• Title/Summary/Keyword: event specific primer

Search Result 20, Processing Time 0.034 seconds

Qualitative PCR Detection of Stack Gene GM Rice (LS28 X Cry1Ac) Developed in Korea (국내개발 stack gene GM 벼(LS28 X Cry1Ac)에 대한 정성 PCR 분석)

  • Shin, Kong-Sik;Park, Jong-Hyun;Lee, Jin-Hyoung;Lee, Si-Myung;Woo, Hee-Jong;Lim, Sun-Hyung;Kim, Hae-Yeong;Suh, Seok-Cheol;Kweon, Soon-Jong
    • Journal of Applied Biological Chemistry
    • /
    • v.52 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • For the development of qualitative PCR detection method of genetically modified (CM) rice, rice species-specific gene, OsCc-1 (rice cytochrome c gene), was selected as suitable far use as an endogenous gene in rice. The primer pair OsCytC-5'/3'with 111 bp amplicon was used for PCR amplification of the rice endogenous gene, OsCc-1 and no amplified product was observed from 8 different crops as templates. Qualitative PCR method was carried out with stack traits of L528$\times$CryIAc1 GM rice developed in Korea. For the qualitative PCRs, some primer pairs were designed with a construct-specific and event-specific type based on T-DNA and junction sequences of T-DNA in GM rice. Actck-5'/3' amplifying between actin promoter and OsCK1 gene introduced in LS28 gave rise to an amplicon 306 bp; also, CrLB-5'/3' from CryIAcl and CKRB-5'/3'amplifying the junction region of T-DNA and genome sequence from LS28 as event-specific primers gave rise to an amplicon 142 bp and 91 bp, respectively. These primer pairs for the detection of event-specific targets not produced PCR amplicons on non-CM rice and various crops in contrast to event lines. Therefore, in this study we verified that event-specific primers were effective to specifically detect stack trait lines and demonstrated that this method presented could be provided with the detection-method data for risk assessment analysis of GM rice to be commercialized.

Event-specific Detection Methods for Genetically Modified Maize MIR604 Using Real-time PCR

  • Kim, Jae-Hwan;Kim, Hae-Yeong
    • Food Science and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.1118-1123
    • /
    • 2009
  • Event-specific real-time polymerase chain reaction (PCR) detection method for genetically modified (GM) maize MIR604 was developed based on integration junction sequences between the host plant genome and the integrated transgene. In this study, 2 primer pairs and probes were designed for specific amplification of 100 and 111 bp DNA fragments from the zSSIIb gene (the maize endogenous reference gene) and MIR604. The quantitative method was validated using 3 certified reference materials (CRMs) with levels of 0.1, 1, and 10% MIR604. The method was also assayed with 14 different plants and other GM maize. No amplification signal was observed in real-time PCR assays with any of the species tested other than MIR604 maize. As a result, the bias from the true value and the relative deviation for MIR604 was within the range from 0 to 9%. Precision, expressed as relative standard deviation (RSD), varied from 2.7 to 10% for MIR604. Limits of detections (LODs) of qualitative and quantitative methods were all 0.1%. These results indicated that the event-specific quantitative PCR detection system for MIR604 is accurate and useful.

Establishment of detection methods for approved LMO in Korea (국내 승인 유전자변형 작물의 검출 기법 확립)

  • Seol, Min-A;Lee, Jung Ro;Choi, Wonkyun;Jo, Beom-Ho;Moon, Jeong Chan;Shin, Su Young;Eum, Soon-Jae;Kim, Il Ryong;Song, Hae-Ryong
    • Journal of Plant Biotechnology
    • /
    • v.42 no.3
    • /
    • pp.196-203
    • /
    • 2015
  • AbstractLiving modified organisms (LMO) are one of the most widespread products of modern biotechnology after DNA discovery. Due to the decline of grain self-sufficiency rate and the increase of reliance on LMO imports in Korea, a series of concerns with regard to safety of living modified(LM) crops has been raised. The aim of this study is to establish the detection methods for unintentional release or growing of LMO plants in environmental conditions. To detect LM crop events, general concepts of specific primer design and PCR conditions were provided by the Joint Research Centre (JRC). The certified reference materials of seven LM events (4 soybean, 2 cotton and 1 corn) were obtained from the Institute for Reference Materials and Measurements (IRMM) and the American Oil Chemists' Society (AOCS). Genomic DNA from seven LM events were purified and PCR amplifications were carried out by using individual event-specific primer sets. LM-specific PCR products of all seven events were efficiently amplified by our methods. The results indicate that the established detection method for LMOs is suitable as a scientific tool to monitor whether the crops found in natural environments are LMOs.

Qualitative and Quantitative Analysis of Genetically Modified Pepper

  • Song, Hee-Sung;Kim, Jae-Hwan;Kim, Dong-Hern;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.335-341
    • /
    • 2007
  • For the development of qualitative and quantitative PCR methods of genetically modified (GM) pepper developed in Korea, a capsanthin-capsorubin synthase (CCS) gene was used as the endogenous reference gene. The primer pair ccs-F/R amplifying the pepper endogenous gene gave rise to an amplicon of 102 bp. No amplified product was observed when DNA samples from 16 different plants were used as templates. The construct-specific primer pairs amplifying the junction region of the bar gene and Ti7 introduced in GM pepper gave rise to an amplicon of 182 bp. Quantitative PCR assay was performed using a TaqMan probe and a standard plasmid as a reference molecule, which contained both an endogenous and event-specific sequence. For the validation of this method, the test samples containing 0.1, 1, 3, 5, and 10% GM pepper were quantified.

Rapid and Unequivocal Identification Method for Event-specific Detection of Transgene Zygosity in Genetically Modified Chili Pepper

  • Kang, Seung-Won;Lee, Chul-Hee;Seo, Sang-Gyu;Han, Bal-Kum;Choi, Hyung-Seok;Kim, Sun-Hyung;Harn, Chee-Hark;Lee, Gung-Pyo
    • Horticultural Science & Technology
    • /
    • v.29 no.2
    • /
    • pp.123-129
    • /
    • 2011
  • To identify unintended vertical gene-transfer rates from the developed transgenic plants, rapid and unequivocal techniques are needed to identify event-specific markers based on flanking sequences around the transgene and to distinguish zygosity such as homo- and hetero-zygosity. To facilitate evaluation of zygosity, a polymerase chain reaction technique was used to analyze a transgenic pepper line B20 (homozygote), P915 wild type (null zygote), and their F1 hybrids, which were used as transgene contaminated plants. First, we sequenced the 3'-flanking region of the T-DNA (1,277 bp) in the transgenic pepper event B20. Based on sequence information for the 3'- and 5'-flanking region of T-DNA provided in a previous study, a primer pair was designed to amplify full length T-DNA in B20. We successfully amplified the full length T-DNA containing 986 bp from the flanking regions of B20. In addition, a 1,040 bp PCR product, which was where the T-DNA was inserted, was amplified from P915. Finally, both full length T-DNA and the 1,040 bp fragment were simultaneously amplified in the F1 hybrids; P915 ${\times}$ B20, Pungchon ${\times}$ B20, Gumtap ${\times}$ B20. In the present study, we were able to identify zygosity among homozygous transgenic event B20, its wild type P915, and hemizygous F1 hybrids. Therefore, this novel zygosity identification technique, which is based on PCR, can be effectively used to examine gene flow for transgenic pepper event B20.

Multiplex PCR Detection of 4 Events of Genetically Modified Soybeans (RRS, A2704-12, DP356043-5, and MON89788)

  • Kim, Jae-Hwan;Seo, Young-Ju;Sun, Seol-Hee;Kim, Hae-Yeong
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.694-699
    • /
    • 2009
  • A multiplex polymerase chain reaction (PCR) method was developed for the detection of 4 events of genetically modified (GM) soybean. The event-specific primers were designed from 4 events of GM soybean (RRS, A2704-12, DP356043-5, and MON89788). The lectin was used as an endogenous reference gene of soybean in the PCR detection. The primer pair YjLec-4-F/R producing 100 bp amplicon was used to amplify the lectin gene and no amplified product was observed in any of the 9 different plants used as templates. This multiplex PCR method allowed for the detection of event-specific targets in a genomic DNA mixture of up to 1% GM soybean mixture containing RRS, A2704-12, DP356043-5, and MON89788. In this study, 20 soybean products obtained from commercial food markets were analyzed by the multiplex PCR. As a result, 6 samples contained RRS. These results indicate that this multiplex PCR method could be a useful tool for monitoring GM soybean.

Multiplex PCR Detection of the MON1445, MON15985, MON88913, and LLcotton25 Varieties of GM Cotton

  • Kim, Jae-Hwan;Kim, Sun-A;Seo, Young-Ju;Lee, Woo-Young;Park, Sun-Hee;Kim, Hae-Yeong
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.829-832
    • /
    • 2008
  • A multiplex polymerase chain reaction (PCR) method was developed to simultaneously detect 4 varieties of genetically modified (GM) cotton. The event-specific primers were used to distinguish the 4 varieties of GM cotton (MON1445, MON15985, MON88913, and LLcotton25) using multiplex PCR. The acyl carrier protein 1 (Acp1) gene was used as an endogenous reference gene of cotton in the PCR detection. The primer pair Acp1-AF/AR containing a 99 bp amplicon was used to amplify the Acp1 gene and no amplified product was observed in any of the 13 different plants used as templates. This multiplex PCR method allowed for the detection of event-specific targets in a genomic DNA mixture of up to 1% GM cotton containing MON1445, MON15985, MON88913, and LLcotton25.

Development of multiplex PCR-based detection method for five approved LM canola events in Korea (Multiplex PCR 방법을 이용한 국내 승인 5개 LM 유채의 검출법 개발)

  • Jo, Beom-Ho;Lee, Jung Ro;Choi, Wonkyun;Moon, Jeong Chan;Shin, Su Young;Eum, Soon-Jae;Seol, Min-A;Kim, Il Ryong;Song, Hae-Ryong
    • Journal of Plant Biotechnology
    • /
    • v.42 no.2
    • /
    • pp.117-122
    • /
    • 2015
  • Canola is a crop globally used for production of oil and biofuel. Cultivation area and import volume of living modified (LM) canola have been increasing every year. As canola import dependence has reached 100% in Korea, efforts have been made for safety management of LM canola and ecological risk assessment. We developed a set of multiplex PCR method for simultaneous detection of 5 LM canola events (Topas 19/2, Rf3, Ms8, RT73 and T45) approved in Korea. The multiplex PCR assay developed allows amplification of estimated products of 5 LM canolas from event specific primer sets. Primer extension time was skipped for a time-consuming process and two annealing steps (20 cycles at $55^{\circ}C$ and 20 cycles at $60^{\circ}C$) were performed for yielding the best result which was sufficient to distinguish five LM canolas. Our results suggest that multiplex PCR method provides a cost and time-effective approach for LM canola detection.

Multiplex PCR Detection for 3 Events of Genetically Modified Maize, DAS-59122-7, TC6275, and MIR604

  • Ahn, Ji-Hye;Kim, Jae-Hwan;Kim, Su-Youn;Lee, Woo-Young;Park, Sun-Hee;Kim, Hae-Yeong
    • Food Science and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.569-572
    • /
    • 2008
  • A multiplex polymerase chain reaction (PCR) method was developed to simultaneously detect 3 events of genetically modified (GM) maize. The event-specific primers were used to discriminate the following 3 events of GM maize (DAS-59122-7, TC6275, and MIR604) using multiplex PCR method. The zein gene was used as an endogenous maize reference gene in the multiplex PCR detection. The primer pair Zein-FIR producing a 99 bp amplicon was used to amplify the zein gene. The primer JI-Das-F1/R1 for DAS-59122-7, JI-TC6275-F3/R3 for TC6275, and JI-MIR F1/R1 for MIR604 yielded an amplicon of 130, 162, and 197 bp, respectively. The detection limit of multiplex PCR was 1% for DAS-59122-7, TC6275, and MIR604 for one reaction.

Characterization, detection and identification of transgenic chili pepper harboring coat protein gene that enhances resistance to cucumber mosaic virus

  • Seo, Sang-Gyu;Kim, Ji-Seong;Jeon, Seo-Bum;Shin, Mi-Rae;Kang, Seung-Won;Lee, Gung-Pyo;Hong, Jin-Sung;Harn, Chee-Hark;Ryu, Ki-Hyun;Park, Tae-Sung;Kim, Sun-Hyung
    • Journal of Plant Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.384-391
    • /
    • 2009
  • Previously, two events (H15 and B20) of transgenic pepper (Capsicum annuum L.) that enhanced resistance to Cucumber mosaic virus (CMV) by the introduction of CMV coat protein (CP) gene were constructed. Presently, a single copy number of the CP gene was revealed in H15 and B20 by Southern blot. To predict possible unintended effects due to transgene insertion in an endogenous gene, we carried out sequencing of the 5'-flanking region of the CP gene and a Blastbased search. The results revealed that insertion of the transgene into genes encoding putative proteins may occur in the H15 and B20 transgenic event. Mutiplex polymerase chain reaction (PCR) for simultaneous detection and identification of transgenic pepper was conducted with a set of nine primers. Both transgenic event were differentiated from non-transgenic event by the presence of 267 bp and 430 bp PCR products indicative of CP gene specific primer pairs and primer pairs targeting the CP gene and 35S promoter. H15 and B20 uniquely possessed a 390 bp and 596 bp PCR product, respectively. The presence of a 1115 bp product corresponding to intrinsic pepper actin gene confirmed the use of pepper DNA as the PCR template. The primer set and PCR conditions used presently may allow the accurate and simple identification of CMV resistant transgenic pepper.