• Title/Summary/Keyword: explicit scheme

Search Result 302, Processing Time 0.024 seconds

Numerical Experiments of Shallow Water Eqs. by FEM (유한요소법을 이용한 천수방정식의 수치실험)

  • Choi, Sung Uk;Lee, Kil Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.141-150
    • /
    • 1990
  • Numerical experiments of sballow water equations are performed under various boundary conditions by finite element method to simulate the circulation in estuaries and coastal areas. Galerkin method is employed to discretize spatial domain, and for time integration, finite difference method (Crank-Nicolson scheme) is used. This method is tested in five problems, in which first four cases have analytic solutions. The computed values are well in agreement with the analytic solutions in four experiments and the result of the last 2-dimensional ease is resonable. Implicit and two step Lax-Wendroff schemes in time domain are compared, and the results when using four node bilinear and triangular elements are presented. Consequently it takes very long time for complex problems requiring many elements to integrate all the time steps using the implicit schemes. And the explicit scheme requires careful consideration in selecting the time step and the grid size to obtain the desired accuracy.

  • PDF

A Three-Dimensional Numerical Model of Hydrodynamic Flow on σ-Coordinate (연직변환좌표(鉛直變換座標)에서 3차원(次元) 유동(流動) 수직모형(數値模型))

  • Jung, Tae Sung;Lee, Kil Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1145-1158
    • /
    • 1994
  • A three-dimensional, finite difference, numerical model with free surface was developed on ${\sigma}$-coordinate. A semi-implicit numerical scheme in time has been adopted for computational efficiency. The scheme is essentially independent of the stringent stability criteria (CFL condition) for explicit schemes of external surface gravity wave. Implicit algorithm was applied for vertical shear stress, Coriolis force and pressure gradient terms. The reliability of the model with vertically variable grid system was checked by the comparison of simulation results with analytic solution of wind-driven currents in a one-dimensional channel. Sensitivity analysis of differencing parameters was carried out by applying the model to the calculation of wind-driven currents in a square lake.

  • PDF

Computation of Turbulent Flow around a Ship Model with Free-Surface (자유표면을 포함한 선체주위 난류유동 해석)

  • Jung-Joong Kim;Hyoung-Tae Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • The computations of the turbulent flow around the ship models with the free-surface effects were carried out. Incompressible Reynolds-Averaged Navier-Stokes equations were solved by using an explicit finite-difference method with the nonstaggered grid system. The method employed second-order finite differences for the spatial discretization and a four-stage Runge-Kutta scheme for the temporal integration. For the turbulence closure, a modified Baldwin-Lomax model was exploited. The location of the free surface was determined by solving the equation of the kinematic free-surface condition using the Lax-Wendroff scheme and a free-surface conforming grid was generated at each time step so that one of the grid boundary surfaces always coincides with the free surface. An inviscid approximation of the dynamic free-surface boundary condition was applied as the boundary conditions for the velocity and pressure on the free surface. To validate the computational method developed in the present study, the computations were carried out for beth Wigley and Series 60 $C_B=0.6$ ship model and the computational results showed good agreements with the experimental data.

  • PDF

Three-dimensional Finite Difference Modeling of Time-domain Electromagnetic Method Using Staggered Grid (엇갈린 격자를 이용한 3차원 유한차분 시간영역 전자탐사 모델링)

  • Jang, Hangilro;Nam, Myung Jin;Cho, Sung Oh;Kim, Hee Joon
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.3
    • /
    • pp.121-128
    • /
    • 2017
  • Interpretation of time-domain electromagnetic (TEM) data has been made mostly based on one-dimensional (1-D) inversion scheme in Korea. A proper interpretation of TEM data should employ 3-D TEM forward and inverse modeling algorithms. This study developed a 3-D TEM modeling algorithm using a finite difference time-domain (FDTD) method with staggered grid. In numerically solving Maxwell equations, fictitious displacement current is included based on an explicit FDTD method using a central difference approximation scheme. The developed modeling algorithm simulated a small-coil source configuration to be verified against analytic solutions for homogeneous half-space models. Further, TEM responses for a 3-D anomaly are modeled and analyzed. We expect that it will contribute greatly to the precise interpretation of TEM data.

An improved 1D-model for computing the thermal behaviour of concrete dams during operation. Comparison with other approaches

  • Santillan, D.;Saleteb, E.;Toledob, M.A.;Granados, A.
    • Computers and Concrete
    • /
    • v.15 no.1
    • /
    • pp.103-126
    • /
    • 2015
  • Thermal effects are significant loads for assessing concrete dam behaviour during operation. A new methodology to estimate thermal loads on concrete dams taking into account processes which were previously unconsidered, such as: the evaporative cooling, the night radiating cooling or the shades, has been recently reported. The application of this novel approach in combination with a three-dimensional finite element method to solve the heat diffusion equation led to a precise characterization of the thermal field inside the dam. However, that approach may be computationally expensive. This paper proposes the use of a new one-dimensional model based on an explicit finite difference scheme which is improved by means of the reported methodology for computing the heat fluxes through the dam faces. The improved model has been applied to a case study where observations from 21 concrete thermometers and data of climatic variables were available. The results are compared with those from: (a) the original one-dimensional finite difference model, (b) the Stucky-Derron classical one-dimensional analytical solution, and (c) a three-dimensional finite element method. The results of the improved model match well with the observed temperatures, in addition they are similar to those obtained with (c) except in the vicinity of the abutments, although this later is a considerably more complex methodology. The improved model have a better performance than the models (a) and (b), whose results present larger error and bias when compared with the recorded data.

How Supernovae Ejecta Is Transported In A Galaxy: DependenceOn Hydrodynamic Schemes In Numerical Simulations

  • Shin, Eun-jin;Kim, Ji-hoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.48.4-48.4
    • /
    • 2019
  • We studied the metal-distribution of isolated Milky-way mass galaxy using various hydrodynamic solvers and investigated the difference of the result between AMR and SPH codes. In particle-based codes, physical quantities like mass or metallicity defined in each particle are conserved unless being injected explicitly by the effect of the supernova, whereas in the Eulerian codes the diffusion is simply accomplished by hydro-equation. Therefore, without including explicit physics of diffusion on the SPH- codes, the metal mixing in the galaxy or CGM only can be accomplished by the direct motion of the particles, however, the standard-SPH codes depress the instability of the turbulent fluid mixing. In this work, we simulated under common initial conditions, common gas-physics like cooling-heating models, and star-formation feedback using ENZO(AMR) GIZMO and GADGET-2 codes. We additionally included a metal-diffusion algorithm on the SPH-codes, which follows the subgrid-turbulent mixing model investigated by Shen et al. (2010) and compared the effect of the metal-outflow on the halo region of the galaxy in different hydro-solvers. We also found that for the implementation of the diffusion scheme in the SPH-codes, the existence of a sufficient number of the gas-particles, which is the carrier of the metals, is necessary. So we tested a new initial condition for proper implementation of the diffusion scheme on the SPH simulations. By comparing the metal-contamination of the circumgalactic medium with different hydrodynamics models, we quantify the diffusion strength of AMR codes using diffusion parameterization of the SPH codes and also suggest the calibration solutions in the different behavior of codes in metal-outflow.

  • PDF

Development of a Conjunctive Surface-Subsurface Flow Model for Use in Land Surface Models at a Large Scale: Part II. Model Implementation (대규모 육지수문모형에서 사용 가능한 지표면 및 지표하 연계 물흐름 모형의 개발: II. 모형적용)

  • Choi, Hyun-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.3
    • /
    • pp.23-27
    • /
    • 2008
  • The new conjunctive surface-subsurface flow model at a large scale was developed by using a 1-D Diffusion Wave (DW) model for surface flow interacting with the 3-D Volume Averaged Soil-moisture Transport (VAST) model for subsurface flow for the comprehensive terrestrial water and energy predictions in Land Surface Models (LSMs). A selection of numerical implementation schemes is employed for each flow component. The 3-D VAST model is implemented using a time splitting scheme applying an explicit method for lateral flow after a fully implicit method for vertical flow. The 1-D DW model is then solved by MacCormack finite difference scheme. This new conjunctive flow model is substituted for the existing 1-D hydrologic scheme in Common Land Model (CLM), one of the state-of-the-art LSMs. The new conjunctive flow model coupled to CLM is tested for a study domain around the Ohio Valley. The simulation results show that the interaction between surface flow and subsurface flow associated with the flow routing scheme matches the runoff prediction with the observations more closely in the new coupled CLM simulations. This improved terrestrial hydrologic module will be coupled to the Climate extension of the next-generation Weather Research and Forecasting (CWRF) model for advanced regional, continental, and global hydroclimatological studies and the prevention of disasters caused by climate changes.

Simulating Bacterial Dispersion from Coastal Sewage Outfalls Using the QUICKEST Scheme (QUICKEST법을 사용한 연안해역에서 박테리아 확산의 수치모의)

  • Kang Yun Ho;Lee Moon Ock
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.2 no.2
    • /
    • pp.20-30
    • /
    • 1999
  • To improve water quality particularly for sea bathers along the Fylde coastal zone near Blackpool, North West England, waste water from a sewage outfall is studied using a mathematical model. The explicit second order accurate central scheme and the third order accurate QUICKEST scheme are used to represent the diffusion terms and the advection terms of the advective-diffusion equation, respectively. Hydrodynamic model is run for a coarse and fine grid, of 1km and 200m, respectively, obtaining good agreement with measured data. Water quality model is then used to predict faecal coliform levels in the region for four different scenarios, including discharges from: - (i) Fleetwood outfall, (ii)River Ribble for summer condition, (iii)River Ribble for winter condition, and (iv)combined sewer overflows for the Blackpool and Fleetwood communities. Main findings from the simulations are:- (i) Fleetwood outfall has a negligible impact on the beaches with respect to pathogen levels; (ii) Discharge from River Ribble for both summer and winter conditions is predicted in the range of coliform levels 10 -500 counts/100ml along the beach at Lytham St. Annes; and (iii) The CSO effluent discharges are predicted not to advect out into offshore by stronger tidal currents.

  • PDF

Quantification of nonlinear seismic response of rectangular liquid tank

  • Nayak, Santosh Kumar;Biswal, Kishore Chandra
    • Structural Engineering and Mechanics
    • /
    • v.47 no.5
    • /
    • pp.599-622
    • /
    • 2013
  • Seismic response of two dimensional liquid tanks is numerically simulated using fully nonlinear velocity potential theory. Galerkin-weighted-residual based finite element method is used for solving the governing Laplace equation with fully nonlinear free surface boundary conditions and also for velocity recovery. Based on mixed Eulerian-Lagrangian (MEL) method, fourth order explicit Runge-Kutta scheme is used for time integration of free surface boundary conditions. A cubic-spline fitted regridding technique is used at every time step to eliminate possible numerical instabilities on account of Lagrangian node induced mesh distortion. An artificial surface damping term is used which mimics the viscosity induced damping and brings in numerical stability. Four earthquake motions have been suitably selected to study the effect of frequency content on the dynamic response of tank-liquid system. The nonlinear seismic response vis-a-vis linear response of rectangular liquid tank has been studied. The impulsive and convective components of hydrodynamic forces, e.g., base shear, overturning base moment and pressure distribution on tank-wall are quantified. It is observed that the convective response of tank-liquid system is very much sensitive to the frequency content of the ground motion. Such sensitivity is more pronounced in shallow tanks.

Behaviors of Reflected and Transmitted Waves for Geometric Change of Submerged Breakwater (잠제의 형상 변화에 따른 반사파 및 투과파의 거동특성)

  • Lee, Cheol-Eung;O, Won-Taek
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.139-148
    • /
    • 2000
  • A numerical model is represented to calculate the wave fields such as the reflected waves, the transmitted waves, and depth averaged velocities over submerged breakwaters for the normally incident wave trains of nonlinear monochromatic wave. The numerical model is correctly formulated by using both the finite amplitude shallow water equations with the effects of bottom friction and the explicit dissipative Lax-Wendroff finite difference scheme, also satisfactorily verified by comparison with the other results. The behaviors of reflected and transmitted waves with respect to geometric parameters of submerged breakwater such as the slope, crest depth, and crest width are numerically analyzed in this study. In particular, the reflection and transmission coefficients are quantitatively calculated as the function of geometric parameter of submerged breakwater. It is found that the crest depth among parameters related to practical design may be the most important parameter in designing the submerged breakwater. Therefore, the effective and economic performances of submerged breakwater should be depended on the determination of optimal crest depth.

  • PDF