Browse > Article
http://dx.doi.org/10.14478/ace.2014.1109

The Effect of Acid Hydrolysis and Enzymatic Saccharification in Bioethanol Production Process Using Fruit Peels  

Lee, Seung Bum (Department of Chemical Engineering, Dankook University)
Kim, Hyungjin (Department of Health & Environment, Kimpo College)
Publication Information
Applied Chemistry for Engineering / v.25, no.6, 2014 , pp. 619-623 More about this Journal
Abstract
The acid hydrolysis and enzymatic saccharification were carried out for the production of cellulosic ethanol. The possibility of bio-energy production from tangerine peel and apple and watermelon rind was evaluated by determining the optimum production condition. The optimum conditions for the production of cellulosic ethanol from fruit peel were as follows: the sulfuric acid concentration and reaction time of acid hydrolysis for the ethanol production from an apple rind were 20 wt% and 90 min, respectively. The concentration of sulfuric acid for tangerine peel and a watermelon rind at the hydrolysis time of 60 min were 15 wt% and 10 wt%, respectively. A viscozyme was proven as the best conversion for the ethanol production when using enzymatic saccharification from fruit peels. The optimum enzymatic saccharification time for tangerine peel and apple and watermelon rind were 60, 180, and 120 min, respectively.
Keywords
Acid hydrolysis; Enzymatic saccharification; Cellulosic ethanol; Viscozyme;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 J. C. Lee, J. H. Kim, H. S. Park, and D. W. Pak, Bioethanol production using batch reactor from food wastes, J. Korean Soc. Environ. Eng., 32, 609-614 (2010).
2 N. J. Lee, H. S. Kim, I. S. Cha, and J. S. Choi, A study on characteristic of the bio-ethanol produced on fruit wastes for direct ethanol fuel cell(DEFC), Trans. Kor. Hydrog. New Energy Soc., 22, 257-264 (2011).   과학기술학회마을
3 H. J. Han, H. Li, and S. J. Kim, Ethanol production by synchronous saccharification and fermentation using food wastes, Korean J. Biotechnol. Bioeng., 21, 474-478 (2006).   과학기술학회마을
4 R. Harun, W. S. Y. Jason, T. Cherrington, and M. K. Danquah, Exploring alkaline pre-treatment of microalgal biomass for bioethanol production, Appl. Energ., 88, 3464-3467 (2011).   DOI   ScienceOn
5 Y. Xue, H. Jameel, R. Phillips, and H. M. Chang, Split addition of enzymes in enzymatic hydrolysis at high solids concentration to increase sugar concentration for bioethanol production, J. Ind. Eng. Chem., 18, 707-714 (2012).   DOI
6 R. Halim, R. Harun, M. K. Danquah, and P. A. Webley, Microalgal cell disruption for biofuel development, Appl. Energ., 91, 116-121 (2012).   DOI
7 J. Y. Lee, C. Yoo, S. Y. Jun, C. Y. Ahn, and H. M. Oh, Comparison of several methods for effective lipid extraction from microalgae, Bioresour. Technol., 101, S75-S77 (2010).   DOI   ScienceOn
8 J. R. Miranda, P. C. Passarinho, and L. Gouveia, Pre-treatment optimization of scenedesmus obliquus microalga for bioethanol production, Bioresour. Technol., 104, 342-348 (2012).   DOI   ScienceOn
9 R. Harun and M. K. Danquah, Influence of acid pre-treatment on microalgal biomass for bioethanol production, Process Biochem., 46, 304-309 (2011).   DOI   ScienceOn
10 S. C. Rabelo, R. M. Filho, and A. C. Costa, Lime pretreatment of sugarcane bagasse for ethanol production, Appl. Biochem. Biotechnol., 153, 139-150 (2009).   DOI
11 B. Zhang, A. Shahbazi, and L. Wang, Alkali pretreatment and enzymatic hydrolysis of cattails from constructed wetlands, Am. J. Eng. Appl. Sci., 3, 328-332 (2010).   DOI
12 A. M. J. Kootstra, H. H. Beeftink, E. L. Scott, and J. P. M. Sanders, Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw, Biochem. Eng. J., 46, 126-131 (2009).   DOI   ScienceOn
13 H. S. Kim, N. J. Lee, K. M. Kang, J. I. Cho, I. S Cha, Y. H. Yoon, and J. S. Choi, A study on pretreated of fruit wastes for bio-ethanol production, Proceedings of Spring Conference on the Korea Society for Energy Engineering, April 29-30, Daejeon, Korea (2010).
14 J. M. Choi, S. S. Choi, and S. H. Yeom, Bioethanol production from wasted corn stalk from Gangwon province : from enzymatic hydrolysis to fermentation, Appl. Chem. Eng., 23, 326-332 (2012).
15 B. Hahn-Hagerdal, M. Galbe, M. F. Gorwa-Grauslund, G. Liden, and G. Zacchi, Bio-ethanol-the fuel of tomorrow from the residues of today, Trends Biotechnol., 24, 549-556 (2006).   DOI   ScienceOn
16 D. H. Lim, Bio-ethanol: Requirement and prospect for market expansion, KISTI Market Report, 3, 19-23 (2013).
17 A. Demirbas, Progress and recent trends in biofuels, Prog. Energ. Combust., 33, 1-18 (2007).   DOI   ScienceOn
18 B. C. Saha and M. A. Cotta, Ethanol production from alkaline peroxide pretreated enzymatically saccharified wheat straw, Biotechnol. Progr., 22, 449-453 (2006).   DOI   ScienceOn
19 S. M. Lee and J. H. Lee, Organic acid and enzyme pretreatment of Laminaria japonica for bio-ethanol production, Appl. Chem. Eng., 23, 164-168 (2012).
20 S. K. Han, H. S. Shin, S. H. Kim, and H. W. Kim, Effect of waste components on performance of acidogenic fermenter, J. KORRA, 10, 65-70 (2002).
21 S. J. Park, Y. H. Do, J. S. Choi, Y. H. Yoon, and I. S. Cha, A Study on bio-ethanol production from fruit wastes, Trans. Kor. Hydrog. New Energy Soc., 20, 142-150 (2009).   과학기술학회마을