• 제목/요약/키워드: equations of motion

검색결과 2,308건 처리시간 0.031초

중첩 격자계를 이용한 물체운동의 수치 시뮬레이션 (Numerical Simulation of Body Motion Using a Composite Grid System)

  • 박종천;전호환;송기종
    • 대한조선학회논문집
    • /
    • 제40권5호
    • /
    • pp.36-42
    • /
    • 2003
  • A CFD simulation technique has been developed to handle the unsteady body motion with large amplitude by use of overlapping multi-block grid system. The three-dimensional, viscous and incompressible flow around body is investigated by solving the Navier-Stokes equations, and the motion of body is represented by moving effect of the grid system. Composite grid system is employed in order to deal with both the body motion with large amplitude and the condition of numerical wave maker in convenience at the same time. The governing equations, Navier-Stokes (N-S) and continuity equations, are discretized by a finite volume method, in the framework of an O-H type boundary-fitted grid system (inner grid system including test model) and a rectangular grid system (outer grid system including simulation equipments for generation of wave environments). If this study, several flow configurations, such as an oscillating cylinder with large KC number, are studied in order to predict and evaluate the hydrodynamic forces. Furthermore, the motion simulation of a Series 60 model advancing in a uniform flow under the condition of enforced roll motion of angle 20$^{\circ}$ is performed in the developed numerical wave tank.

지구 중력장 내에서 성립하는 운동 상태 방정식의 해를 구하기 위한 벡터의 스칼라 프로덕트 응용 (Application of Vector Scalar Product to Solve the Kinematic Equations in the Earth's Gravitational Field)

  • 엄기홍
    • 한국인터넷방송통신학회논문지
    • /
    • 제17권6호
    • /
    • pp.217-222
    • /
    • 2017
  • 지구 중력장 내에 위치한 물체는 연직 아래 방향의 힘을 받고 있다. 중력장 내에서 물체의 운동을 기술하기 위하여 운동상태 방정식을 이용한다. 자유 낙하하는 물체를 해석할 때 기준 방향은 연직 하방을 +y으로, 연직위로 던져 올린 물체를 해석할 때 기준방향은 연직상방을 +y으로, 연직 아래로 던져 내린 물체를 해석할 때, 기준 방향은 연직 하방을 +y으로 선택하여 해석함이 일반적이다. 이 논문에서는 두 벡터의 스칼라 곱 (즉, 도트 곱)을 이용하여 연직 상방 또는 하방 두 경우를 방향으로 선택하여 구성한 벡터 운동 상태 방정식(vector kinematics equations)을 해석의 결과가 서로 일치함을 제시한다. 두 벡터의 스칼라 곱 (즉, 도트 곱)을 이용하여 물체의 상태 방정식를 해석한 예는 선행 연구에서 거의 찾아볼 수가 없다. 이 결과를 이용하면, 수평면의 방향 또는 빗각을 이루는 방향의 초속도로 던져 올리거나 던져 내린 물체의 운동 상태를 해석하기 위하여 연직 기준 방향을 상방 또는 하방으로 임의 선택할 수가 있다.

다물체계 동역학의 위상 관계 모델링 기법을 적용한 해상 크레인의 리프팅 시뮬레이션 (Topological Modeling Approach of Multibody System Dynamics for Lifting Simulation of Floating Crane)

  • 함승호;차주환;이규열
    • 한국CDE학회논문집
    • /
    • 제14권4호
    • /
    • pp.261-270
    • /
    • 2009
  • We can save a lot of efforts and time to perform various kinds of multibody system dynamics simulations if the equations of motion of the multibody system can be formulated automatically. In general, the equations of motion are formulated based on Newton's $2^{nd}$law. And they can be transformed into the equations composed of independent variables by using velocity transformation matrix. In this paper the velocity transformation matrix is derived based on a topological modeling approach which considers the topology and the joint property of the multibody system. This approach is, then, used to formulate the equations of motion automatically and to implement a multibody system dynamics simulation program. To verify the the efficiency and convenience of the program, it is applied to the lifting simulation of a floating crane.

Instability of pipes and cables in non-homogeneous cross-flow

  • Riera, Jorge D.;Brito, J.L.V.
    • Wind and Structures
    • /
    • 제1권1호
    • /
    • pp.59-66
    • /
    • 1998
  • The vibrations of bodies subjected to fluid flow can cause modifications in the flow conditions, giving rise to interaction forces that depend primarily on displacements and velocities of the body in question. In this paper the linearized equations of motion for bodies of arbitrary prismatic or cylindrical cross-section in two-dimensional cross-flow are presented, considering the three degrees of freedom of the body cross-section. By restraining the rotational motion, equations applicable to circular tubes, pipes or cables are obtained. These equations can be used to determine stability limits for such structural systems when subjected to non uniform cross-flow, or to evaluate, under the quasi static assumption, their response to vortex or turbulent excitation. As a simple illustration, the stability of a pipe subjected to a bidimensional flow in the direction normal to the pipe axis is examined. It is shown that the approach is extremely powerful, allowing the evaluation of fluid-structure interaction in unidimensional structural systems, such as straight or curved pipes, cables, etc, by means of either a combined experimental-numerical scheme or through purely numerical methods.

회전기계의 진동저감을 위한 자동볼평형장치 (Automatic Ball Balancer for Vibration Reduction of Rotating Machines)

  • 정진태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.59-68
    • /
    • 2005
  • In this study, we establish a theory for dynamic behaviors of an automatic ball balancer, analyze its dynamic characteristics, and provide its design guide line. Equations of motion are derived by using the polar coordinate system instead of the rectangular coordinate system which was previously used in other researches. After non-dimensionalization of the equations, the perturbation method is applied to locate the equilibrium positions and to obtain the linearized equations of motion around the equilibrium positions. The Eigenvalue problem is used to verify the dynamic stability around the equilibrium positions. On the other hand, the time responses are computed from the nonlinear equations of motion by using a time integration method.

  • PDF

시간적분형 운동방정식에 근거한 동점탄성 문제의 응력해석 (Transient Linear Viscoelastic Stress Analysis Based on the Equations of Motion in Time Integral)

  • 이성희;심우진
    • 대한기계학회논문집A
    • /
    • 제27권9호
    • /
    • pp.1579-1588
    • /
    • 2003
  • In this paper, the finite element equations for the transient linear viscoelastic stress analysis are presented in time domain, whose variational formulation is derived by using the Galerkin's method based on the equations of motion in time integral. Since the inertia terms are not included in the variational formulation, the time integration schemes such as the Newmark's method widely used in the classical dynamic analysis based on the equations of motion in time differential are not required in the development of that formulation, resulting in a computationally simple and stable numerical algorithm. The viscoelastic material is assumed to behave as a standard linear solid in shear and an elastic solid in dilatation. To show the validity of the presented method, two numerical examples are solved nuder plane strain and plane stress conditions and good results are obtained.

자동 볼 평형장치의 진동 해석 (Vibration Analysis of an Automatic Ball Balancer)

  • 박준민;노대성;정진태
    • 소음진동
    • /
    • 제9권2호
    • /
    • pp.363-370
    • /
    • 1999
  • In this study, we establish a theory for dynamic behaviors of an automatic ball balancer, analyze its dynamic characteristics, and provide its design guide line. Equations of motion are derived by using the polar coordinate system instead of the rectangular coordinate system which was previously used in other researches. After nondimensionalization of the equations, the perturbation method is applied to locate the equilibrium positions and to obtain the linearized equations of motion around the equilibrium positions. The Eigenvalue problem is used to verify the dynamic stability around the equilibrium positions. On the other hand, the time responses are computed from the nonlinear equations of motion by using a time integration method.

  • PDF

Modal Analysis of Constrained Multibody Systems Undergoing Constant Accelerated Motions

  • Park, Dong-Hwan;Yoo, Hong-Hee
    • Journal of Mechanical Science and Technology
    • /
    • 제18권7호
    • /
    • pp.1086-1093
    • /
    • 2004
  • The modal characteristics of constrained multibody systems undergoing constant accelerated motions are investigated in this paper. Relative coordinates are employed to derive the equations of motion, which are generally nonlinear in terms of the coordinates. The dynamic equilibrium position of a constrained multibody system needs to be obtained from the nonlinear equations of motion, which are then linearized at the dynamic equilibrium position. The mass and the stiffness matrices for the modal analysis can be obtained from the linearized equations of motion. To verify the effectiveness and the accuracy of the proposed method, two numerical examples are solved and the results obtained by using the proposed method are compared with those obtained by analytical and other numerical methods. The proposed method is found to be accurate as well as effective in predicting the modal characteristics of constrained multibody systems undergoing constant accelerated motions.

유체를 이송하는 양단 고정된 반원관의 면내/면외 진동 특성 (Vibration Characteristics of a Semi-circular Pipe Conveying Fluid with Both Ends Clamped)

  • 정두한;정진태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.252-257
    • /
    • 2004
  • Free vibration of a semi-circular pipe conveying fluid is analyzed when the pipe is clamped at both ends. To consider the geometric non-linearity, this study adopts the Lagrange strain theory and the extensibility of the pipe. By using the extended Hamilton principle, the non-linear partial differential equations are derived, which are coupled to the in-plane and out-of\ulcornerplant: motions. To investigate the vibration characteristics of the system, the discretized equations of motion are derived from the Galerkin method. The natural frequencies are computed from the linearized equations of motion in the neighborhood of the equilibrium position. From the results. the natural frequencies for the in-plane and out-of-plane motions are vary with the flow velocity. However, no instability occurs the semi-circular pipe with both ends clamped, when taking into account the geometric non-linearity explained by the Lagrange strain theory.

  • PDF

임의의 자세를 갖는 외팔평판의 진동해석 (Vibration Analysis of Rotating Cantilever Plates with Arbitrary Orientation Angle)

  • 김성균;유홍희
    • 대한기계학회논문집A
    • /
    • 제27권8호
    • /
    • pp.1331-1337
    • /
    • 2003
  • Linearized equations of motion for the vibration analysis of rotating cantilever plates with arbitrary orientation angle are derived in the present work. Two in-plane stretch variables are introduced to be approximated. The use of the two in-plane stretch variables enables one to derive the equations of motion which include proper motion-induced stiffness variation terms. The equations of motion are transformed into dimensionless forms in which dimensionless parameters are identified. The effects of the dimensionless parameters on the modal characteristics of rotating cantilever plates are investigated through numerical study. The natural frequency loci veering along with the associated mode shape variations, which occur while the rotating speed increases, are also presented and discussed.