• Title/Summary/Keyword: etching damage

Search Result 176, Processing Time 0.025 seconds

A study on Safety Management and Control in Wet-Etching Process for H2O2 Reactions (습식 에칭 공정에서의 과산화수소 이상반응에 대한 안전 대책 및 제어에 관한 연구)

  • Yoo, Heung-Ryol;Son, Yung-Deug
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.650-656
    • /
    • 2018
  • The TFT-LCD industry is a kind of large-scale industrial Giant Microelectronics device industry and has a similar semiconductor process technology. Wet etching forms a relatively large proportion of the entire TFT process, but the number of published research papers on this topic is limited. The main reason for this is that the components of the etchant, in which the reaction takes place, are confidential and rarely publicized. Aluminum (Al) and copper (Cu), which have been used in recent years for the manufacture of large area LCDs, are very difficult materials to process using wet etching. Cu, a low-resistance material, can only be used in the wet etching process, and is used as a substitute for Al due to its high speed etching, low failure rate, and low power consumption. Further, the abnormal reaction of hydrogen peroxide ($H_2O_2$), which is used as an etching solution, requires additional piping and electrical safety devices. This paper proposes a method of minimizing the damage to the plant in the case of adverse reactions, though it cannot limit the adverse reaction of hydrogen peroxide. In recent years, there have been many cases in which aluminum etching equipment has been changed to copper. This paper presents a countermeasure against abnormal reactions by implementing safety PLC with a high safety grade.

A simplified etching technique to improve the adhesion of fiber post

  • Majeti, Chandrakanth;Veeramachaneni, Chandrasekhar;Morisetty, Pradeep Kumar;Rao, Saggurti Anitha;Tummala, Muralidhar
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.4
    • /
    • pp.295-301
    • /
    • 2014
  • PURPOSE. Numerous methods were used to etch the fiber posts to improve its bonding to root canal dentin. Our aim was to evaluate the efficacy of 37% phosphoric acid in etching fiber posts in comparison with 24% hydrogen peroxide. MATERIALS AND METHODS. Ninety human maxillary central incisors were taken and post space preparation was done. Ninety fiber posts were taken and divided into three groups (n=30) based on the surface treatment they received ($H_3PO_4$, $H_2O_2$, distilled water) and each group was further divided (n=10) based on the time period of application (15 seconds, 30 seconds, 60 seconds). All the posts were luted into canals using Rely X UniCem-2. Each tooth was then sectioned into six slices and subjected to push out test. Data obtained was subjected to statistical analysis at P<.05. The surface topography was evaluated using scanning electron microscopy. RESULTS. Highest bond strength values were noted in 15 seconds etched phosphoric acid group and 60 seconds etched hydrogen peroxide group with no significant difference between two groups. Surface topography revealed complete epoxy layer removal with no damage to its structural integrity in those groups. CONCLUSION. $H_3PO_4$ etching for a period of 15 seconds is an effective alternative in improving the adhesion of fiber post to root dentin.

High Density Inductively Coupled Plasma Etching of III-V Semiconductors in BCI3Ne Chemistry (BCI3Ne 혼합가스를 이용한 III-V 반도체의 고밀도 유도결합 플라즈마 식각)

  • 백인규;임완태;이제원;조관식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1187-1194
    • /
    • 2003
  • A BCl$_3$/Ne plasma chemistry was used to etch Ga-based (GaAs, AIGaAs, GaSb) and In-based (InGaP, InP, InAs and InGaAsP) compound semiconductors in a Planar Inductively Coupled Plasma (ICP) reactor. The addition of the Ne instead of Ar can minimize electrical and optical damage during dry etching of III-V semiconductors due to its light mass compared to that of Ar All of the materials exhibited a maximum etch rate at BCl$_3$ to Ne ratios of 0.25-0.5. Under all conditions, the Ga-based materials etched at significantly higher rates than the In-based materials, due to relatively high volatilities of their trichloride etch products (boiling point CaCl$_3$ : 201 $^{\circ}C$, AsCl$_3$ : 130 $^{\circ}C$, PCl$_3$: 76 $^{\circ}C$) compared to InCl$_3$ (boiling point : 600 $^{\circ}C$). We obtained low root-mean-square(RMS) roughness of the etched sulfate of both AIGaAs and GaAs, which is quite comparable to the unetched control samples. Excellent etch anisotropy ( > 85$^{\circ}$) of the GaAs and AIGaAs in our PICP BCl$_3$/Ne etching relies on some degree of sidewall passivation by redeposition of etch products and photoresist from the mask. However, the surfaces of In-based materials are somewhat degraded during the BCl$_3$/Ne etching due to the low volatility of InCl$_{x}$./.

Dry Etching of GaAs in a Planar Inductively Coupled BCl3 Plasma (BCl3 평판형 유도결합 플라즈마를 이용한 GaAs 건식식각)

  • Lim, Wan-tea;Baek, In-kyoo;Jung, Pil-gu;Lee, Je-won;Cho, Guan-Sik;Lee, Joo-In;Cho, Kuk-San;Pearton, S.J.
    • Korean Journal of Materials Research
    • /
    • v.13 no.4
    • /
    • pp.266-270
    • /
    • 2003
  • We studied BCl$_3$ dry etching of GaAs in a planar inductively coupled plasma system. The investigated process parameters were planar ICP source power, chamber pressure, RIE chuck power and gas flow rate. The ICP source power was varied from 0 to 500 W. Chamber pressure, RIE chuck power and gas flow rate were controlled from 5 to 15 mTorr, 0 to 150 W and 10 to 40 sccm, respectively. We found that a process condition at 20 sccm $BCl_3$ 300 W ICP, 100 W RIE and 7.5 mTorr chamber pressure gave an excellent etch result. The etched GaAs feature depicted extremely smooth surface (RMS roughness < 1 nm), vertical sidewall, relatively fast etch rate (> $3000\AA$/min) and good selectivity to a photoresist (> 3 : 1). XPS study indicated a very clean surface of the material after dry etching of GaAs. We also noticed that our planar ICP source was successfully ignited both with and without RIE chuck power, which was generally not the case with a typical cylindrical ICP source, where assistance of RIE chuck power was required for turning on a plasma and maintaining it. It demonstrated that the planar ICP source could be a very versatile tool for advanced dry etching of damage-sensitive compound semiconductors.

Evaluation of Elastic Properties of DLC Films Using Substrate Etching Techniques (기판 Etching 기법을 이용한 DLC 필름의 탄성특성 평가)

  • 조성진;이광렬;은광용;한준희;고대홍
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.8
    • /
    • pp.813-818
    • /
    • 1998
  • A simple method to measure the elastic modulus E and Poisson's ratio v of diamod-like carbon (DLC) films deposited on Si wafer was suggested. Using the anisotropic etching technique of Si we could make the edge of DLC overhang free from constraint of Si substrate. DLC film is chemically so inert that we could not on-serve any surface damage after the etching process. The edge of DLC overhang free from constraint of Si substrate exhibited periodic sinusoidal shape. By measuring the amplitude and the wavelength of the sinu-soidal edge we could determine the stain of the film required to adhere to the substrate. Since the residual stress of film can be determine independently by measurement of the curvature of film-substrate com-posite we could calculated the biaxial elastic modulus E/(1-v) using stress-strain relation of thin films. By comparing the biaxial elastic modulus with the plane-strain modulus E/(1-{{{{ { v}^{2 } }}) measured by nano-in-dentation we could further determine the elastic modulus and Poisson's ratio independently. This method was employed to measure the mechanical properties of DLC films deposited by {{{{ { {C }_{6 }H }_{6 } }} rf glow discharge. The was elastic modulus E increased from 94 to 169 GPa as the {{{{ { V}_{ b} / SQRT { P} }} increased from 127 to 221 V/{{{{ {mTorr }^{1/2 } }} Poisson's ratio was estimated to be abou 0.16∼0.22 in this {{{{ { V}_{ b} / SQRT { P} }} range. For the {{{{ { V}_{ b} / SQRT { P} }} less than 127V/{{{{ {mTorr }^{1/2 } }} where the plastic deformation can occur by the substrate etching process however the present method could not be applied.

  • PDF

Plasma Charge Damage on Wafer Edge Transistor in Dry Etch Process (Dry Etch 공정에 의한 Wafer Edge Plasma Damage 개선 연구)

  • Han, Won-Man;Kim, Jae-Pil;Ru, Tae-Kwan;Kim, Chung-Howan;Bae, Kyong-Sung;Roh, Yong-Han
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.109-110
    • /
    • 2007
  • Plasma etching process에서 magnetic field 영향에 관한 연구이다. High level dry etch process를 위해서는 high density plasma(HDP)가 요구된다. HDP를 위해서 MERIE(Magnetical enhancement reactive ion etcher) type의 설비가 사용되며 process chamber side에 4개의 magnetic coil을 사용한다. 이런 magnetic factor가 특히 wafer edge부문에 plasma charging에 의한 damage를 유발시키고 이로 인해 device Vth(Threshold voltage)가 shift 되면서 제품의 program 동작 문제의 원인이 되는 것을 발견하였다. 이번 연구에서 magnetic field와 관련된 plasma charge damage를 확인하고 damage free한 공정조건을 확보하게 되었다.

  • PDF

Selective etch of silicon nitride, and silicon dioxide upon $O_2$ dilution of $CF_4$ plasmas ($CF_4$$O_2$혼합가스를 이용한 산화막과 질화막의 선택적 식각에 관한 연구)

  • 김주민;원태영
    • Electrical & Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.90-94
    • /
    • 1995
  • Reactive Ion Etching(RIE) of Si$_{3}$N$_{4}$ in a CF$_{4}$/O$_{2}$ gas plasma exhibits such good anisotropic etching properties that it is widely employed in current VLSI technology. However, the RIE process can cause serious damage to the silicon surface under the Si$_{3}$N$_{4}$ layer. When an atmospheric pressure chemical vapor deposited(APCVD) SiO$_{2}$ layer is used as a etch-stop material for Si$_{3}$N$_{4}$, it seems inevitable to get a good etch selectivity of Si$_{3}$N$_{4}$ with respect to SiO$_{2}$. Therefore, we have undertaken thorough study of the dependence of the etch rate of Si$_{3}$N$_{4}$ plasmas on $O_{2}$ dilution, RF power, and chamber pressure. The etch selectivity of Si$_{3}$N$_{4}$ with respect to SiO$_{2}$ has been obtained its value of 2.13 at the RF power of 150 W and the pressure of 110 mTorr in CF$_{4}$ gas plasma diluted with 25% $O_{2}$ by flow rate.

  • PDF

Nanotextured Si Solar Cells on Microtextured Pyramidal Surfaces by Silver-assisted Chemical Etching Process

  • Parida, Bhaskar;Choi, Jaeho;Palei, Srikanta;Kim, Keunjoo;Kwak, Seung Jong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.4
    • /
    • pp.212-220
    • /
    • 2015
  • We investigated nanotextured Si solar cells using the silver-assisted chemical etching process. The nanotexturing process is very sensitive to the concentration of chemical etching solution. The high concentration process results in a nanowire formation for the nanosurfaces and causes severe surface damage to the top region of the micropyramids. These nanowires show excellent light absorption in photoreflectance spectra and radiative light emission in photoluminescence spectra. However, the low concentration process forms a nano-roughened surface and provides high minority carrier lifetimes. The nano-roughened surfaces of the samples show the improved electrical cell properties of quantum efficiency, conversion efficiency, and cell fill factor due to the reduction in the formation of the over-doped dead layer.

Characterization of Surface Damage and Contamination of Si Using Cylindrial Magnetron Reactive Ion Etching

  • Young, Yeom-Geun
    • Korean Journal of Materials Research
    • /
    • v.3 no.5
    • /
    • pp.482-496
    • /
    • 1993
  • Radiation damage and contamination of silicons etched in the $CF_4+H_2$ and $CHF_3$ magnetron discharges have been characterized using Schottky diode characteristics, TEM, AES, and SIMS as a function of applied magnetic field strength. It turned out that, as the magnetic field strength increased, the radiation damage measured by cross sectional TEM and by leakage current of Schottky diodes decreased colse to that of wet dtched samples especially for $CF_4$ plasma etched samples, For $CF_4+H_2$and $CHF_3$ etched samples, hydrogen from the plasmas introduced extended defects to the silicon and this caused increased leakage current to the samples etched at low magnetic field strength conditions by hydrogen passivation. The thickness of polymer with the increasing magnetic field strength and showed the minimum polymer residue thickness near the 100Gauss where the silicon etch rate was maximum. Also, other contaminants such as target material were found to be minimum on the etched silicon surface near the highest etch rate condition.

  • PDF

A Study of Chemical Mechanical Polishing on Shallow Trench Isolation to Reduce Defect (CMP 연마를 통한 STI에서 결함 감소)

  • 백명기;김상용;김창일;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.501-504
    • /
    • 1999
  • In the shallow trench isolation(STI) chemical mechanical polishing(CMP) process, the key issues are the optimized thickness control within- wafer-non-uniformity, and the possible defects such as nitride residue and pad oxide damage. These defects after STI CMP process were discussed to accomplish its optimum process condition. To understand its optimum process condition, overall STI related processes including reverse moat etch, trench etch, STI filling and STI CMP were discussed. It is represented that the nitride residue can be occurred in the condition of high post CMP thickness and low trench depth. In addition there are remaining oxide on the moat surface after reverse moat etch. It means that reverse moat etching process can be the main source of nitride residue. Pad oxide damage can be caused by over-polishing and high trench depth.

  • PDF