• 제목/요약/키워드: enzymatic production

검색결과 665건 처리시간 0.024초

효소를 이용한 광학분할 (Chiral Resolution Using Enzymes)

  • 이은교;정봉현
    • KSBB Journal
    • /
    • 제15권5호
    • /
    • pp.415-422
    • /
    • 2000
  • Enzymatic resolution is becoming increasingly important in the production of optically active pharmaceutical drugs and is now challenging the traditional synthetic methods for production of a variety of chiral intermediates and products. This article reviews the recent advances in chirotechnology using enzymes as a catalyst to resolve chiral compounds. The review focuses on the recent trends in chirotechnology and the application of enzymes to the production of industrially valuable pharmaceutical drugs.

  • PDF

Anti-inflammatory effect of enzymatic hydrolysates from Styela clava flesh tissue in lipopolysaccharide-stimulated RAW 264.7 macrophages and in vivo zebrafish model

  • Ko, Seok-Chun;Jeon, You-Jin
    • Nutrition Research and Practice
    • /
    • 제9권3호
    • /
    • pp.219-226
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: In this study, potential anti-inflammatory effect of enzymatic hydrolysates from Styela clava flesh tissue was assessed via nitric oxide (NO) production in lipopolysaccahride (LPS) induced RAW 264.7 macrophages and in vivo zebrafish model. MATERIALS/METHODS: We investigated the ability of enzymatic hydrolysates from Styela clava flesh tissue to inhibit LPS-induced expression of pro-inflammatory mediators in RAW 264.7 macrophages, and the molecular mechanism through which this inhibition occurred. In addition, we evaluated anti-inflammatory effect of enzymatic hydrolysates against a LPS-exposed in in vivo zebrafish model. RESULTS: Among the enzymatic hydrolysates, Protamex-proteolytic hydrolysate exhibited the highest NO inhibitory effect and was fractionated into three ranges of molecular weight by using ultrafiltration (UF) membranes (MWCO 5 kDa and 10 kDa). The above 10 kDa fraction down-regulated LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), thereby reducing production of NO and prostaglandin $E_2$ ($PGE_2$) in LPS-activated RAW 264.7 macrophages. The above 10 kDa fraction suppressed LPS-induced production of pro-inflammatory cytokines, including interleukin $(IL)-1{\beta}$, IL-6, and tumor necrosis factor $(TNF)-{\alpha}$. In addition, the above 10 kDa fraction inhibited LPS-induced phosphorylation of extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinase (JNK), and p38. Furthermore, NO production in live zebrafish induced by LPS was reduced by addition of the above 10 kDa fraction from S. clava enzymatic hydrolysate. CONCLUSION: The results of this study suggested that hydrolysates derived from S. clava flesh tissue would be new anti-inflammation materials in functional resources.

과일껍질을 이용한 바이오에탄올 생산 공정에서 산 가수분해 및 효소당화의 영향 (The Effect of Acid Hydrolysis and Enzymatic Saccharification in Bioethanol Production Process Using Fruit Peels)

  • 이승범;김형진
    • 공업화학
    • /
    • 제25권6호
    • /
    • pp.619-623
    • /
    • 2014
  • 산 가수분해공정과 효소당화공정을 이용하여 사과, 귤, 수박껍질로부터 셀룰로오스 에탄올을 생산하고, 그 최적조건을 결정함으로써 과일껍질을 원료로 한 바이오에너지 생산가능성을 평가하고자 하였다. 산 가수분해공정을 이용하여 과일껍질로부터 셀룰로오스 에탄올을 생산하기 위한 최적조건은 사과껍질의 경우 황산농도 20 wt%에서 90 min, 귤껍질과 수박껍질의 경우에는 각각 산 가수분해시간 60 min에서 황산의 농도가 15, 10 wt%인 것으로 나타났다. 효소당화공정을 이용하여 과일껍질로부터 셀룰로오스 에탄올을 생산할 경우 효소로는 Viscozyme이 가장 우수한 전환특성을 나타내었으며, 최적 효소당화시간은 사과껍질(180 min), 귤껍질(60 min), 수박껍질(120 min)인 것을 알 수 있었다.

창자파래로부터 환원당 생산을 위한 효소가수분해의 최적 반응조건 (Optimum Reaction Condition of Enzymatic Hydrolysis for Production of Reducing Sugar from Enteromorpha intestinalis)

  • 김아람;김동현;정귀택
    • KSBB Journal
    • /
    • 제30권2호
    • /
    • pp.53-57
    • /
    • 2015
  • In this study, the production of total reducing sugar from macro green-algae Enteromorpha intestinalis by enzymatic hydrolysis was investigated. As a result of enzymatic hydrolysis using 13 kind commercial enzymes, the highest yield of 8.75% was obtained from Viscozyme L, which is multi-enzyme complex such as cellulase, arabanase, beta-glucanase, hemicellulase and xylanase. As a control, only 0.33% and 0.27% yield were obtained from 1% sulfuric acid and 0.05 M citrate buffer (pH 4.8), respectively. In the case of enzyme mixture, the mixture of $Viscozyme^{(R)}$ L and $Cellic^{(R)}$ CTec2 (1:1) was presented the highest yield of 10.67%. Finally, the 14.99% yield was obtained at 36 hr under the condition of 10% biomass and 30% enzyme mixture.

효소 분해법에 의한 맥주효모 추출물의 제조 (Production of Brewer's Yeast Extract by Enzymatic Method)

  • 이시경;박경호;백운화;유주현
    • 한국미생물·생명공학회지
    • /
    • 제21권3호
    • /
    • pp.276-280
    • /
    • 1993
  • Cell lytic enzyme, 5'-phosphodiesterase, and AMP-deaminase were used to produce yeast extract as a natural seasoning from beer yeast cells. Prior to the addition of cell lytic enzyme, heat treatment was performed to increase the cell wall degradation` the optimum condition of the cell lytic enzyme was 50C at pH 7.0. The production yields by the enzymatic method and conventional autolysis method were 42% and 35%, respectively. The total quantity of 5'-nucleotides, GMP and IMP, produced by enzymatic method was increased by 45% than that by the conventional method. Futhermore, the operation time of enzymatic method was only 6.5 hrs, significantly reduced from 24 hrs of the conventional method.

  • PDF

목질바이오매스의 효소 당화 기술에 관한 연구 동향 (A Research Trend of Enzymatic Hydrolysis of Lignocellulosic Biomass : A Literature Review)

  • 김영숙
    • Journal of Forest and Environmental Science
    • /
    • 제26권2호
    • /
    • pp.137-148
    • /
    • 2010
  • The high costs for ethanol production with lignocellulosic biomass as a second generation energy materials currently deter commercialization of lignocellulosic biomass, especially wood biomass which is considered as the most recalcitrant material for enzymatic hydrolysis mainly due to the high lignified structure and the nature of the lignin component. Therefore, overcoming recalcitrance of lignocellulosic biomass for converting carbohydrates into sugar that can subsequently be converted into biobased fuels and biobased products is the primary technical and economic challenge for bioconversion process. This study was mainly reviewed on the research trend of the enhancement of enzymatic hydrolysis for lignocellulosic biomass after pretreatment in bioethanol production process.

Synthesis of Aesculetin and Aesculin Glycosides Using Engineered Escherichia coli Expressing Neisseria polysaccharea Amylosucrase

  • Park, Soyoon;Moon, Keumok;Park, Cheon-Seok;Jung, Dong-Hyun;Cha, Jaeho
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권4호
    • /
    • pp.566-570
    • /
    • 2018
  • Because glycosylation of aesculetin and its 6-glucoside, aesculin, enhances their biological activities and physicochemical properties, whole-cell biotransformation and enzymatic synthesis methodologies using Neisseria polysaccharea amylosucrase were compared to determine the optimal production method for glycoside derivatives. High-performance liquid chromatography analysis of reaction products revealed two glycosylated products (AGG1 and AGG2) when aesculin was used as an acceptor, and three products (AG1, AG2, and AG3) when using aesculetin. The whole-cell biotransformation production yields of the major transfer products for each acceptor (AGG1 and AG1) were 85% and 25%, respectively, compared with 68% and 14% for enzymatic synthesis. These results indicate that whole-cell biotransformation is more efficient than enzymatic synthesis for the production of glycoside derivatives.

쏙(Upogebia major) 효소가수분해물의 면역증강 효과 (Immuno-potentiating Activities of Enzymatic Hydrolysate of Japanese Mud Shrimp Upogebia major)

  • 이지현;양지은;송재희;맹상현;김소연;윤나영
    • 한국수산과학회지
    • /
    • 제51권2호
    • /
    • pp.135-141
    • /
    • 2018
  • This study investigated the immuno-potentiating activities of Japanese mud shrimp Upogebia major. We examined the effects of enzymatic hydrolysate from U. major on the production of nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) and on the expression of pro-inflammation cytokines including $TNF-{\alpha}$, IL-6 and $IL-1{\beta}$ in RAW 264.7 cells. The treatment of six enzymatic hydrolysates of U. major (alcalase, ${\alpha}$-chymotrypsin [${\alpha}-Chy$], trypsin, pepsin, neutrase, protamex) significantly increased the production of NO in RAW 264.7 cells, with ${\alpha}-Chy$ having the greatest effect. This hydrolysate was fractionated by two ultrafiltration membranes at 3 and 10 kDa to created three fractions (below 3 kDa, between 3 and 10 kDa, and above 10 kDa). Of these, the <3 kDa and >10 kDa fractions showed significant increases in NO production. These two fractions also induced $PGE_2$ production in RAW 264.7 cells and showed significant increases in the expression of all cytokines studied. These results suggest that enzymatic hydrolysate from U. major is a potentially useful food material with immune-potentiating effects.

도시 폐기물로부터 알코올 생산 (II) - 물리적, 화학적 전처리된 폐지의 효소가수분해 조건 검토 - (The Production of Alcohol from Municipal Waste(II) - The Effects of Physical or Chemical Treatment on the Enzymatic Hydrolysis of Waste Paper -)

  • 임부국;양재경;이종윤
    • Journal of the Korean Wood Science and Technology
    • /
    • 제25권1호
    • /
    • pp.65-70
    • /
    • 1997
  • The effects on the enzymatic hydrolysis of waste paper treated with physical or chemical treatment were investigated. To gain the higher saccharification rate, physical or chemical treatment are necessary in enzymatic conversion process of waste paper. The major deterrents to the effective utilization of waste paper for enzymatic conversion process are phenolic compounds, cellulose crystallinity and coating materials. In the enzymatic hydrolysis of waste paper, the deterrents through enzymatic conversion process can be eliminated by the physical or chemical treatment. This study was performed to obtain the optimal condition for enzymatic conversion process of non-treated waste paper and to review effects on enzymatic conversion process of waste paper treated with physical or chemical methods. In the aspect of saccharification rate, waste paper treated with 1.5% sodium hypochlorite was the most effective and in physical treatment methods, multi-stage treatment(autohydrolysis+refining treatment) was more effective than the other physical treatment.

  • PDF