Topological Modeling Approach of Multibody System Dynamics for Lifting Simulation of Floating Crane

다물체계 동역학의 위상 관계 모델링 기법을 적용한 해상 크레인의 리프팅 시뮬레이션

  • 함승호 (대우조선해양 선박해양연구소) ;
  • 차주환 (서울대학교 공학연구소) ;
  • 이규열 (서울대학교 조선해양공학과 및 해양시스템 공학연구소)
  • Published : 2009.08.31

Abstract

We can save a lot of efforts and time to perform various kinds of multibody system dynamics simulations if the equations of motion of the multibody system can be formulated automatically. In general, the equations of motion are formulated based on Newton's $2^{nd}$law. And they can be transformed into the equations composed of independent variables by using velocity transformation matrix. In this paper the velocity transformation matrix is derived based on a topological modeling approach which considers the topology and the joint property of the multibody system. This approach is, then, used to formulate the equations of motion automatically and to implement a multibody system dynamics simulation program. To verify the the efficiency and convenience of the program, it is applied to the lifting simulation of a floating crane.

Keywords

References

  1. Cuadrado, Javier, Dopico, Daniel, 'A Hybrid Global Topological Real-time Formulation for Multibody Systems', ASME 2003 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 1-7, 2003
  2. Haug, E. J. and McCullough, M., 'A Variational Vector Calculus Approach to Machine Dynamics', Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 108, pp. 25-30, 1986 https://doi.org/10.1115/1.3260779
  3. Kim, S. S. and Vanderploeg, M. J., 'A General and Efficient Method for Dynamic Analysis of Mechanical Systems using Velocity Transformations', Transaction of the ASME, 1986
  4. Rodriguez, Jose Ignacio, de Jalon, and Javier Garcia, 'Recursive and Residual Algorithms for the Efficient Numerical Integration of Multi-Body Systems', Multibody System Dynamics, Vol. 11, pp. 295-320, 2004 https://doi.org/10.1023/B:MUBO.0000040798.77064.bc
  5. Cuadrado, J., Dpocp, D., Gonzalez, M. and Naya, M. A., 'A Combined Penalty and Recursive RealTime Formulation for Multibody Dynamics', Transaction of the ASME, Vol. 126, pp. 602-608, 2004 https://doi.org/10.1115/1.1758257
  6. de Jalon, Garcia J., Alvarez, E., de Ribera, F. A., Rodriguez, I. and Funes, F. J., 'A Fast and Simple Semi-Recursive Formulation for Multi-Rigid-Body Systems', Advances in Computational Multibody Systems, pp. 1-23, 2005 https://doi.org/10.1007/1-4020-3393-1_1
  7. 차주환, '해상크레인으로 인양하는 대형 중량물의 비선형 동적 응답 및 이산 사건/이산 시간 시물레이션', 박사학위논문, 서울대학교, 2008
  8. 차주환, 이규열, 함승호, 노명일, 박광필, '해상크레인과 대형 중량물의 상호 작용을 고려한 탑재 시뮬레이션', 2009 한국 CAD/CAM 학회 학술발표회 논문집, pp. 654-668
  9. 차주환, 함승호, 권정한, 노명일, 이규열, 박광필, '해상크레인을 병렬로 연결하여 인항하는 대형 중량물의 동적 거동 계산 시뮬레이션', 2008년도 대한조선학회 추계학술발표회, pp. 921-930, 2008.11.13-15, 2008.11
  10. 함승호, 차주환, 이규열, 노명일, 박광필, 서흥원, '다물체간 상호 작용 및 해양파에 의한 운동 응답을 고려한 해상 크레인의 실시간 시뮬레이션', 2008년도 대한조선학회 춘계학술발표회, pp. 1669-1676, 2008
  11. 구남국, 이규열, 권정한, 차주환, 함승호, 하솔, 박광필, '해상 크레인이 인양하는 중량물의 운동 감쇠 제어 시뮬레이션 및 실험적 고찰', 2009 한국 CAD/CAM 학회 학술발표회 논문집, pp. 669-676
  12. 구남국, 차주환, 하솔, 권정한, 함승호, 이규열, 박광필, '해상크레인으로 인양하는 중량물의 거동 감쇠를 위한 Tagilne 제어 시스템', 2008년도 대한조선학회 추계학술발표회, pp. 823-830, 2008.11.13-15, 2008.11
  13. Ellermann, K., Kreuzer, E. and Markiewicz, M., 'Nonlinear Dynamics of Floating Cranes', Nonlinear Dynamics, Vol. 27, pp. 107-183, 2002 https://doi.org/10.1023/A:1014256405213
  14. Lanczos, C., 'The Variational Principles of Mechanics', Univ. of Toronto press, 1970
  15. Haug, E. J., 'Computer-Aided Kinematics and Dynamics of Mechanical Systems', Allyn and Bacon, 1989
  16. Shabana, A., 'Computational Dynamics', John Wieley & Sons, Inc., 1994
  17. de Jalon, Javier Garcia, Bayo, E., Kinematic and Dynamic Simulation of Multibody Systems - RealTime Challenge, Springer-Verlag, 1994
  18. Open Scene Graph, http://www.openscenegraph.org/
  19. Nikravesh, P. E. and Gim, G, 'Systematic Construction of the Equations of Motion for Multibody Systems Containing Closed Kinematic Loops', Journal of Mechanical Design, Vol. 115, pp. 143-149, 1989 https://doi.org/10.1115/1.2919310
  20. Bae, D. S. and Haug, E. J., 'A Recursive Formulation for Constrained Mechanical System Dynamics Part II. Closed Loop Systems', Mech. Struct. & Mach., Vol. 15, No.4, pp. 481-506, 1987-1988 https://doi.org/10.1080/08905458708905130