Zheng, Shimin;Bae, Sejong;Bartolucci, Alfred A.;Singh, Karan P.
International Journal of Reliability and Applications
/
제4권3호
/
pp.97-111
/
2003
By applying Theorem 2.6.4 (Fang and Zhang, 1990, p.66) the dispersion matrix of a multivariate power exponential (MPE) distribution is derived. It is shown that the MPE and the gamma distributions are related and thus the MPE and chi-square distributions are related. By extending Fang and Xu's Theorem (1987) from the normal distribution to the Univariate Power Exponential (UPE) distribution an explicit expression is derived for calculating the probability of an UPE random variable over an interval. A representation of the characteristic function (c.f.) for an UPE distribution is given. Based on the MPE distribution the probability density functions of the generalized non-central chi-square, the generalized non-central t, and the generalized non-central F distributions are derived.
Two-piece double exponential distribution (TPDE) with one piece $(X \leq 0)$ having the scale parameter $\theta_1$ while the other piece (X>0) having $\theta_2$ is considered here. Distribution of the sum of n-independent variables from such a distribution is obtained. Special cases of this distribution are also treated. Next, distribution of the ratio of two independent (TPDE) variables is derived. As an extension, distribution of $x_1/x_2x_3$ is expressed terms of hypergeometric functions. A small table gives the power of the test regarding double exponential against (TPDE).
This paper presents Variance Reduction Techniques of the Monte Carlo Simulation considering Non-Exponential Distribution for Power System Reliability Evaluation. Generally, the components consisting of power system are assumed to be exponentially distributed in their state residence time. Sometimes, however, this assumption may cause a lot of errors in the reliability index evaluation. Non-exponential distribution can be approximated by a sum of several Erlangian distributions, whose inverse transform is easily calculated by using composition method. This paper proposes a new approach to deal with the non-exponential distribution and to reduce the simulation time by virtue of Variance Reduction Techniques such as Control Variate and Antithetic Variate.
In this paper, general classes of continuous distributions are characterized by considering the conditional expectations of functions of upper record statistics. The specific distribution considered as a particular case of the general class of distribution are Exponential, Exponential Power(EP), Inverse Weibull, Beta Gumbel, Modified Weibull(MW), Weibull, Pareto, Power, Singh-Maddala, Gumbel, Rayleigh, Gompertz, Extream value 1, Beta of the first kind, Beta of the second kind and Lomax.
Proceedings of the National Institute of Ecology of the Republic of Korea
/
제3권3호
/
pp.149-153
/
2022
The degree distribution of the plant-pollinator network was identified by analyzing the data in the ecosystem and reproduced by a model of the growing bipartite mutualistic networks. The degree distribution of pollinator shows power law or stretched exponential distribution, while plant usually shows stretched exponential distribution. In the growth model, the plant and the pollinator are selected with probability Pp and PA=1-Pp, respectively. The number of incoming links for the plant and the pollinator is lp and lA, respectively. The probability that the link of the plant selects the pollinator of the existing network given as $A_{k_i}=k^{{\lambda}_A}_i/{\sum}_i\;k^{{\lambda}_A}_i$, and the probability that the pollinator selects the plant is $P_{k_i}=k^{{\lambda}_p}_i/{\sum}_i\;k^{{\lambda}_p}_i$. When the nonlinear growth index is 𝛌X=1 (X=A or P), the degree distribution follows a power law, and if 0≤𝛌X<1, the degree distribution follows a stretched exponential distribution. The cumulative degree distributions of plants and pollinators of 14 empirical plant-pollinators included in Interaction Web Database were calculated. A set of parameters (PA,PP,lA,lP) that reproduces these cumulative degree distributions and a growth index 𝛌X (X=A or P) were obtained. We found that animal takes very heterogenous connections, whereas plant takes a more flexible connection network.
An Individual-Based Model (IBM) was developed by employing natural and toxic survival rates of individuals to elucidate the community responses of benthic macroin-vertebrates to anthropogenic disturbance in the streams. Experimental models (dose-response and relative sensitivity) and mathematical models (power law and negative exponential distribution) were applied to determinate the individual survival rates due to acute toxicity in stressful conditions. A power law was additionally used to present the natural survival rate. Life events, covering movement, exposure to contaminants, death and reproduction, were simulated in the IBM at the individual level in small (1 m) and short (1 week) scales to produce species abundance distributions (SADs) at the community level in large (5 km) and long (1~2 years) scales. Consequently, the SADs, such as geometric series, log-series, and log-normal distribution, were accordingly observed at severely (Biological Monitoring Working Party (BMWP<10), intermediately (BMWP<40) and weakly (BMWP${\geq}50$) polluted sites. The results from a power law and negative exponential distribution were suitably fitted to the field data across the different levels of pollution, according to the Kolmogorov-Smirnov test. The IBMs incorporating natural and toxic survival rates in individuals were useful for presenting community responses to disturbances and could be utilized as an integrative tool to elucidate community establishment processes in benthic macroin-vertebrates in the streams.
This paper considers maximum likelihood (ML) estimation of lifetime distribution under stress bounded ramp tests in which the stress is increased linearly from used condition stress to the stress u, pp.r bound. The following assumptions are used: exponential lifetime distribution under a constant stress, an inverse power law relationship between stress and mean of exponential lifetime distribution, and a cumulative exposure model for the effect of changing stress. Likelihood equations for the parameters involved in the model and asymptotic distribution of the estimators are obtained, and a numerical example is given.
International Journal of Reliability and Applications
/
제9권2호
/
pp.141-152
/
2008
This paper presents equations, which can be used to evaluate the failure frequency and the failure rate of a two identical component parallel redundant system in which each component can operate in its wear out period, and the failure rate of each component is exponential power distribution. The optimum maintenance interval for a two identical component parallel redundant system can be obtained using these equations. The proposed approach is presented and illustrated using several numerical examples. The optimum maintenance interval for each component in a two identical parallel redundant system will depend on factors such as: failure rate, repair and maintenance times of each component in the parallel redundant systems.
Journal of the Korean Data and Information Science Society
/
제15권4호
/
pp.899-910
/
2004
In this paper we have proposed a new loss function, namely, non-linear exponential(NLINEX) loss function, which is quite asymmetric in nature. We obtained the Bayes estimator under exponential(LINEX) and squared error(SE) loss functions. Moreover, a numerical comparison among the Bayes estimators of power function distribution under SE, LINEX, and NLINEX loss function have been made.
시계열 자료를 위한 가장 기본적인 모형인 자기회귀모형을 고려한다. 흔히 시계열 자료에서 정규성 가정이 위배되는 경우가 발생하며, 정규성 가정을 완화하기 위한 방법으로 두꺼운 꼬리를 가지는 분포 또는 비대칭 분포를 고려할 수 있다. 비대칭 지수멱 분포의 사용은 비뚤림이 있는 두꺼운 꼬리를 가지는 자기회귀모형의 이상치의 영향을 줄이고 로버스트한 추론을 할 수 있도록 한다. 본 논문에서는 자기회귀모형에 대한 오차항에 정규분포 보다 첨도와 왜도에 유연함을 가지는 분포를 고려함으로써 정규성 가정을 완화하여 추론하고자 하였다. 정규분포의 대안으로 비대칭 지수멱 분포를 고려하였으며 정규분포의 결과와 비교 하여 비대칭 지수멱 분포의 로버스트함을 보였다. 또한 주어진 분포에 대한 효율적인 베이지안 추론을 하기 위하여 SIR 알고리즘과 격자망 방법을 고려하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.