian cycles in hypertournaments, J. Graph Theory 51 (2006), no. 1, 49-52.
[9] L. Rédei, Ein kombinatorischer Satz, Acta Litt. Sci. Szeged 7 (1934), 39-43.
[10] J. Yang, Vertex-pancyclicity of hypertournaments, J. Graph Theory 63 (2009), 338-348.
[11] A. Yeo, The number of pancyclic arcs in a k-strong tournament, J. Graph Theory 50 (2005), no. 3, 212-219.

Yubao Guo
Lehrstuhl C für Mathematik
RWTH Aachen University
52062 Aachen, Germany
E-mail address: guo@mathc.rwth-aachen.de

Michel Surmacs
Lehrstuhl C für Mathematik
RWTH Aachen University
52062 Aachen, Germany
E-mail address: michel.surmacs@rwth-aachen.de

