• Title/Summary/Keyword: error correction memory

Search Result 109, Processing Time 0.023 seconds

Adaptive Quantization Scheme for Multi-Level Cell NAND Flash Memory (멀티 레벨 셀 낸드 플래시 메모리용 적응적 양자화기 설계)

  • Lee, Dong-Hwan;Sung, Wonyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.6
    • /
    • pp.540-549
    • /
    • 2013
  • An adaptive non-uniform quantization scheme is proposed for soft-decision error correction in NAND flash memory. Even though the conventional maximizing mutual information (MMI) quantizer shows the optimal post-FEC (forward error correction) bit error rate (BER) performance, this quantization scheme demands heavy computational overheads due to the exhaustive search to find the optimal parameter values. The proposed quantization scheme has a simple structure that is constructed by only six parameters, and the optimal values of them are found by maximizing the mutual information between the input and the output symbols. It is demonstrated that the proposed quantization scheme improves the BER performance of soft-decision decoding with only small computational overheads.

Design of Asynchronous Nonvolatile Memory Module using Self-diagnosis Function (자기진단 기능을 이용한 비동기용 불휘발성 메모리 모듈의 설계)

  • Shin, Woohyeon;Yang, Oh;Yeon, Jun Sang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.85-90
    • /
    • 2022
  • In this paper, an asynchronous nonvolatile memory module using a self-diagnosis function was designed. For the system to work, a lot of data must be input/output, and memory that can be stored is required. The volatile memory is fast, but data is erased without power, and the nonvolatile memory is slow, but data can be stored semi-permanently without power. The non-volatile static random-access memory is designed to solve these memory problems. However, the non-volatile static random-access memory is weak external noise or electrical shock, data can be some error. To solve these data errors, self-diagnosis algorithms were applied to non-volatile static random-access memory using error correction code, cyclic redundancy check 32 and data check sum to increase the reliability and accuracy of data retention. In addition, the possibility of application to an asynchronous non-volatile storage system requiring reliability was suggested.

An Optimal Scrubbing Scheme for Protection of Memory Devices against Soft Errors (메모리 소자의 소프트 에러 극복을 위한 최적 스크러빙 방안)

  • Ryu, Sang-Moon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.677-680
    • /
    • 2011
  • Error detection and correcting codes are typically used to protect against soft errors. In addition, scrubbing is applied which is a fundamental technique to avoid the accumulation of soft errors. This paper introduces an optimal scrubbing scheme, which is suitable for a system with auto error detection and correction logic. An auto error detection and correction logic can correct soft errors without CPU's writing operation. The proposed scrubbing scheme leads to maximum reliability by considering both allowable scrubbing load and the periodic accesses to memory by the tasks running in the system.

  • PDF

Memory Scrubbing for On-Board Computer of STSA T-2 (과학기술위성 2호 탑재컴퓨터의 메모리 세정 방안)

  • Ryu, Sang-Moon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.519-524
    • /
    • 2007
  • The OBC(on-board computer) of a satellite which plays a role of the controller for the satellite should be equipped with preventive measures against transient errors caused by SEU(single event upset). Since memory devices are pretty much susceptible to these transient errors, it is essential to protect memory devices against SFU. A common method exploits an error detection and correction code and additional memory devices, combined with periodic memory scrubbing. This paper proposes an effective memory scrubbing scheme for the OBC of STSAT-2. The memory system of the OBC is briefly mentioned and the reliability of the information stored in the memory system is analyzed. The result of the reliability analysis shows that there exist optimal scrubbing periods achieving the maximum reliability for allowed overall scrubbing overhead and they are dependent on the significance of the information stored. These optimal scrubbing periods from a reliability point of view are derived analytically.

A Memory-Efficient Block-wise MAP Decoder Architecture

  • Kim, Sik;Hwang, Sun-Young;Kang, Moon-Jun
    • ETRI Journal
    • /
    • v.26 no.6
    • /
    • pp.615-621
    • /
    • 2004
  • Next generation mobile communication system, such as IMT-2000, adopts Turbo codes due to their powerful error correction capability. This paper presents a block-wise maximum a posteriori (MAP) Turbo decoding structure with a low memory requirement. During this research, it has been observed that the training size and block size determine the amount of required memory and bit-error rate (BER) performance of the block-wise MAP decoder, and that comparable BER performance can be obtained with much shorter blocks when the training size is sufficient. Based on this observation, a new decoding structure is proposed and presented in this paper. The proposed block-wise decoder employs a decoding scheme for reducing the memory requirement by setting the training size to be N times the block size. The memory requirement for storing the branch and state metrics can be reduced 30% to 45%, and synthesis results show that the overall memory area can be reduced by 5.27% to 7.29%, when compared to previous MAP decoders. The decoder throughput can be maintained in the proposed scheme without degrading the BER performance.

  • PDF

Design of Asynchronous Nonvolatile Memory Module with Self-diagnosis and Clock Function (자기진단과 시계 기능을 갖는 비동기용 불휘발성 메모리 모듈의 설계)

  • Woohyeon Shin;Kang Won Lee;Oh Yang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.43-48
    • /
    • 2023
  • This paper discusses the design of 32Mbyte asynchronous nonvolatile memory modules, which includes self-diagnosis and RTC (Real Time Clock) functions to enhance their data stability and reliability. Nonvolatile memory modules can maintain data even in a power-off state, thereby improving the stability and reliability of a system or device. However, due to the possibility of data error due to electrical or physical reasons, additional data loss prevention methods are required. To minimize data error in asynchronous nonvolatile memory modules, this paper proposes the use of voltage monitoring circuits, self-diagnosis, BBT (Bad Block Table), ECC (Error Correction Code), CRC (Cyclic Redundancy Check)32, and data check sum, data recording method using RTC. Prototypes have been produced to confirm correct operation and suggest the possibility of commercialization.

  • PDF

An Aging Measurement Scheme for Flash Memory Using LDPC Decoding Information

  • Kang, Taegeun;Yi, Hyunbean
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.1
    • /
    • pp.29-36
    • /
    • 2020
  • Wear-leveling techniques and Error Correction Codes (ECCs) are essential for the improvement of the reliability and durability of flash memories. Low-Density Parity-Check (LDPC) codes have higher error correction capabilities than conventional ECCs and have been applied to various flash memory-based storage devices. Conventional wear-leveling schemes using only the number of Program/Erase (P/E) cycles are not enough to reflect the actual aging differences of flash memory components. This paper introduces an actual aging measurement scheme for flash memory wear-leveling using LDPC decoding information. Our analysis, using error-rates obtained from an flash memory module, shows that LDPC decoding information can represent the aging degree of each block. We also show the effectiveness of the wear-leveling based on the proposed scheme through wear-leveling simulation experiments.

Digital holographic optical memory system utilizing AOD (AOD를 채용한 디지털 홀로그래픽 광메모리 시스템)

  • 이재진
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1998.08a
    • /
    • pp.98-99
    • /
    • 1998
  • In this paper, an acousto-optic defiector9ADO) is used to perform the angular multiplexing without moving parts. The error-correction coding techniques was used to achive low bit-error rates in the experiment. A part of Lena image(64*64) encoded by Reed-Solomon codes were stored and retrieved.

  • PDF

A Low-Power ECC Check Bit Generator Implementation in DRAMs

  • Cha, Sang-Uhn;Lee, Yun-Sang;Yoon, Hong-Il
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.4
    • /
    • pp.252-256
    • /
    • 2006
  • A low-power ECC check bit generator is presented with competent DRAM implementation with minimal speed loss, area overhead and power consumption. The ECC used in the proposed scheme is a variant form of the minimum weight column code. The spatial and temporal correlations of input data are analyzed and the input paths of the check bit generator are ordered for the on-line adaptable power savings up to 24.4% in the benchmarked cases. The chip size overhead is estimated to be under 0.3% for a 80nm 1Gb DRAM implementation.

An Implementation of a Lightweight Spacing-Error Correction System for Korean (한국어 경량형 띄어쓰기 교정 시스템의 구현)

  • Song, Yeong-Kil;Kim, Hark-Soo
    • The Journal of Korean Association of Computer Education
    • /
    • v.12 no.2
    • /
    • pp.87-96
    • /
    • 2009
  • We propose a Korean spacing-error correction system that requires small memory usage although the proposed method is a mixture of rule-based and statistical methods. In addition, to train the proposed model to be robust in mobile colloquial sentences in which spelling errors and omissions of functional words are frequently occurred, we propose a method to automatically transform typical colloquial corpus to mobile colloquial corpus. The proposed system uses statistical information of syllable uni-grams in order to increase coverages on new syllable patterns. Then, the proposed system uses error correction rules of two or more grams of syllables in order to increase accuracies. In the experiments on fake mobile colloquial sentences, the proposed system showed relatively high accuracy of 92.10% (93.80% in typical colloquial corpus, 94.07% in typical balanced corpus) spite of small memory usage of about 1MB.

  • PDF