Rapid and Unequivocal Identification Method for Event-specific Detection of Transgene Zygosity in Genetically Modified Chili Pepper

  • Kang, Seung-Won (Department of Applied Plant Science, Chung-Ang University) ;
  • Lee, Chul-Hee (Department of Applied Plant Science, Chung-Ang University) ;
  • Seo, Sang-Gyu (Department of Environmental Horticulture, University of Seoul) ;
  • Han, Bal-Kum (Department of Applied Plant Science, Chung-Ang University) ;
  • Choi, Hyung-Seok (Division of Biotechnology, Korea University) ;
  • Kim, Sun-Hyung (Department of Environmental Horticulture, University of Seoul) ;
  • Harn, Chee-Hark (Biotechnology Institute, Nongwoo Bio Co., Ltd.) ;
  • Lee, Gung-Pyo (Department of Applied Plant Science, Chung-Ang University)
  • 투고 : 2011.02.01
  • 심사 : 2011.03.03
  • 발행 : 2011.04.30

초록

To identify unintended vertical gene-transfer rates from the developed transgenic plants, rapid and unequivocal techniques are needed to identify event-specific markers based on flanking sequences around the transgene and to distinguish zygosity such as homo- and hetero-zygosity. To facilitate evaluation of zygosity, a polymerase chain reaction technique was used to analyze a transgenic pepper line B20 (homozygote), P915 wild type (null zygote), and their F1 hybrids, which were used as transgene contaminated plants. First, we sequenced the 3'-flanking region of the T-DNA (1,277 bp) in the transgenic pepper event B20. Based on sequence information for the 3'- and 5'-flanking region of T-DNA provided in a previous study, a primer pair was designed to amplify full length T-DNA in B20. We successfully amplified the full length T-DNA containing 986 bp from the flanking regions of B20. In addition, a 1,040 bp PCR product, which was where the T-DNA was inserted, was amplified from P915. Finally, both full length T-DNA and the 1,040 bp fragment were simultaneously amplified in the F1 hybrids; P915 ${\times}$ B20, Pungchon ${\times}$ B20, Gumtap ${\times}$ B20. In the present study, we were able to identify zygosity among homozygous transgenic event B20, its wild type P915, and hemizygous F1 hybrids. Therefore, this novel zygosity identification technique, which is based on PCR, can be effectively used to examine gene flow for transgenic pepper event B20.

키워드

참고문헌

  1. Delannay, X., B.J. La Vallee, R.K. Proksch, R.L. Fuchs, S.R. Sims, J.T. Greenplat, P.G. Marrone, R.B. Dodson, J.J. Augustine, J.G. Layton, and D.A. Fischhoff. 1989. Field performance of transgenic tomato plants expressing the Bacillus thuringiensis var. kurstaki insect control protein. Nature Biotechnol. 7:1265- 1269. https://doi.org/10.1038/nbt1289-1265
  2. Duan, X., X. Li, Q. Xue, M. Abo-el-Saad, D. Xu, and R. Wu. 1996. Transgenic rice plants harboring an introduced potato proteinase inhibitor II gene are insect resistant. Nature Biotechnol. 14:494-498. https://doi.org/10.1038/nbt0496-494
  3. Fearing, P.L., D. Brown, D. Vlachos, M. Meghji, and L. Privalle. 1997. Quantitative analysis of Cry1A(b) expression in Bt maize plants, and silage and stability of expression over successive generations. Mol. Breeding 3:169-176. https://doi.org/10.1023/A:1009611613475
  4. Hernandez, M., M. Pla, T. Esteve, S. Prat, P. Puigdomenech, and A. Ferrando. 2003. A specific real-time quantitative PCR detection system for event MON810 in maize $YieldGard^{(R)}$ based on the 3'-transgene integration sequence. Transgenic Res. 12:179-189. https://doi.org/10.1023/A:1022979624333
  5. Hill, R.A. and C. Sendashonga. 2003. General principles for risk assessment of living modified organisms: lessons from chemical risk assessment. Environ. Biosafety Res. 2:81-88. https://doi.org/10.1051/ebr:2003004
  6. Holst-Jensen, A., S.B. Rønning, A. Lovseth, and K.G. Berdal. 2003. PCR technology for screening and quantification of genetically modified organisms (GMOs). Anal. Bioanal. Chem. 375:985-993. https://doi.org/10.1007/s00216-003-1767-7
  7. James, D., A.M. Schmidt, E. Wall, M. Green, and S. Masri. 2003. Reliable detection and identification of genetically modified maize, soybean, and canola by multiplex PCR analysis. J. Agr. Food Chem. 51:5829-5834. https://doi.org/10.1021/jf0341159
  8. James, C. 2009. Global status of commercialized biotech/GM crops: 2009. ISAAA.
  9. Kim, S.H. and T. Hamada. 2005. Rapid and reliable method of extracting DNA and RNA from sweet potato, Ipomoea batatas (L.) Lam. Biotechnol. Letters 27:1841-1845. https://doi.org/10.1007/s10529-005-3891-2
  10. La Paz, J.L., P. Maria, P. Nina, P. Pere, and M.V. Carlos. 2010. Stability of the MON 810 transgene in maize. Plant Mol. Biol. 74:563-571. https://doi.org/10.1007/s11103-010-9696-2
  11. Lee, B.K., C.G. Kim, J.Y. Park, K.W. Park, H.B. Yi, C.H. Harn, and H.M. Kim. 2007. Assessment of the persistence of DNA in decomposing leaves of CMVP0-CP transgenic chili pepper in the field conditions. Kor. J. Environ. Agr. 26:319-324. https://doi.org/10.5338/KJEA.2007.26.4.319
  12. Lee, M.Y., J.H. Lee, H.I. Ahn, M.J. Kim, N.H. Her, J.K. Choi, C.H. Harn, and K.H. Ryu. 2006. Identification and sequence analysis of RNA3 of a resistance-breaking isolate of cucumber mosaic virus from Capsicum annuum. Plant Pathol. J. 22: 265-270. https://doi.org/10.5423/PPJ.2006.22.3.265
  13. Lee, Y.H., M. Jung, S.H. Shin, J.H. Lee, S.H. Choi, N.H. Her, J.H. Lee, K.H. Ryu, K.Y. Paek, and C.H. Harn. 2009. Transgenic peppers that are highly tolerant to a new CMV pathotype. Plant Cell Rep. 28:223-232. https://doi.org/10.1007/s00299-008-0637-3
  14. Muller, A.J., R.R. Mendel, J. Schiemann, C. Simoens, and D. Inze. 1987. High meiotic stability of a foreign gene introduced into tobacco by Agrobacterium-mediated transformation. Mol. Gen. Genome 207:171-175. https://doi.org/10.1007/BF00331506
  15. Padgette, S.R., K.H. Kolacz, X. Delannay, D.B. Re, B.J. LaVallee, C.N. Tinius, W.L. Rhodes, Y.I. Otero, G.F. Barry, D.A. Eichholtz, V.M. Peschke, D.L. Nida, N.B. Taylor, and G.M. Kishore. 1995. Development, identification, and characterization of a glyphosate-tolerant soybean line. Crop Sci. 35:1451-1461. https://doi.org/10.2135/cropsci1995.0011183X003500050032x
  16. Seo, S.G., J.S. Kim, S.B. Jeon, M.R. Shin, S.W. Kang, G.P. Lee, J.S. Hong, C.H. Harn, K.H. Ryu, T.S. Park, and S.H. Kim. 2009. Characterization, detection and identification of transgenic chili pepper harboring coat protein gene that enhances resistance to cucumber mosaic virus. J. Plant Biotechnol. 36:384-391. https://doi.org/10.5010/JPB.2009.36.4.384
  17. Widmer, F., R.J. Seidler, K.K. Donegan, and G.L. Reed. 1997. Quantification of transgenic plant marker gene persistence in the field. Mol. Ecol. 6:1-7. https://doi.org/10.1046/j.1365-294X.1997.00145.x
  18. Wolf, C., M. Scherzinger, A. Wurz, U. Pauli, P. Hubner, and J. Luthy. 2000. Detection of cauliflower mosaic virus by the polymerase chain reaction: testing of food components for false-positive 35S-promoter screening results. Eur. Food Res. Technol. 210:367-372. https://doi.org/10.1007/s002170050565
  19. Zhu, B., B.L. Ma, and R. Blackshaw. 2010. Development of real time PCR assays for detection and quantification of transgene DNA of a Bacillus thuringiensis (Bt) corn hybrid in soil samples. Transgenic Res. 19:765-774. https://doi.org/10.1007/s11248-009-9353-1
  20. Zimmermann, A., W. Hemmer, M. Liniger, J. Luthy, and U. Pauli. 1998. A sensitive detection method for genetically modified $MaisGard^{TM}$ corn using a nested PCR-system. Lebensmittel- Wissenschaft und Technol. 31:664-667. https://doi.org/10.1006/fstl.1998.0422