
ETRI Journal, Volume 26, Number 6, December 2004 Sik Kim et al. 615

Next generation mobile communication system, such as
IMT-2000, adopts Turbo codes due to their powerful error
correction capability. This paper presents a block-wise
maximum a posteriori (MAP) Turbo decoding structure
with a low memory requirement. During this research, it
has been observed that the training size and block size
determine the amount of required memory and bit-error
rate (BER) performance of the block-wise MAP decoder,
and that comparable BER performance can be obtained
with much shorter blocks when the training size is
sufficient. Based on this observation, a new decoding
structure is proposed and presented in this paper. The
proposed block-wise decoder employs a decoding scheme
for reducing the memory requirement by setting the
training size to be N times the block size. The memory
requirement for storing the branch and state metrics can
be reduced 30% to 45%, and synthesis results show that
the overall memory area can be reduced by 5.27% to
7.29%, when compared to previous MAP decoders. The
decoder throughput can be maintained in the proposed
scheme without degrading the BER performance.

Keywords: MAP decoder, training length, memory
requirement.

Manuscript received Aug. 11, 2003; revised Mar. 18, 2004.
This research was supported by the MIC (Ministry of Information and Communication),

Korea, under the ITRC (Information Technology Research Center) support program
supervised by IITA (Institute of Information Technology Assessment).

Sik Kim (phone: +82 31 209 4263, email: s90.kim@samsung.com) and Sun-Young Hwang
(email: hwang@ccs.sogang.ac.kr) are with the Electronic Engineering Department, Sogang
University, Seoul, Korea.

Moon Jun Kang (email: malas@eecad.sogang.ac.kr) is with the Pinetron Co. Ltd., Seoul,
Korea.

I. Introduction

Since Shannon announced the channel limit theorem in 1948,
numerous channel codes for various applications have been
developed [1]. Even though most of them failed to reach the
Shannon limit, the Turbo code, proposed by Berrou in 1993,
shows error correcting performance close to the Shannon limit
[2]. However, the Turbo code has been used in a limited
number of applications where real-time processing is not
required, such as satellite communications, due to its hardware
complexity and decoding delay. Since then, a great deal of
research effort has been taken to improve the performance of
the Turbo code. As a result, the Turbo code has been adopted in
the IMT-2000 system for high data rate transmission.

A Turbo encoder has a simple architecture, generating parity
information together with input data by two constituent
encoders. Each of the two encoders encodes the input data and
scrambles input data through an interleaver. A Turbo decoder
performs iterative decoding to enhance the error correction
capability. A Turbo decoder consists of two soft input/soft
output (SISO) decoders, each of which takes a-priori
information computed from the other SISO decoder as an input
for iterative decoding [3]. Two SISO decoding algorithms have
been popularly used: soft output Viterbi algorithm (SOVA) and
maximum a posteriori (MAP) algorithm. Even though the
decoder realizing the MAP algorithm is four times as complex
as that for the SOVA, it shows that the BER performance is
twice as high as that of SOVA [4]. Due to recent progress in
fabrication and circuit design technology, the BER
performance becomes more of a concern than hardware
complexity. Accordingly, the MAP algorithm is preferred to the
SOVA. A log-MAP decoding algorithm has been proposed to
reduce computation complexity of the MAP algorithm, and the

A Memory-Efficient Block-wise
MAP Decoder Architecture

Sik Kim, Sun-Young Hwang, and Moon Jun Kang

616 Sik Kim et al. ETRI Journal, Volume 26, Number 6, December 2004

block-wise MAP decoding algorithm has been proposed to
reduce memory usage, which is known to be proportional to
the frame length [5], [6].

The block-wise MAP decoding algorithm requires less
memory than the original MAP decoding algorithm. However,
it requires a training process determining the initial backward
state metric to avoid the BER performance degradation caused
by backward state metric discontinuity [5]. In the MAP
algorithm, training size as well as block size affects the BER
performance. The previous block-wise MAP decoding
algorithm uses the same training size as the block size for
higher hardware utilization [6]. In this research, it has been
found that the BER performance could be maintained with
shorter blocks when the training size is sufficiently large
enough. This paper proposes an efficient decoding scheme
where the block size is set to 1/n of the training size. For the
efficient implementation of the proposed scheme, a pipelined
architecture is also proposed.

II. Turbo Code and MAP Algorithm

This section presents a brief description on the structure of
the Turbo code and the MAP algorithm.

Figure 1 shows an overall structure of the Turbo encoder
having a 1/2 coding ratio. It consists of two encoders, one of
which encodes the input bit sequence while the other encodes
the bit sequence obtained by interleaving the input bit sequence.
Input bit sequence Dk is directly output together with encoded
bit sequence Yk. At time k, encoder 1 produces encoded output
sequence Yk

1 using input sequence Dk, and encoder 2 produces
output sequence Yk

2 by encoding Di, which is obtained by
interleaving the input bit sequence Dk. To construct a half-code
rate, Yk could be generated using a puncturing method between
Yk

1 and Yk
2 [2].

Constituent encoders employ the recursive systematic
convolutional code. The outputs of the systematic
convolutional code consist of the original input data and
encoded bit sequence Yk. It is well known that the BER

Fig. 1. The overall structure of the Turbo encoder.

Interleaver

Constituent
Encoder 1

Dk

Di

Xk

Yk

Yk

Yk

Constituent
Encoder 2

2

1

performance of the systematic convolutional code is better than
that of the non-systematic convolutional code in low signal-
to-noise ratio (SNR) channel environments [2]. The Turbo
code also shows a remarkable BER performance because
the recursive systematic convolutional code has an infinite
impulse response [7].

Figure 2 shows the overall structure of the Turbo decoder.
The two constituent SISO decoders (DECs) perform the
backward process of the two encoders in the Turbo encoder.
The interleaver and de-interleaver reassemble the information
bit sequence, and the hard decision block determines and
generates the decoded bit sequence. This architecture has a
recursive structure for iterative decoding [1], [3], [4]. Decoder
input bit sequences xk and yk, consisting of y1

k and y2
k, may

include channel error. SISO DEC1 uses xk, y1
k and a priori

information La1(dk) as input. In the initial decoding, La1(dk) is
set to ‘0’ because there exists no a posteriori probability value.
After that, La1(dk) is supplied from extrinsic information of
the SISO DEC2 output. Then, SISO DEC1 output Le1(dk) is
reassembled by interleaver and fed to SISO DEC2 together
with y2

k. After SISO DEC2 output L2(dn) is reassembled to
form L2(dk) by the de-interleaver, the hard decision block
generates kd̂ . SISO DEC2 output Le2(dn) is reassembled by
de-interleaver and fed to SISO DEC1 for iterative decoding.

Fig. 2. The overall structure of the Turbo decoder.

Hard
decision

Inter-
leaver

∑ ∑

∑

+

+ -

- La1(dk)

xk

yk

L1(dk)

xk+Le1(dk)

xn+La2(dn)

L2(dn)

Le2(dn)

SISO
DEC 2

Deinter-
leaver

Deinter-
leaver

kd̂

+

2
ky

1
ky

+

SISO
DEC 1

1. MAP Decoding Algorithm

Bahl proposed the MAP algorithm [8]. Though the design
complexity of MAP decoder is four times as complex as that of
the SOVA decoder, researches have been performed to
implement the MAP decoder because the BER performance of
the MAP algorithm is twice as high as that of SOVA. The input
sequence consisting of information bits xk and parity bits yk
may include additive white Gaussian noise at time k. The MAP
decoder output, the log-likelihood ratio of information bits dk,
can be derived from (1) and (2) using Bahl’s MAP decoding
algorithm,

ETRI Journal, Volume 26, Number 6, December 2004 Sik Kim et al. 617








 +
=

=

=

∑

∑

=
+

=
−−

2

,
,

1

0

,),(
1

1

0

),(,
1

),(
1

exp
σ

πδ

δββ

δαα

mi
kk

i
kki

k
mi

k

j

mj
k

mjf
k

m
k

j

mjbj
k

mjb
k

m
k

vyux

, (1)

where δk
i,m represents the branch metrics and αk

m, βk
m represent

the forward and backward state metrics, respectively.

∑
∑

+

+

=

m

mf
k

m
k

m
k

m

mf
k

m
k

m
k

kdL),0(
1

,0

),1(
1

,1

log)(
βδα

βδα
 (2)

The decoding process is as follows: Branch metric δk
i,m and for

ward state metrics αk
m are calculated from the input frame. Then,

the backward state metrics βk
m and the log-likelihood ratio of dk

(output of MAP decoder) are computed by using δk
i,m and αk

m.

2. MAP Decoder Implementation

In most MAP decoders, the log-MAP decoding algorithm has
been used to reduce the computation complexity of the MAP
decoding algorithm by computing the metrics in the log domain
[9]. This algorithm requires memory proportional to the frame
size for storing the branch metrics and the forward state metrics
[3], [7], [10]. The block-wise MAP decoding algorithm has been
proposed to reduce the memory requirement in the log-MAP
decoding algorithm. It has been shown that the block-wise log-
MAP decoding algorithm can be implemented in a smaller area.
Figure 3 shows the block-wise MAP decoding scheme. In this
scheme, a data frame is divided into M sub-blocks with size L,
and each block is fed to the MAP decoder one by one. In this
way, memory requirement is reduced [5], [6].

Fig. 3. The block-wise MAP decoding process.

Block 0 Block 1 Block i Block M-1

Divide into M sub-block

Block i

Block i Block i+1

Backward state
metric calculation

0 L-1 0

Block i+1

Training process

Forward state metric
calculation

L-1

Input frame

In the block-wise MAP decoding algorithm, forward and
backward state metrics need to be computed for each block.
When the block MAP decoding is processed forward from block
0 to block M-1, the initial forward state metric of each block can
be obtained from the last forward state metric of the previous
block. The initial backward state metrics cannot be obtained
from the previous block, unlike the initial forward state metrics,
because the calculation sequence of backward state metrics is
opposite to that of the block processing. This induces the
reliability problem in the backward state metrics, which in turn
degrades the BER performance. To avoid the BER performance
degradation, a training process is introduced. The training
process determines the reliable initial backward state metrics by
calculating the backward state metrics in the next block without
storing their values in the memory. For successive decoding, a
parallel invocation of backward state metric calculation process
and the training process is required using two processors [5], [6].

Figure 4 shows the timing diagram of the decoding process for
a sequence of data blocks. The numbers within the arrows
represent the block numbers. This figure shows the process of
calculating the branch metrics and the forward and backward
state metrics. For example, the branch metrics for data block #1
is calculated at time frame 1. The branch metrics for data block
#2 and the forward state metrics for data block #0 are calculated
at time frame 2. At the same time, the training process, marked
as a shadowed arrow, is performed for data block #1 to get an
initial metric for the backward state metrics of data block #0.

For continuous decoding, the memory capacity for storing
the branch metric for four blocks is required. In this scheme,
memory usage can be significantly reduced. However, it
requires several state metric processors to compute several state
metrics, simultaneously. To overcome this problem, a pipelined
architecture for calculating state metrics is presented in this
paper [6].

Fig. 4. Timing diagram of the decoding process of block-wise
MAP decoder.

0 1 3

0 1 2 3 4 5 6

2

51 0 3 2

0 1 2 3 4 5 6

4

0 1 2 3

Forward state metric
calculation unit

Branch metric
calculation unit

Time frame

Backward state metric
calculation unit 1

Backward state metric
calculation unit 2

Decoder output
hard decision unit

32 1 4

3. Block-wise MAP Decoder Parameters

The block size and the training size of the block-wise MAP

618 Sik Kim et al. ETRI Journal, Volume 26, Number 6, December 2004

decoder determine the amount of the required memory and
BER performance. Figure 5(a) shows the BER performance
versus the training size under variable SNRs. As the training
size increases, the BER becomes smaller, getting closer to log-
MAP values. As the training size decreases, the BER becomes
larger, resulting in poor performance. This is due to the fact that
reliable initial backward state metrics cannot be obtained from
shorter training sizes. Figure 5(b) shows the BER performance
versus training size under several channel conditions where the
SNR = 0.6, 0.8, 1.4, 1.8 and 2.2 dB. Note that the BER
performance does not change with training sizes larger than 16
(at SNR = 2.2 dB) and larger than 10 (at SNR = 1.0 dB). This
means that, when the training size is sufficiently large, the BER
performance is not affected. The right-most log index of
Fig. 5(b) shows the limit of the BER of the block-wise MAP
decoding algorithm. From these observations, training size of

Fig. 5. Decoder performance of the block-wise MAP decoding
algorithm. (constraint length = 3): (a) BER versus training
size with SNRs and (b) BER versus training with the
channel.

(a)

(b)

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

2 6 8 12 16 20 24 28 32 L
Training length

B
E

R

0.6 dB 1.0 dB
1.4 dB 1.8 dB
2.2 dB

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
SNR (dB)

B
E

R

2
4
6
8
10
32
Log MAP
MAP

Training length

4 10 14 18 22 26 30 64 128

L: Log-MAP decoder
BER performance for
comparison

five times the constraint size is considered to be sufficient.
The training process determines the initial backward state

metrics. When the block size is large enough, the backward
state metrics become reliable as the decoding process continues
regardless of the initial error. When the training size is not large
enough, the initial backward state metrics are not reliable and
the BER performance is degraded.

Figure 6(a) shows the BER performance with various values
of the block size and training size. When the training size is set
to 4, the BER performance heavily depends on the block size.
When the training size is 16, the BER performance shows little
differences with different values of block size. In other words,
with sufficient training size, the BER performance is not
affected by the block size. Figure 6(b) shows the BER
differences when the block sizes are set to 4 and 16 with
different values of the training size. When the training size is
below 16, the difference of the BER performance is
remarkable. In other words, when the training size is sufficient,
the BER performance is not affected by the block size.

Fig. 6. Decoder performance of the block-wise MAP decoding
algorithm (constraint length = 3): (a) BER versus variable
block size and training size and (b) BER versus block size
with training sizes set to 4 and 16.

B
E

R
 d

iff
er

en
ce

s

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.0 0.4 0.8 1.2 1.6 2.0 2.4

SNR (dB)

TL 4 TL 6
TL 8 TL 10
TL 14 TL 16

SNR (dB)

B
E

R

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

BL 4, TL 4
BL 8, TL 4
BL 16, TL 4

BL 4, TL 16
BL 8, TL 16
BL 16, TL 16

(a)

(b)

ETRI Journal, Volume 26, Number 6, December 2004 Sik Kim et al. 619

Fig. 7. Proposed block-wise MAP decoding scheme where the block size is set to 1/µ of the training size.

Block 0 Block i Block i+1 Block i+2 Block M-1

Input data frame

Divide into M sub-blocks

Block i

Block n Block i+1

Backward state
metric calculation

0 L-1 L-10

Training
process 3

Forward state
metric calculation

Block i+2
L-10

Block i+3

L-1 0

Block i+3

Training
process 2

Training
process 1

III. Proposed Block-wise MAP Decoder

1. Proposed Block-wise MAP Decoding Algorithm

Previous block-wise MAP decoders have the training size
equal to the block size. However, when the training size is large
enough, high BER performance can be achieved even with a
small block size. A small block size implies less memory
requirement. This paper proposes a new scheme where the
block size is only a fraction of the training size. Figure 7 shows
the proposed block-wise MAP decoding scheme where the
block size is set to 1/µ of the training size. The training blocks
are divided into µ sub-blocks, and the proposed decoding
scheme performs the training process sequentially using µ
backward state metric processors. In this case, µ +2 state metric
processors are required for calculating the forward and
backward state metrics.

Figure 8 shows the sequence of computation of all the metrics
and the log-likelihood ratio in the proposed scheme with µ =3. The
state metric processor of the block-wise MAP decoder consists
of one forward state metric processor and four backward state
metric processors. When the backward state metrics is computed,
three backward state metric processors perform the training
process to calculate the initial backward state metrics to be used
at the next time frame. That is, the initial backward state metrics
is obtained through three continuous training processes. The
backward state metric calculating process and three training
processes use the initial values obtained from the training process
for the next blocks. There is no need to store the backward state
metric in the training process, which makes it possible to have a
continuous decoding process.

The proposed scheme requires memory for storing the
forward state metric and the branch metrics. However, the
memory requirement in the proposed scheme is reduced when

Fig. 8. Timing diagram of the proposed decoding scheme where
the block size is set to 1/3 of the training size.

0 1 3

0 1 2 3 4 5 6 7 8 9

2

1

0

3

2

2

1

4

3

3

2

5

4

4

3

6

5

0 1 2 3 4 5 6 7 8 9

7

6

8

5

7

9

10

4

10

0 1 2 3

Forward state metric
calculation unit

Branch metric
calculation unit

Time frame tb

Backward state metric
calculation unit 1

Backward state metric
calculation unit 2

Backward state metric
calculation unit 3

Backward state metric
calculation unit 4

Decoder output
hard decision unit

compared to the previous scheme due to the employment of
the reduced block size.

2. Proposed Pipelined Architecture

The block-wise MAP decoding algorithm can induce a
larger latency for obtaining state metrics. To reduce the
latency, another backward state metric processor is required
for the training. Moreover, a conventional pipelined structure
cannot be applied to the state metric processor due to the
recursion structure of the state metric processor [6]. The
proposed block-wise MAP decoding algorithm requires µ+2
state metric processors for the calculation of state metrics in
parallel. We propose a (µ+2)-stage pipelined metric
processor architecture for the block-wise MAP decoder for
maximal hardware utilization [10]. We first examined the
delay of a state metric processor and selected points where
the delay for each stage can be evenly distributed. The

620 Sik Kim et al. ETRI Journal, Volume 26, Number 6, December 2004

BM

SM

BM

SM

Fig. 9. The proposed metric processor structure with µ=3.

Branch
metric

State
metric

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Previous
state metric

Extrinsic info.
processor

State metric
memory

b

a fc (a,b)

),x(âm ba

max (a,b)Trellis
MUX

Initial state
controller

+

+
―

ABS LUT

+ Normalization
MUX

proposed architecture assigns a different metric calculation
to each stage, as shown in Fig. 8. The proposed state metric
processor performs a time-shared operation to ensure the
proper metric calculation.

Figure 9 shows the proposed pipelined state metric processor
architecture, which consists of three adders, one subtracter, one
comparator, one selection MUX, one trellis MUX, and glue
logics. Since the add-compare select operations are more
complex than trellis MUX or the normalization block, it is
divided into three pipeline stages in the proposed architecture,
where µ = 3. Hence, the proposed pipelined architecture has
five stages operating in a pipelined fashion.

IV. Experimental Results

The proposed decoder has been implemented in C language
running on UNIX. The proposed block-wise MAP decoding
algorithm has been simulated with the training size set to 24.
The performance has been measured for various block size
values. The block size is set to 1/ µ of the training size. Table 1
shows the memory requirement to store the branch and state
metrics. The memory requirement for the branch and state

Table 1. Memory requirement for state and branch metrics.

Memory requirement
µ

State metric Branch metric Total
Percent

reduction

Previous
work [4] 1,536 6,144 7680.0 -

2 768 4,608 5376.0 30 %

3 512 4,096 4608.0 40 %

4 384 3,840 4224.0 45 %

metrics with µ = 2, 3, and 4 is reduced by 30%, 40%, and 45%,
respectively, when compared to the previous block-wise log-
MAP decoder [4].

Table 2 represents a synthesized memory area for various
MAP decoders. Hynix 0.35 µm technology library has been
used for the synthesis. Due to the large memory requirement
for interleaving and de-interleaving, the overall memory area
is reduced by 5.27%, 6.62%, and 7.29% with µ = 2, 3, and 4,
respectively.

Table 2. Synthesized memory area in gate count.

Area reduction
µ Memory area*

Gate count %

Previous work [4] 135,627.4 - -

2 128,474.8 7,152.6 5.27%

3 126,650.6 8,976.8 6.62%

4 125,739.2 9,888.2 7.29%

 * A 2-input NAND gate is counted as 1 gate.

V. Conclusion

Based on the simulation results, which show that a
satisfactory BER performance can be achieved when the
training size is sufficient, this paper proposes a new decoding
structure employing the block size that is set to a fraction of the
training size. In the proposed MAP decoder structure, the
memory area has been reduced by 5.27%, 6.62%, 7.29% with
µ = 2, 3, and 4, respectively, when compared to previous
architecture where the training size is the same as the block size.
Still, it has a comparable BER performance.

ETRI Journal, Volume 26, Number 6, December 2004 Sik Kim et al. 621

References

[1] C. Shannon, “A Mathematical Theory of Information,” Bell
System Technical J., vol. 27, July 1948, pp. 379-423.

[2] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon
Limit Error-Correcting Coding and Decoding: Turbo-Codes(1),”
Proc. ICC’93, Geneva, Switzerland, May 1993, pp. 1064-1070.

[3] J.P. Woodard and L. Hanzo, “Comparative Study of Turbo
Decoding Techniques: An Overview,” IEEE Trans. on Vehicular
Technology, vol. 49, no. 6, Nov. 2000, pp. 2208-2238.

[4] S. Barbulescu and S. Pietrobon, “Turbo Codes: A Tutorial on a
New Class of Powerful Error Correcting Coding Schemes, Part 2:
Decoder Design and Performance,” IEEE J. of Electrical and
Electronics Eng., vol. 19, no. 3, Sept. 1999, pp. 143-152.

[5] A. Viterbi, “An Intuitive Justification and a Simplified
Implementation of the MAP Decoder for Convolutional Codes,”
IEEE J. on Selected Areas in Comm., vol. 16, no. 2, Feb. 1998, pp.
260-264.

[6] G. Park, S. Yoon, I. Jin, and C. Kang, “A Block-wise MAP
Decoder Using a Probability Ratio for Branch Metric,” Proc.
VTC’99, Amsterdam, Netherlands, Sept. 1999, pp. 1610-1614.

[7] S. Donilar and D. Divsalar, “Weight Distributions for Turbo
Codes Using Random and Non-Random Interleaving,” JPL TDA
Progress Report, 42-122, 1995, pp. 56-65.

[8] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal Decoding of
Linear Codes for Minimizing Symbol Error Rate,” Proc. IEEE Int.
Symp. Inform. Theory, Asilomar, CA, May 1972, pp. 90.

[9] P. Robertson, E. Villebrun, and P. Hoeher, “A Comparison of
Optimal and Sub-optimal MAP Decoding Algorithms Operating
in the Log Domain,” Proc. ICC’95, Seattle, Washington, June
1995, pp. 1009-1013.

[10] Z. Wang, H. Suzuki, and K. Parhi, “VLSI Implementation Issues
of Turbo Decoder Design for Wireless Applications,” Proc. IEEE
Workshop on Signal Processing Systems, Taipei, Taiwan, Oct.
1999, pp. 503-512.

Sik Kim received the BS, MS and PhD degree
in electronic engineering from Sogang
University, Seoul, Korea, in 1994, 1996 and
2003, respectively. In 2003, he joined System
LSI Division of Samsung Electronics
Corporation as a senior engineer. His current
research interest includes HW/SW codesign, C-

based design methodology and system level low power design for SoC
design.

Sun-Young Hwang received the BS degree in
electronic engineering from Seoul National
University in 1976, the MS degree from KAIS
(Korea Advanced Institute of Science), Seoul,
Korea, in 1978, and the PhD degree in electrical
engineering from Stanford University, California,
CA, in 1986. Since 1986, he has been with the

Center for Integrated Systems at Stanford University as a research
associate, working on design of a high-level synthesis and simulation
system. In 1978, he joined Samsung Semiconductor Inc., Korea, where
he designed several CMOS VLSI chips and managed MOS VLSI
design section. In 1986 and 1987, he held a consulting position at Palo
Alto Research Center of Fairchild Semiconductor Corporation. Since
1989, he has been with the Department of Electronic Engineering at
Sogang University, Seoul, Korea, and is currently a Professor. His current
research interests include SoC design and SoC design methodology,
DSP/embedded systems design.

Moon Jun Kang received the BS and MS
degree in electronic engineering from Sogang
University, Seoul, Korea, in 2000 and 2002
respectively. In 2002, he joined Pinetron
Corporation as a Senior Engineer. His current
research interest includes embedded system
design, image processing VLSI system design,

and system level low power design for SoC design.

