Browse > Article
http://dx.doi.org/10.4313/TEEM.2015.16.4.212

Nanotextured Si Solar Cells on Microtextured Pyramidal Surfaces by Silver-assisted Chemical Etching Process  

Parida, Bhaskar (Department of Mechanical Engineering and Research Center of Industrial Technology, Chonbuk National University)
Choi, Jaeho (Department of Mechanical Engineering and Research Center of Industrial Technology, Chonbuk National University)
Palei, Srikanta (Department of Mechanical Engineering and Research Center of Industrial Technology, Chonbuk National University)
Kim, Keunjoo (Department of Mechanical Engineering and Research Center of Industrial Technology, Chonbuk National University)
Kwak, Seung Jong (Division of R&D, Withlight Co., Ltd.)
Publication Information
Transactions on Electrical and Electronic Materials / v.16, no.4, 2015 , pp. 212-220 More about this Journal
Abstract
We investigated nanotextured Si solar cells using the silver-assisted chemical etching process. The nanotexturing process is very sensitive to the concentration of chemical etching solution. The high concentration process results in a nanowire formation for the nanosurfaces and causes severe surface damage to the top region of the micropyramids. These nanowires show excellent light absorption in photoreflectance spectra and radiative light emission in photoluminescence spectra. However, the low concentration process forms a nano-roughened surface and provides high minority carrier lifetimes. The nano-roughened surfaces of the samples show the improved electrical cell properties of quantum efficiency, conversion efficiency, and cell fill factor due to the reduction in the formation of the over-doped dead layer.
Keywords
Nanotextured Si surface; Micropyramid; Nanocavity lasing; Si solar cells;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. A. Tischler, R. T. Collins, J. H. Stathis, and J. Tsang, Appl. Phys. Lett., 60, 639 (1992). [DOI: http://dx.doi.org/10.1063/1.106578]   DOI
2 K. A. Salman, Z. Hassan, and K. Omar, Int. J. Electrochem. Sci., 7, 376 (2012).
3 F. Toor, H. M. Branz, M. R. Page, K. M. Jones, and H. C. Yuan, Appl. Phys. Lett., 99, 103501 (2011). [DOI: http://dx.doi.org/10.1063/1.3636105]   DOI
4 D. Zhang, R. Jia, C. Chen, W. Ding, Z. Jin, X. Liu, and T. Ye, Chem. Phys. Lett., 601, 69 (2014). [DOI: http://dx.doi.org/10.1016/j.cplett.2014.03.092]   DOI
5 H. C. Yuan, V. E. Yost, M. R. Page, P. Stardins, D. L. Meier and H. M. Branz, Appl. Phys. Lett., 95, 123501 (2009). [DOI: http://dx.doi.org/10.1063/1.3231438]   DOI
6 V. V. Iyengar, B. K. Nayak. K. L. More, H. M. Meyer, M. D. Biegalski, J. V. Li, and M. C. Gupta, Sol. Energ. Mat. Sol. Cells, 95, 2745 (2011). [DOI: http://dx.doi.org/10.1016/j.solmat.2011.04.011]   DOI
7 M. Hong, G. D. Yuan, Y. Peng, H. Y. Chen, Y. Zhang, Z. Q. Z. Q. Liu, J. X. Wang, B. Cai, Y. M. Zhu, Y. Chen, J. H. Liu, and J. M. Li, Appl. Phys. Lett., 104, 253902 (2014). [DOI: http://dx.doi.org/10.1063/1.4884899]   DOI
8 Z. Zuo, K. Zhu, G. Cui, W. Huang, J. Qu, Y. Shi, Y. Liu, and G. Ji, Sol. Energ. Mat. Sol. Cells, 125, 248 (2014). [DOI: http://dx.doi.org/10.1016/j.solmat.2014.03.026]   DOI
9 F. Karbassian, B. Kheyraddini Mousavi, S. Rajabali, R. Talei, S. Mohajerzadeh, and E. Asl-Soleimani, J. Electron. Mater., 43, 1271 (2014). [DOI: http://dx.doi.org/10.1007/s11664-014-3051-3]   DOI
10 P. Deak, M. Rosenbauer, M. Stutzmann, J. Weber, and M. S. Brandt, Phys. Rev. Lett., 69, 2531 (1992). [DOI: http://dx.doi.org/10.1103/physrevlett.69.2531]   DOI
11 A. G. Cullis, L. T. Canham, and P.D.J. Calcott, J. Appl. Phys., 82, 909 (1997). [DOI: http://dx.doi.org/10.1063/1.366536]   DOI
12 C. Chartier, S. Bastide, and C. Levy-Clement, Electrochem. Acta, 53, 5509 (2008). [DOI: http://dx.doi.org/10.1016/j.electacta.2008.03.009]   DOI
13 X. Li and P. W. Bohn, Appl. Phys. Lett., 77, 2572(2000). [DOI: http://dx.doi.org/10.1063/1.1319191]   DOI
14 D. E. Aspnes, J. B. Theeten, and F. Hottier, Phys. Rev. B, 20, 3292 (1979). [DOI: http://dx.doi.org/10.1103/physrevb.20.3292]   DOI
15 H. Y. Chen, G. D. Yuan, Y. Peng, M. Hong, Y. B. Zhang, Y. Zhang, Z. Q. Liu, X. Wang, B. Cai, Y. M. Zhu, and J. M. Li, Appl. Phys. Lett., 104, 193904(2014). [DOI: http://dx.doi.org/10.1063/1.4878096]   DOI
16 O. Bisi, S. Ossicini, and L. Pavesi, Porous silicon: a quantum sponge structure for silicon based optoelectronics Surf. Sci. Rep., 38, 1(2000). [DOI: http://dx.doi.org/10.1016/s0167-5729(99)00012-6]   DOI
17 C. Chen, R. Jia, H. Yue, H. Li, X. Liu, D. Wu, W. Ding, T. Ye, S. Kasai, H. Tamotsu,J. Chu, and S. Wang, J. Appl. Phys., 108, 094318 (2010). [DOI: http://dx.doi.org/10.1063/1.3493733]   DOI
18 D. Z. Dimitrov and C. H. Du, Appl. Surf. Sci., 266, 1 (2013). [DOI : http://dx.doi.org/10.1016/j.apsusc.2012.10.081]   DOI
19 P. Vitanov, M. Kamenova, N. Tyutyundzhiev, M. Delibasheva, E. Goranova, and M. Peneva, Thin Solid Films 297 299 (1997). [DOI: http://dx.doi.org/10.1016/s0040-6090 (96)09413-8]   DOI
20 Y. Xia, B. Liu, J. Liu, Z. Shen, and C. Li, Sol. Energy 85 1574(2011). [DOI: http://dx.doi.org/10.1016/j.solener.2011.03.012]   DOI
21 D. Kumar, S. K. Srivastava, P. K. Singh, M. Husain and V. Kumar, Sol. Energ. Mat. Sol. Cells 95 215(2011). [DOI: http://dx.doi.org/10.1016/j.solmat.2010.04.024]   DOI
22 M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, Appl. Phys. Lett. 85 5694 (2004). [DOI: http://dx.doi.org/10.1063/1.1828575]   DOI
23 B. Parida, J. Choi, G Lim, S. Park and K. Kim, J. Nanosci. Nanotechno-l. 14 9224 (2014). [DOI: http://dx.doi.org/10.1166/jnn.2014.10129]   DOI
24 Y. T. Lu and A. R. Barron, Phys. Chem. Chem. Phys. 15 9862(2013). [DOI: http://dx.doi.org/10.1039/c3cp51835c]   DOI
25 J Oh, H. C. Yuan and H. M. Branz, Nature Nanotech. 7 743(2012). [DOI: http://dx.doi.org/10.1038/nnano.2012.166]   DOI
26 B Parida, J. Choi, G. Lim, and K. Kim, J. Nanomater. 2013 953790 (2013). [DOI: http://dx.doi.org/10.1155/2013/953790]   DOI
27 R. L. Smith and S. D. Collins, J. Appl. Phys. 71 R1-R22 (1992). [DOI: http://dx.doi.org/10.1063/1.350839]   DOI
28 C. Y. Chen, L. LI, and C. P. Wong, Chem. Asian J. 9 93 (2014). [DOI: http://dx.doi.org/10.1002/asia.201400031]   DOI
29 K. Peng, M. Zhang, A. Lu, N. B. Wong, R. Zhang and S.T. Lee, Appl. Phys. Lett. 90, 163123(2007).[DOI: http://dx.doi.org/10.1063/1.2724897]   DOI
30 J.Choi, B. Parida, H. Y. Ji, S. Park, and K. Kim, J. Nanosci. Nanotechnol. 12 5552 (2012). [DOI:http://dx.doi.org/10.1166/jnn.2012.6400]   DOI
31 H. Jansen, M. de. Boer, R. Legtenberg, and M. Elwenspoek, J. Micromech. Microeng. 5 115 (1995). [DOI: http://dx.doi.org/10.1088/0960-1317/5/2/015]   DOI
32 I. J. Lee, U. Paik, and J. G. Park, Sol. Energy, 91 256 (2013). [DOI: http://dx.doi.org/10.1016/j.solener.2013.02.010]   DOI
33 K. Peng, A. Lu, R. Zhang and S. T. Lee, Adv. Funct. Mater. 18 3026 (2008). [DOI: http://dx.doi.org/10.1002/adfm.200800371]   DOI
34 S. Chattopadhyay, Y. F. Huang, Y. J Jen, A. Ganguly, K. H. Chen, and L. C. Chen, Mater. Sci. Eng. R-Rep. 69 1(2010). [DOI: http://dx.doi.org/10.1016/j.mser.2010.04.001]   DOI
35 P. Panek, M. Lipinski, and H. Czternastek, Opto-Electr. Rev. 8 57 (2000).
36 M. A. Green and M. J. Keevers, Prog. Photovolt: Res. Appl., 3, 189 (1995). [DOI: http://dx.doi.org/10.1002/pip.4670030303]   DOI
37 H. Y. Ji, J. Choi, G. Lim, B. Parida, K. Kim, J. H. Jo, and H. S. Kim, J. Nanosci. Nanotechnol. 13, 7806 (2013). [DOI: http://dx.doi.org/10.1166/jnn.2013.8119]   DOI
38 C. I. Yeo, J. B. Kim, Y. M. Song, and Y. T. Lee, Nanoscale Res. Lett. 8 159(2013). [DOI: http://dx.doi.org/10.1186/1556-276x-8-159]   DOI