• 제목/요약/키워드: elution yield

검색결과 47건 처리시간 0.02초

Effect of Polymer Shielding on Elution of G3PDH Bound to Dye-ligand Adsorbent

  • Ling Tau Chuan;Lyddiatt Andrew
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권1호
    • /
    • pp.84-87
    • /
    • 2006
  • Batch binding experiments were performed to assess the recovery performance of glyceraldehyde 3-phosphate dehydrogenase (G3PDH) bound to the unshielded and polymer (polyvinyl pyrrolidone. PVP)-shielded dye-ligand (Cibacron Blue 3GA) adsorbent. The adoption of a polymer-shielded, dye-ligand technique facilitated the elution efficiency of bound G3PDH. It was demonstrated that the recovery of G3PDH using polymer-shielded dye-ligand adsorption yielded higher elution efficiency, at 60.5% and a specific activity of 42.3 IU/mg, after a low ionic strength elution (0.15 M NaCl). The unshielded dye-ligand yielded lower elution efficiency. at 6.5% and a specific activity of 10.2 IU/mg.

Development of an exclusive column method for 82Sr/82Rb generator using a 100 MeV proton linear accelerator of KOMAC

  • Kye-Ryung Kim;Yeong Su Ha;Sang-Pil Yoon;Yeon-ji Lee;Yong-Sub Cho;Hyeongi Kim;Sang-Jin Han;Jung Young Kim;Kyo Chul Lee;Jin Su Kim
    • 대한방사성의약품학회지
    • /
    • 제7권2호
    • /
    • pp.119-125
    • /
    • 2021
  • 82Sr for 82Rb generator was produced through the irradiation of the proton beam on the nat.RbCI target at the target irradiation facility installed at the end of the Rl-dedicated beamline of the 100 MeV proton linear accelerator of KOMAC (Korea Multi-purpose Accelerator Complex). The average current of the proton beam was 1.2 µA for irradiation time of 150 min. For the separation and purification of the 82Sr from nat.RbCI irradiated, Chelex-100 resin was used. The activities of 82Sr in the irradiated nat.RbCI target solution and after purification were 45.29 µCi and 43.4 µCi, respectively. The separation and purification yield was 95.8%. As an adsorbent to be filled in the generator for 82Sr adsorption hydrous tin oxide was selected. The adsorption yield of 82Sr into the generator adsorbent was > 99 %, and the total amount of 82Sr adsorbed to the generator was 21.6 µCi as of the day of the 82Rb elution experiment. When the elution amount was 22 mL, the maximum82Rb elution yield was 93.3%, and the elution yield increased as the flow rate increased. After the eluted 82Rb was filled in the correction phantom of the small PET for animals, a PET image was taken. The image scan time was set to 5 min, and the phantom PET image was successfully obtained. As results of impurity analysis on eluted 82Rb using ICP-MS, nat.Rb stable isotopes that compete in vivo of 82Rb were identified as undetected levels and were determined to be No-Carrier-Added (NCA).

Evaluation of Cyst Loss in Standard Procedural Steps for Detecting of Giardia lamblia and Cryptosporidium parvum in Water

  • Kim, Kyung-Ju;Jung, Hyang-Hee;Lee, Ki-Say
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권4호
    • /
    • pp.368-371
    • /
    • 2006
  • The standard procedure outlined by the United States Environmental Protection Agency (US EPA) in Method 1623 for analyzing Giardia lamblia cysts and Cryptosporidium parvum oocysts in water samples consists of filtration, elution, centrifugal concentration, immunomagnetic separation (IMS), and immunofluorescence assay (IFA) followed by microscopic examination. In this study, the extent of (oo)cyst loss in each step of this procedure was evaluated by comparing recovery yields in segmented analyses: (i) IMS + IFA, (ii) concentration + IMS + IFA, and (iii) filtration/elution + concentration + IMS + IFA. The complete (oo)cyst recovery by the full procedure was $52{\sim}57%$. The (oo) cyst loss in the IMS step was only $0{\sim}6%$, implying that IMS is a fairly reliable method for (oo)cyst purification. Centrifugal concentration of the eluted sample and pellet collection before IMS resulted in a loss of $8{\sim}14%$ of the (oo)cysts. The largest (oo)cyst loss occurred in the elution step, with $68{\sim}71%$ of the total loss. The permeated loss of (oo)cysts was negligible during filtration of the water sample with a $1.0-{\mu}m$ pore polyethersulfone (PES) capsule. These results demonstrated that the largest fraction of (oo)cyst loss in this procedure occurred due to poor elution from the filter matrix. Improvements in the elution methodology are therefore required to enhance the overall recovery yield and the reliability of the detection of these parasitic protozoa.

Changes in Antioxidant Activity with Temperature and Time in Chrysanthemum indicum L. (Gamguk) Teas During Elution Processes in Hot Water

  • Eom, Seok-Hyon;Park, Hyung-Jae;Jin, Cheng-Wu;Kim, Dae-Ok;Seo, Dong-Wan;Jeong, Yeon-Ho;Cho, Dong-Ha
    • Food Science and Biotechnology
    • /
    • 제17권2호
    • /
    • pp.408-412
    • /
    • 2008
  • Determining the elution of water-soluble substances from herbal teas is an important factor in their efficient use in terms of taste, perfume, and content of health-related components. The antioxidant activity and content of catechins in commercial Chrysanthemum indicum (gamguk) teas were determined for optimum elution conditions. The water extract of gamguk teas did not differ significantly in yield compared to methanol extracts and showed stronger antioxidant activity. Catechin contents in gamguk teas were 8-18% of the extracts when individual peaks in high-performance liquid chromatography analysis were compared to standard catechin peaks. Gamguk teas exhibited faster release of antioxidants, and the antioxidant activity was positively correlated with the thermal treatments. Gukhwacha (GC) was the best tea for rapid release (30 sec) of antioxidants with the $50^{\circ}C$ treatment, whereas antioxidants in other teas were relatively slower released.

Effects of Ionic Speciation of Lysine on Its Adsorption and Desorption Through a Sulfone-type Ion-Exchange Column

  • Choi, Dong-Hyouk;Lee, Ki-Say
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권9호
    • /
    • pp.1527-1532
    • /
    • 2007
  • Lysine produced during microbial fermentation is usually recovered by an ion-exchange process, in which lysine is first converted to the cationic form (by lowering the pH to less than 2.0 with sulfuric acid) and then fed to a cationexchange column containing an exchanger that has a sulfone group with a weak counterion such as NH;. Ammonia water with a pH above 11 is then supplied to the column to displace the purified lysine from the column and allow its recovery. To enhance the adsorption capacity and for a possible reduction in chemical consumption, monovalent lysine fed at pH 4 was investigated in comparison with conventional divalent lysine fed at pH 1.5. The adsorption capacity increased by more than 70% on a mass basis using pH 4 feeding compared with pH 1.5 feeding. Lysine adsorbed at pH 4 started to elute earlier than that adsorbed at pH 1.5 when ammonia water was used as the eluant solution, and the extent of early elution became more notable at lower concentrations of ammonia. Moreover, the elution of monovalent lysine fed at pH 4 displayed a stiffer front boundary and higher peak concentration. However, when the ammonium concentration was greater than 2.0 N, complete saturation of the bed was delayed during adsorption and the percent recovery yield from elution was lowered., both drawbacks that were considered inevitable features originating from the increased adsorption of monovalent lysine.

Selective adsorption of Ba2+ using chemically modified alginate beads with enhanced Ba2+ affinity and its application to 131Cs production

  • Kim, Jin-Hee;Lee, Seung-Kon
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.3017-3026
    • /
    • 2022
  • The 131Cs radioisotope with a short half-life time and high average radiation energy can treat the cancer effectively in prostate brachytherapy. The typical 131Cs production processes have a separation step of the cesium from 131Ba to obtain a high specific radioactivity. Herein, we suggested a novel 131Cs separation method based on the Ba2+ adsorption of alginate beads. It is necessary to reduce the affinity of alginate beads to cesium ions for a high production yield. The carboxyl group of the alginate beads was replaced by a sulfonate group to reduce the cesium affinity while reinforcing their affinity to barium ions. The modified beads exhibited superior Ba2+ adsorption performances to native beads. In the fixed-bed column tests, the saturation time and adsorption capacity could be estimated with the Yoon-Nelson model in various injection flow rates and initial concentrations. In terms of the Cs elution, the modified alginate showed better performance (i.e., an elution over 88%) than the native alginate (i.e., an elution below 10%), indicating that the functional group modification was effective in reducing the affinity to cesium ions. Therefore, the separation of cesium from the barium using the modified alginate is expected to be an additional option to produce 131Cs.

Direct Purification of Lysozyme from Hen Egg White Using High Density Mixed Mode Adsorbent

  • KIM, WON KYUNG;BONG HYUN CHUNG
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권3호
    • /
    • pp.292-296
    • /
    • 1999
  • The high density mixed mode adsorbent known by the trade name of Mimo-AD was used to purify lysozyme directly from the hen egg white (HEW). The homogenized hen egg white was treated with the adsorbent in a stirred vessel for lysozyme adsorption, and then the adsorbent, easily separated from the HEW by sedimentation, was packed into a column. The remaining HEW and contaminant proteins were removed by washing with pH 11 distilled water in an expanded-bed state, and subsequently the elution was performed with pH 12 distilled water in a packed-bed state. By this simple and rapid adsorption, washing, and elution procedure, lysozyme was purified to>95% with an overall recovery yield of 66%. This process offers a great potential for industrial application by allowing the extraction of lysozyme while retaining the commercial value of HEW.

  • PDF

연질 PVC재료로부터의 첨가제의 침출거동 (Elution Behavior of Additive Agent from Flexible PVC)

  • 신선명;전호석;박찬영
    • 자원리싸이클링
    • /
    • 제10권6호
    • /
    • pp.3-8
    • /
    • 2001
  • 연질PVC(polyvinyl chloride) 재료를 알카리수용액 중에서 반응온도 $80~120^{\circ}C$, 반응시간 0~24시간으로 처리하였을 경우 PVC의 탈염소가 일어나기 이전에 첨가제만을 선택적으로 분리.회수하는 목적으로서 가소제의 침출거동에 관해서 검토하였다. 10$0^{\circ}C$ 이하에서는 연질PVC재료에서의 탈염소는 거의 일어나지 않았으며 또한 NaOH농도가 5M이상에서는 가소제의 용출율은 100% 였다. 따라서 반응온도 및 NaOH농도를 조절함으로써 연질PVC재료로부터 탈염소가 일어나기 이전에 가소제만을 선택적으로 분리하는것이 가능했다.

  • PDF

High-speed countercurrent chromatography를 이용한 인삼 saponin의 대량 분리 농축 (Preparative Isolation of Ginseng Saponin from Panax ginseng Root Using High-speed Countercurrent Chromatography)

  • 이창호;이부용
    • 한국식품과학회지
    • /
    • 제36권3호
    • /
    • pp.518-521
    • /
    • 2004
  • 이상계 용매시스템을 이용하여 물질을 고순도로 대량 분리 할 수 있는 기술인 countercurrent chromatography를 이용하여 인삼으로부터 생리황성 성분인 saponin을 대량 분리 농축하였다. 용매 조성별 인삼 saponin의 분배계수에 따른 인삼 saponin 분리에 적합한 용매시스템은 chloroform/methanol/water(40/39/21, v/v/v)으로 결정되었으며 HSCCC의 작동 조건은 chloroform/methanol/water 용매시스템의 하층부를 이동상으로 한 head to tail mode에서 이동상의 유속 5mL/min, 인삼추출물 injection량 $200{\mu}L$, 컬럼회전속도 800 rpm의 조건이 적합한 것으로 판단되었다. 이러한 조건하에서 분리된 인삼saponin의 양은 $550.7{\mu}g$으로 HSCCC에 주입한 인삼 추출물 $200{\mu}L$중에 존재하는 총 saponin의 양 $865.5{\mu}g$에 비교하여 전체 수율은 63.6%로 나타났으며 TLC로 각 분획의 순도를 확인할 수 있었다.

키토산 및 키틴 막에 의한 단백질의 친화 여과 크로마토그래피: 2. BSA 및 Lysozyme의 분리 (Affinity Filtration Chromatography of Proteins by Chitosan and Chitin Membranes: 2. Separation of BSA and Lysozyme)

  • 염경호;육영재
    • 멤브레인
    • /
    • 제19권2호
    • /
    • pp.113-121
    • /
    • 2009
  • 실리카 입자를 기공 형성제로 사용하여 물리적 강도와 단백질 결합용량이 높은 다공성 키토산 및 키틴 친화 막을 제조하였다. 키토산 친화 막의 BSA 단백질 결합용량은 최대 21.8mg/mL이었으며, 키틴 친화 막의 lysozyme 효소 결합용량은 최대 26.1mg/mL이었다. 제조된 다공성 키토산 및 키틴 친화 막을 사용하여 단백질 용액의 loading 유량, loading 양 및 농도 변화에 따른 BSA와 lysozyme의 친화 막 여과 크로마토그래피 분리 실험을 수행하였다. 친화 막 여과 크로마토그래피 분리 실험을 통해 얻어진 loading/washing/elution의 단계로 구성된 일련의 크로마토그램으로부터 단백질 용출량과 결합수율을 구하였다. 키토산 및 키틴 친화 막에의 BSA 및 lysozyme 단백질의 결합량과 결합수율은 loading용액의 유량이 작을수록, 주입량 및 농도가 클수록 증가하였다. 이 결과로부터 실리카 입자를 기공 형성제로 사용하여 제조된 다공성 키토산 및 키틴 막은 단백질의 대규모 여과 크로마토그래피 분리를 위한 친화 막으로서 효과적인 활용이 기대된다.