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Next generation mobile communication system, such as 
IMT-2000, adopts Turbo codes due to their powerful error 
correction capability. This paper presents a block-wise 
maximum a posteriori (MAP) Turbo decoding structure 
with a low memory requirement. During this research, it 
has been observed that the training size and block size 
determine the amount of required memory and bit-error 
rate (BER) performance of the block-wise MAP decoder, 
and that comparable BER performance can be obtained 
with much shorter blocks when the training size is 
sufficient. Based on this observation, a new decoding 
structure is proposed and presented in this paper. The 
proposed block-wise decoder employs a decoding scheme 
for reducing the memory requirement by setting the 
training size to be N times the block size. The memory 
requirement for storing the branch and state metrics can 
be reduced 30% to 45%, and synthesis results show that 
the overall  memory area can be reduced by 5.27% to 
7.29%, when compared to previous MAP decoders. The 
decoder throughput can be maintained in the proposed 
scheme without degrading the BER performance. 
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I. Introduction 

Since Shannon announced the channel limit theorem in 1948, 
numerous channel codes for various applications have been 
developed [1]. Even though most of them failed to reach the 
Shannon limit, the Turbo code, proposed by Berrou in 1993, 
shows error correcting performance close to the Shannon limit 
[2]. However, the Turbo code has been used in a limited 
number of applications where real-time processing is not 
required, such as satellite communications, due to its hardware 
complexity and decoding delay. Since then, a great deal of  
research effort has been taken to improve the performance of 
the Turbo code. As a result, the Turbo code has been adopted in 
the IMT-2000 system for high data rate transmission. 

A Turbo encoder has a simple architecture, generating parity 
information together with input data by two constituent 
encoders. Each of the two encoders encodes the input data and 
scrambles input data through an interleaver. A Turbo decoder 
performs iterative decoding to enhance the error correction 
capability. A Turbo decoder consists of two soft input/soft 
output (SISO) decoders, each of which takes a-priori 
information computed from the other SISO decoder as an input 
for iterative decoding [3]. Two SISO decoding algorithms have 
been popularly used: soft output Viterbi algorithm (SOVA) and 
maximum a posteriori (MAP) algorithm. Even though the 
decoder realizing the MAP algorithm is four times as complex 
as that for the SOVA, it shows that the BER performance is 
twice as high as that of SOVA [4]. Due to recent progress in 
fabrication and circuit design technology, the BER 
performance becomes more of a concern than hardware 
complexity. Accordingly, the MAP algorithm is preferred to the 
SOVA. A log-MAP decoding algorithm has been proposed to 
reduce computation complexity of the MAP algorithm, and the 
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block-wise MAP decoding algorithm has been proposed to 
reduce memory usage, which is known to be proportional to 
the frame length [5], [6]. 

The block-wise MAP decoding algorithm requires less 
memory than the original MAP decoding algorithm. However, 
it requires a training process determining the initial backward 
state metric to avoid the BER performance degradation caused 
by backward state metric discontinuity [5]. In the MAP 
algorithm, training size as well as block size affects the BER 
performance. The previous block-wise MAP decoding 
algorithm uses the same training size as the block size for 
higher hardware utilization [6]. In this research, it has been 
found that the BER performance could be maintained with 
shorter blocks when the training size is sufficiently large 
enough. This paper proposes an efficient decoding scheme 
where the block size is set to 1/n of the training size. For the 
efficient implementation of the proposed scheme, a pipelined 
architecture is also proposed. 

II. Turbo Code and MAP Algorithm 

This section presents a brief description on the structure of 
the Turbo code and the MAP algorithm.  

Figure 1 shows an overall structure of the Turbo encoder 
having a 1/2 coding ratio. It consists of two encoders, one of 
which encodes the input bit sequence while the other encodes 
the bit sequence obtained by interleaving the input bit sequence. 
Input bit sequence Dk is directly output together with encoded 
bit sequence Yk. At time k, encoder 1 produces encoded output 
sequence Yk

1 using input sequence Dk, and encoder 2 produces 
output sequence Yk

2 by encoding Di, which is obtained by 
interleaving the input bit sequence Dk. To construct a half-code 
rate, Yk could be generated using a puncturing method between 
Yk

1 and Yk
2 [2]. 

Constituent encoders employ the recursive systematic 
convolutional code. The outputs of the systematic 
convolutional code consist of the original input data and 
encoded bit sequence Yk. It is well known that the BER  
 

 

Fig. 1. The overall structure of the Turbo encoder. 
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performance of the systematic convolutional code is better than 
that of the non-systematic convolutional code in low signal-
to-noise ratio (SNR) channel environments [2]. The Turbo 
code also shows a remarkable BER performance because 
the recursive systematic convolutional code has an infinite 
impulse response [7]. 

Figure 2 shows the overall structure of the Turbo decoder. 
The two constituent SISO decoders (DECs) perform the 
backward process of the two encoders in the Turbo encoder. 
The interleaver and de-interleaver reassemble the information 
bit sequence, and the hard decision block determines and 
generates the decoded bit sequence. This architecture has a 
recursive structure for iterative decoding [1], [3], [4]. Decoder 
input bit sequences xk and yk, consisting of y1

k and y2
k, may 

include channel error. SISO DEC1 uses xk, y1
k and a priori 

information La1(dk) as input. In the initial decoding, La1(dk) is 
set to ‘0’ because there exists no a posteriori probability value. 
After that, La1(dk) is supplied from extrinsic information of 
the SISO DEC2 output. Then, SISO DEC1 output Le1(dk) is 
reassembled by interleaver and fed to SISO DEC2 together 
with y2

k. After SISO DEC2 output L2(dn) is reassembled to 
form L2(dk) by the de-interleaver, the hard decision block 
generates kd̂ . SISO DEC2 output Le2(dn) is reassembled by 
de-interleaver and fed to SISO DEC1 for iterative decoding. 
 

 

Fig. 2. The overall structure of the Turbo decoder. 
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1. MAP Decoding Algorithm  

Bahl proposed the MAP algorithm [8]. Though the design 
complexity of MAP decoder is four times as complex as that of 
the SOVA decoder, researches have been performed to 
implement the MAP decoder because the BER performance of 
the MAP algorithm is twice as high as that of SOVA. The input 
sequence consisting of information bits xk and parity bits yk 
may include additive white Gaussian noise at time k. The MAP 
decoder output, the log-likelihood ratio of information bits dk, 
can be derived from (1) and (2) using Bahl’s MAP decoding 
algorithm, 
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The decoding process is as follows: Branch metric δk
i,m and for 

ward state metrics αk
m are calculated from the input frame. Then, 

the backward state metrics βk
m and the log-likelihood ratio of dk 

(output of MAP decoder) are computed by using δk
i,m and αk

m. 

2. MAP Decoder Implementation 

In most MAP decoders, the log-MAP decoding algorithm has 
been used to reduce the computation complexity of the MAP 
decoding algorithm by computing the metrics in the log domain 
[9]. This algorithm requires memory proportional to the frame 
size for storing the branch metrics and the forward state metrics 
[3], [7], [10]. The block-wise MAP decoding algorithm has been 
proposed to reduce the memory requirement in the log-MAP 
decoding algorithm. It has been shown that the block-wise log-
MAP decoding algorithm can be implemented in a smaller area. 
Figure 3 shows the block-wise MAP decoding scheme. In this 
scheme, a data frame is divided into M sub-blocks with size L, 
and each block is fed to the MAP decoder one by one. In this 
way, memory requirement is reduced [5], [6]. 
 

 

Fig. 3. The block-wise MAP decoding process. 
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In the block-wise MAP decoding algorithm, forward and 
backward state metrics need to be computed for each block. 
When the block MAP decoding is processed forward from block 
0 to block M-1, the initial forward state metric of each block can 
be obtained from the last forward state metric of the previous 
block. The initial backward state metrics cannot be obtained 
from the previous block, unlike the initial forward state metrics, 
because the calculation sequence of backward state metrics is 
opposite to that of the block processing. This induces the 
reliability problem in the backward state metrics, which in turn 
degrades the BER performance. To avoid the BER performance 
degradation, a training process is introduced. The training 
process determines the reliable initial backward state metrics by 
calculating the backward state metrics in the next block without 
storing their values in the memory. For successive decoding, a 
parallel invocation of backward state metric calculation process 
and the training process is required using two processors [5], [6]. 

Figure 4 shows the timing diagram of the decoding process for 
a sequence of data blocks. The numbers within the arrows 
represent the block numbers. This figure shows the process of 
calculating the branch metrics and the forward and backward 
state metrics. For example, the branch metrics for data block #1 
is calculated at time frame 1. The branch metrics for data block 
#2 and the forward state metrics for data block #0 are calculated 
at time frame 2. At the same time, the training process, marked 
as a shadowed arrow, is performed for data block #1 to get an 
initial metric for the backward state metrics of data block #0.  

For continuous decoding, the memory capacity for storing 
the branch metric for four blocks is required. In this scheme, 
memory usage can be significantly reduced. However, it 
requires several state metric processors to compute several state 
metrics, simultaneously. To overcome this problem, a pipelined 
architecture for calculating state metrics is presented in this 
paper [6]. 
 

 

Fig. 4. Timing diagram of the decoding process of block-wise 
MAP decoder. 
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3. Block-wise MAP Decoder Parameters 

The block size and the training size of the block-wise MAP 
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decoder determine the amount of the required memory and 
BER performance. Figure 5(a) shows the BER performance 
versus the training size under variable SNRs. As the training 
size increases, the BER becomes smaller, getting closer to log-
MAP values. As the training size decreases, the BER becomes 
larger, resulting in poor performance. This is due to the fact that 
reliable initial backward state metrics cannot be obtained from 
shorter training sizes. Figure 5(b) shows the BER performance 
versus training size under several channel conditions where the 
SNR = 0.6, 0.8, 1.4, 1.8 and 2.2 dB. Note that the BER 
performance does not change with training sizes larger than 16 
(at SNR = 2.2 dB) and larger than 10 (at SNR = 1.0 dB). This 
means that, when the training size is sufficiently large, the BER 
performance is not affected. The right-most log index of 
Fig. 5(b) shows the limit of the BER of the block-wise MAP 
decoding algorithm. From these observations, training size of 
 

 

Fig. 5. Decoder performance of the block-wise MAP decoding
algorithm. (constraint length = 3): (a) BER versus training
size with SNRs and (b) BER versus training with the 
channel. 
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five times the constraint size is considered to be sufficient. 
The training process determines the initial backward state 

metrics. When the block size is large enough, the backward 
state metrics become reliable as the decoding process continues 
regardless of the initial error. When the training size is not large 
enough, the initial backward state metrics are not reliable and 
the BER performance is degraded. 

Figure 6(a) shows the BER performance with various values 
of the block size and training size. When the training size is set 
to 4, the BER performance heavily depends on the block size. 
When the training size is 16, the BER performance shows little 
differences with different values of block size. In other words, 
with sufficient training size, the BER performance is not 
affected by the block size. Figure 6(b) shows the BER 
differences when the block sizes are set to 4 and 16 with 
different values of the training size. When the training size is 
below 16, the difference of the BER performance is 
remarkable. In other words, when the training size is sufficient, 
the BER performance is not affected by the block size. 

 

 

Fig. 6. Decoder performance of the block-wise MAP decoding 
algorithm (constraint length = 3): (a) BER versus variable 
block size and training size and (b) BER versus block size 
with training sizes set to 4 and 16. 
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Fig. 7. Proposed block-wise MAP decoding scheme where the block size is set to 1/µ of the training size. 
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III. Proposed Block-wise MAP Decoder 

1. Proposed Block-wise MAP Decoding Algorithm 

Previous block-wise MAP decoders have the training size 
equal to the block size. However, when the training size is large 
enough, high BER performance can be achieved even with a 
small block size. A small block size implies less memory 
requirement. This paper proposes a new scheme where the 
block size is only a fraction of the training size. Figure 7 shows 
the proposed block-wise MAP decoding scheme where the 
block size is set to 1/µ of the training size. The training blocks 
are divided into µ sub-blocks, and the proposed decoding 
scheme performs the training process sequentially using µ 
backward state metric processors. In this case, µ +2 state metric 
processors are required for calculating the forward and 
backward state metrics. 

Figure 8 shows the sequence of computation of all the metrics 
and the log-likelihood ratio in the proposed scheme with µ =3. The 
state metric processor of the block-wise MAP decoder consists 
of one forward state metric processor and four backward state 
metric processors. When the backward state metrics is computed, 
three backward state metric processors perform the training 
process to calculate the initial backward state metrics to be used 
at the next time frame. That is, the initial backward state metrics 
is obtained through three continuous training processes. The 
backward state metric calculating process and three training 
processes use the initial values obtained from the training process 
for the next blocks. There is no need to store the backward state 
metric in the training process, which makes it possible to have a 
continuous decoding process. 

The proposed scheme requires memory for storing the 
forward state metric and the branch metrics. However, the 
memory requirement in the proposed scheme is reduced when 

 

Fig. 8. Timing diagram of the proposed decoding scheme where 
the block size is set to 1/3 of the training size. 
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compared to the previous scheme due to the employment of 
the reduced block size. 

2. Proposed Pipelined Architecture 

The block-wise MAP decoding algorithm can induce a 
larger latency for obtaining state metrics. To reduce the 
latency, another backward state metric processor is required 
for the training. Moreover, a conventional pipelined structure 
cannot be applied to the state metric processor due to the 
recursion structure of the state metric processor [6]. The 
proposed block-wise MAP decoding algorithm requires µ+2 
state metric processors for the calculation of state metrics in 
parallel. We propose a (µ+2)-stage pipelined metric 
processor architecture for the block-wise MAP decoder for 
maximal hardware utilization [10]. We first examined the 
delay of a state metric processor and selected points where 
the delay for each stage can be evenly distributed. The 
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proposed architecture assigns a different metric calculation 
to each stage, as shown in Fig. 8. The proposed state metric 
processor performs a time-shared operation to ensure the 
proper metric calculation. 

Figure 9 shows the proposed pipelined state metric processor 
architecture, which consists of three adders, one subtracter, one 
comparator, one selection MUX, one trellis MUX, and glue 
logics. Since the add-compare select operations are more 
complex than trellis MUX or the normalization block, it is 
divided into three pipeline stages in the proposed architecture, 
where µ = 3. Hence, the proposed pipelined architecture has 
five stages operating in a pipelined fashion.  

IV. Experimental Results 

The proposed decoder has been implemented in C language 
running on UNIX. The proposed block-wise MAP decoding 
algorithm has been simulated with the training size set to 24. 
The performance has been measured for various block size 
values. The block size is set to 1/ µ of the training size. Table 1 
shows the memory requirement to store the branch and state 
metrics. The memory requirement for the branch and state  
 

Table 1. Memory requirement for state and branch metrics. 

Memory requirement 
µ 

State metric Branch metric Total 
Percent

reduction

Previous 
work [4] 1,536 6,144 7680.0 - 

2 768 4,608 5376.0 30 % 

3 512 4,096 4608.0 40 % 

4 384 3,840 4224.0 45 % 

 

metrics with µ = 2, 3, and 4 is reduced by 30%, 40%, and 45%, 
respectively, when compared to the previous block-wise log-
MAP decoder [4]. 

Table 2 represents a synthesized memory area for various 
MAP decoders. Hynix 0.35 µm technology library has been 
used for the synthesis. Due to the large memory requirement 
for interleaving and de-interleaving, the overall memory area 
is reduced by 5.27%, 6.62%, and 7.29% with µ = 2, 3, and 4, 
respectively. 
 

Table 2. Synthesized memory area in gate count. 

Area reduction 
µ Memory area* 

Gate count % 

Previous work [4] 135,627.4 - - 

2 128,474.8 7,152.6 5.27% 

3 126,650.6 8,976.8 6.62% 

4 125,739.2 9,888.2 7.29% 

 * A 2-input NAND gate is counted as 1 gate. 

 
V. Conclusion 

Based on the simulation results, which show that a 
satisfactory BER performance can be achieved when the 
training size is sufficient, this paper proposes a new decoding 
structure employing the block size that is set to a fraction of the 
training size. In the proposed MAP decoder structure, the 
memory area has been reduced by 5.27%, 6.62%, 7.29% with 
µ = 2, 3, and 4, respectively, when compared to previous 
architecture where the training size is the same as the block size. 
Still, it has a comparable BER performance. 
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