Browse > Article
http://dx.doi.org/10.1016/j.net.2022.03.009

Selective adsorption of Ba2+ using chemically modified alginate beads with enhanced Ba2+ affinity and its application to 131Cs production  

Kim, Jin-Hee (Radioisotope Research Division, Korea Atomic Energy Research Institute)
Lee, Seung-Kon (Radioisotope Research Division, Korea Atomic Energy Research Institute)
Publication Information
Nuclear Engineering and Technology / v.54, no.8, 2022 , pp. 3017-3026 More about this Journal
Abstract
The 131Cs radioisotope with a short half-life time and high average radiation energy can treat the cancer effectively in prostate brachytherapy. The typical 131Cs production processes have a separation step of the cesium from 131Ba to obtain a high specific radioactivity. Herein, we suggested a novel 131Cs separation method based on the Ba2+ adsorption of alginate beads. It is necessary to reduce the affinity of alginate beads to cesium ions for a high production yield. The carboxyl group of the alginate beads was replaced by a sulfonate group to reduce the cesium affinity while reinforcing their affinity to barium ions. The modified beads exhibited superior Ba2+ adsorption performances to native beads. In the fixed-bed column tests, the saturation time and adsorption capacity could be estimated with the Yoon-Nelson model in various injection flow rates and initial concentrations. In terms of the Cs elution, the modified alginate showed better performance (i.e., an elution over 88%) than the native alginate (i.e., an elution below 10%), indicating that the functional group modification was effective in reducing the affinity to cesium ions. Therefore, the separation of cesium from the barium using the modified alginate is expected to be an additional option to produce 131Cs.
Keywords
Radioisotope production; Radioisotope separation; Selective adsorption; Functional group modification; Fixed-bed column test;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Wang, T. Vincent, C. Faur, E. Guibal, Modeling competitive sorption of lead and copper ions onto alginate and greenly prepared algal-based beads, Bioresour. Technol. 231 (2017) 26-35.   DOI
2 M. Dai, Y. Liu, B. Ju, Y. Tian, Preparation of thermoresponsive alginate/starch ether composite hydrogel and its application to the removal of Cu (II) from aqueous solution, Bioresour. Technol. 294 (2019) 122192.   DOI
3 G. Lawrie, I. Keen, B. Drew, A. Chandler-Temple, L. Rintoul, P. Fredericks, L. Grondahl, Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS, Biomacromolecules 8 (8) (2007) 2533-2541.   DOI
4 M. Srimathi, R. Rajalakshmi, S. Subhashini, Polyvinyl alcohol-sulphanilic acid water soluble composite as corrosion inhibitor for mild steel in hydrochloric acid medium, Arab. J. Chem. 7 (5) (2014) 647-656.   DOI
5 Y.H. Yoon, J.H. Nelson, Application of gas adsorption kinetics I. A theoretical model for respirator cartridge service life, Am. Ind. Hyg. Assoc. J. 45 (8) (1984) 509-516.   DOI
6 K. Jung, T. Jeong, J. Choi, K. Ahn, S. Lee, Adsorption of phosphate from aqueous solution using electrochemically modified biochar calcium-alginate beads: batch and fixed-bed column performance, Bioresour. Technol. 244 (2017) 23-32.   DOI
7 G.T. Grant, E.R. Morris, D.A. Rees, P.J. Smith, D. Thom, Biological interactions between polysaccharides and divalent cations: the egg-box model, FEBS (Fed. Eur. Biochem. Soc.) Lett. 32 (1) (1973) 195-198.   DOI
8 A.D. Augst, H.J. Kong, D.J. Mooney, Alginate hydrogels as biomaterials, Macromol. Biosci. 6 (8) (2006) 623-633.   DOI
9 I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (9) (1918) 1361-1403.   DOI
10 M. Jain, V. Garg, K. Kadirvelu, Cadmium (II) sorption and desorption in a fixed bed column using sunflower waste carbon calcium-alginate beads, Bioresour. Technol. 129 (2013) 242-248.   DOI
11 M.R. Awual, S. Suzuki, T. Taguchi, H. Shiwaku, Y. Okamoto, T. Yaita, Radioactive cesium removal from nuclear wastewater by novel inorganic and conjugate adsorbents, Chem. Eng. J. 242 (2014) 127-135.   DOI
12 F. Wang, X. Lu, X. Li, Selective removals of heavy metals (Pb2+, Cu2+, and Cd2+) from wastewater by gelation with alginate for effective metal recovery, J. Hazard Mater. 308 (2016) 75-83.   DOI
13 T.A. Davis, B. Volesky, A. Mucci, A review of the biochemistry of heavy metal biosorption by brown algae, Water Res. 37 (18) (2003) 4311-4330.   DOI
14 S.R. Pilli, V.V. Goud, K. Mohanty, Biosorption of Cr (VI) on immobilized hydrilla verticillata in a continuous up-flow packed bed: prediction of kinetic parameters and breakthrough curves, Desalination Water Treat. 50 (1-3) (2012) 115-124.   DOI
15 M.K. Murphy, R.K. Piper, L.R. Greenwood, M.G. Mitch, P.J. Lamperti, S.M. Seltzer, et al., Evaluation of the new cesium-131 seed for use in low-energy x-ray brachytherapy, Med. Phys. 31 (6) (2004) 1529-1538.   DOI
16 S. Katcoff, New barium and cesium isotopes: 12.0 d Ba131, 10.2 d Cs131, and long-lived Ba133*, Phys. Rev. 72 (12) (1947) 1160.   DOI
17 R. Pereira, A. Tojeira, D.C. Vaz, A. Mendes, P. Bartolo, Preparation and characterization of films based on alginate and aloe vera, Int. J. Polym. Anal. Char. 16 (7) (2011) 449-464.   DOI
18 J. Salman, V. Njoku, B. Hameed, Batch and fixed-bed adsorption of 2, 4-dichlorophenoxyacetic acid onto oil palm frond activated carbon, Chem. Eng. J. 174 (1) (2011) 33-40.   DOI
19 K.Y. Lee, D.J. Mooney, Alginate: properties and biomedical applications, Prog. Polym. Sci. 37 (1) (2012) 106-126.   DOI
20 Y. Huang, H. Wu, T. Shao, X. Zhao, H. Peng, Y. Gong, H. Wan, Enhanced copper adsorption by DTPA-chitosan/alginate composite beads: mechanism and application in simulated electroplating wastewater, Chem. Eng. J. 339 (2018) 322-333.   DOI
21 H. Patel, Fixed-bed column adsorption study: a comprehensive review, Appl. Water Sci. 9 (3) (2019) 45.   DOI
22 M. Chavez, L. De Pablo, T. Garcia, Adsorption of Ba2+ by Ca-exchange clinoptilolite tuff and montmorillonite clay, J. Hazard Mater. 175 (1-3) (2010) 216-223.   DOI
23 R. Cortes-Martinez, M. Olguin, M. Solache-Rios, Cesium sorption by clinoptilolite-rich tuffs in batch and fixed-bed systems, Desalination 258 (1-3) (2010) 164-170.   DOI
24 H. Bhandari, R. Srivastav, V. Choudhary, S. Dhawan, Enhancement of corrosion protection efficiency of iron by poly (aniline-co-amino-naphthol-sulphonic acid) nanowires coating in highly acidic medium, Thin Solid Films 519 (3) (2010) 1031-1039.   DOI
25 X. Ouyang, X. Jiang, X. Qiu, D. Yang, Y. Pang, Effect of molecular weight of sulfanilic acid-phenol-formaldehyde condensate on the properties of cementitious system, Cement Concr. Res. 39 (4) (2009) 283-288.   DOI
26 J. Wu, B. Li, J. Liao, Y. Feng, D. Zhang, J. Zhao, N. Liu, Behavior and analysis of cesium adsorption on montmorillonite mineral, J. Environ. Radioact. 100 (10) (2009) 914-920.   DOI
27 P. Rajec, K. Domianova, Cesium exchange reaction on natural and modified clinoptilolite zeolites, J. Radioanal. Nucl. Chem. 275 (3) (2008) 503-508.   DOI
28 H.A. Alamudy, K. Cho, Selective adsorption of cesium from an aqueous solution by a montmorillonite-prussian blue hybrid, Chem. Eng. J. 349 (2018) 595-602.   DOI
29 D.J. Yang, Z.F. Zheng, H.Y. Zhu, H.W. Liu, X.P. Gao, Titanate nanofibers as intelligent absorbents for the removal of radioactive ions from water, Adv. Mater. 20 (14) (2008) 2777-2781.   DOI
30 W.R. Gombotz, S. Wee, Protein release from alginate matrices, Adv. Drug Deliv. Rev. 31 (3) (1998) 267-285.   DOI
31 H. Hong, B. Kim, J. Hong, J. Ryu, T. Ryu, K. Chung, I. Park, Enhanced Sr adsorption performance of MnO2-alginate beads in seawater and evaluation of its mechanism, Chem. Eng. J. 319 (2017) 163-169.   DOI
32 A. Mandla, S. Lahiri, Separation of 134Cs and 133Ba radionuclides by calcium alginate beads, J. Radioanal. Nucl. Chem. 290 (1) (2011) 115-118.   DOI
33 Z. Hubicki, D. Kolodynska, Selective Removal of Heavy Metal Ions from Waters and Waste Waters Using Ion Exchange Methods, Ion Exchange Technologies, 2012, pp. 193-240.
34 J. Roosen, S. Mullens, K. Binnemans, Multifunctional alginate-sulfonate-silica sphere-shaped adsorbent particles for the recovery of indium (III) from secondary resources, Ind. Eng. Chem. Res. 56 (30) (2017) 8677-8688.   DOI
35 M. Xu, G. Wei, N. Liu, L. Zhou, C. Fu, M. Chubik, W. Han, Novel fungus-titanate bio-nanocomposites as high performance adsorbents for the efficient removal of radioactive ions from wastewater, Nanoscale 6 (2) (2014) 722-725.   DOI
36 W.S. Tan, A.S.Y. Ting, Alginate-immobilized bentonite clay: adsorption efficacy and reusability for Cu (II) removal from aqueous solution, Bioresour. Technol. 160 (2014) 115-118.   DOI
37 I.P.S. Fernando, W. Lee, E.J. Han, G. Ahn, Alginate-based nanomaterials: fabrication techniques, properties, and applications, Chem. Eng. J. (2019) 123823.
38 Y. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem. 34 (5) (1999) 451-465.   DOI
39 R. Yang, J. Wang, H. Zhang, Dosimetric study of Cs-131, I-125, and Pd-103 seeds for permanent prostate brachytherapy, Cancer Biother. Rad. 24 (6) (2009) 701-705.   DOI
40 H. Wang, A. Zhou, F. Peng, H. Yu, J. Yang, Mechanism study on adsorption of acidified multiwalled carbon nanotubes to Pb (II), J. Colloid Interface Sci. 316 (2) (2007) 277-283.   DOI
41 D. Robati, Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube, J. Nanostruct. Chem. 3 (1) (2013) 55.   DOI
42 Y. Peng, H. Huang, D. Liu, C. Zhong, Radioactive barium ion trap based on metal-organic framework for efficient and irreversible removal of barium from nuclear wastewater, ACS Appl. Mater. Interfaces 8 (13) (2016) 8527-8535.   DOI
43 Z. Aksu, F. Gonen, Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves, Process Biochem. 39 (5) (2004) 599-613.   DOI
44 A.P. Lim, A.Z. Aris, Continuous fixed-bed column study and adsorption modeling: removal of cadmium (II) and lead (II) ions in aqueous solution by dead calcareous skeletons, Biochem. Eng. J. 87 (2014) 50-61.   DOI
45 Y. Fei, Y. Li, S. Han, J. Ma, Adsorptive removal of ciprofloxacin by sodium alginate/graphene oxide composite beads from aqueous solution, J. Colloid Interface Sci. 484 (2016) 196-204.   DOI