• 제목/요약/키워드: eigenvalues/eigenfunctions

검색결과 21건 처리시간 0.021초

EMBEDDING RIEMANNIAN MANIFOLDS VIA THEIR EIGENFUNCTIONS AND THEIR HEAT KERNEL

  • Abdalla, Hiba
    • 대한수학회보
    • /
    • 제49권5호
    • /
    • pp.939-947
    • /
    • 2012
  • In this paper, we give a generalization of the embeddings of Riemannian manifolds via their heat kernel and via a finite number of eigenfunctions. More precisely, we embed a family of Riemannian manifolds endowed with a time-dependent metric analytic in time into a Hilbert space via a finite number of eigenfunctions of the corresponding Laplacian. If furthermore the volume form on the manifold is constant with time, then we can construct an embedding with a complete eigenfunctions basis.

BOUNDARY VALUE PROBLEM FOR ONE-DIMENSIONAL ELLIPTIC JUMPING PROBLEM WITH CROSSING n-EIGENVALUES

  • JUNG, TACKSUN;CHOI, Q-HEUNG
    • East Asian mathematical journal
    • /
    • 제35권1호
    • /
    • pp.41-50
    • /
    • 2019
  • This paper is dealt with one-dimensional elliptic jumping problem with nonlinearities crossing n eigenvalues. We get one theorem which shows multiplicity results for solutions of one-dimensional elliptic boundary value problem with jumping nonlinearities. This theorem is that there exist at least two solutions when nonlinearities crossing odd eigenvalues, at least three solutions when nonlinearities crossing even eigenvalues, exactly one solutions and no solution depending on the source term. We obtain these results by the eigenvalues and the corresponding normalized eigenfunctions of the elliptic eigenvalue problem and Leray-Schauder degree theory.

ON THE UNIFORM CONVERGENCE OF SPECTRAL EXPANSIONS FOR A SPECTRAL PROBLEM WITH A BOUNDARY CONDITION RATIONALLY DEPENDING ON THE EIGENPARAMETER

  • Goktas, Sertac;Kerimov, Nazim B.;Maris, Emir A.
    • 대한수학회지
    • /
    • 제54권4호
    • /
    • pp.1175-1187
    • /
    • 2017
  • The spectral problem $$-y^{{\prime}{\prime}}+q(x)y={\lambda}y,\;0 < x < 1, \atop y(0)cos{\beta}=y^{\prime}(0)sin{\beta},\;0{\leq}{\beta}<{\pi};\;{\frac{y^{\prime}(1)}{y(1)}}=h({\lambda})$$ is considered, where ${\lambda}$ is a spectral parameter, q(x) is real-valued continuous function on [0, 1] and $$h({\lambda})=a{\lambda}+b-\sum\limits_{k=1}^{N}{\frac{b_k}{{\lambda}-c_k}},$$ with the real coefficients and $a{\geq}0$, $b_k$ > 0, $c_1$ < $c_2$ < ${\cdots}$ < $c_N$, $N{\geq}0$. The sharpened asymptotic formulae for eigenvalues and eigenfunctions of above-mentioned spectral problem are obtained and the uniform convergence of the spectral expansions of the continuous functions in terms of eigenfunctions are presented.

EXISTENCE OF SIX SOLUTIONS OF THE NONLINEAR SUSPENSION BRIDGE EQUATION WITH NONLINEARITY CROSSING THREE EIGENVALUES

  • Jung, Tacksun;Choi, Q.-Heung
    • Korean Journal of Mathematics
    • /
    • 제16권1호
    • /
    • pp.1-24
    • /
    • 2008
  • Let $Lu=u_{tt}+u_{xxxx}$ and E be the complete normed space spanned by the eigenfunctions of L. We reveal the existence of six nontrivial solutions of a nonlinear suspension bridge equation $Lu+bu^+=1+{\epsilon}h(x,t)$ in E when the nonlinearity crosses three eigenvalues. It is shown by the critical point theory induced from the limit relative category of the torus with three holes and finite dimensional reduction method.

  • PDF

THE EIGENVALUE PROBLEM AND A WEAKER FORM OF THE PRINCIPLE OF SPATIAL AVERAGING

  • Kwean, Hyuk-Jin
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제9권1호
    • /
    • pp.31-37
    • /
    • 2002
  • In this paper, we find explicitly the eigenvalues and the eigenfunctions of Laplace operator on a triangle domain with a mixed boundary condition. We also show that a weaker form of the principle of spatial averaging holds for this domain under suitable boundary condition.

  • PDF

3층구조 외해역에서의 취역류 연식모드 결정기법 (Determination of Vertical Mode in a Three-layered Open Sea)

  • Jung, Kyung-Tae;Jin, Jae-Yuoll;So, Jae-Kwi;John Noye
    • 한국해안해양공학회지
    • /
    • 제2권4호
    • /
    • pp.190-199
    • /
    • 1990
  • 3층 구조를 갖는 대륙붕 외해역에서의 취역류 예측을 위한 Galerkin 해를 Eigenfunction 전개를 통해 유도하였다. 수심변화를 결정짖는 연식난류확산 계수가 층간에 불연속적으로 변화토록 정의되므로 내적분 정의시 층별적분이 등장한다. Eigenfunction 및 Eigenvalue 산출을 위해 B-spline 함수전개가 이용되는데 정확한 계산을 위해서는 난류활동이 극도로 저하되는 Pycnocline 내에 많은 Knot들을 배정함이 필요한 것으로 나타났다. 비록 Eigenfunction이 층간에 급격한 변화를 가지나 여전히 해수표면부터 해저편간의 전 구간에 걸쳐 정의되는 연속함수이므로 Gibbs 효과에 따른 해의 진동현상이 표층하, 특히 Pycnocline 내에서 출현하였다.

  • PDF

동하중 하에서 축소 모델의 구성과 전체 시스템 응답과의 비교 연구 (Study on the Time Response of Reduced Order Model under Dynamic Load)

  • 박수현;조맹효
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.11-18
    • /
    • 2004
  • In this paper, an efficient model reduction scheme is presented for large scale dynamic systems. The method is founded on a modal analysis in which optimal eigenvalue is extracted from time samples of the given system response. The techniques we discuss are based on classical theory such as the Karhunen-Loeve expansion. Only recently has it been applied to structural dynamics problems. It consists in obtaining a set of orthogonal eigenfunctions where the dynamics is to be projected. Practically, one constructs a spatial autocorrelation tensor and then performs its spectral decomposition. The resulting eigenfunctions will provide the required proper orthogonal modes(POMs) or empirical eigenmodes and the correspondent empirical eigenvalues (or proper orthogonal values, POVs) represent the mean energy contained in that projection. The purpose of this paper is to compare the reduced order model using Karhunen-Loeve expansion with the full model analysis. A cantilever beam and a simply supported plate subjected to sinusoidal force demonstrated the validity and efficiency of the reduced order technique by K-L method.

  • PDF

A History of Researches of Jumping Problems in Elliptic Equations

  • Park, Q-Heung;Tacksun Jung
    • 한국수학사학회지
    • /
    • 제15권3호
    • /
    • pp.83-93
    • /
    • 2002
  • We investigate a history of reseahches of a nonlinear elliptic equation with jumping nonlinearity, under Dirichlet boundary condition. The investigation will be focussed on the researches by topological methods. We also add recent researches, relations between multiplicity of solutions and source terms of tile equation when the nonlinearity crosses two eigenvalues and the source term is generated by three eigenfunctions.

  • PDF

A NOTE ON THE EIGENFUNCTIONS OF THE LAPLACIAN FOR A TWISTED HOLOMORPHIC PRODUCT

  • Peter B.Gilkey;Park, Jeong-Hyeong
    • 대한수학회논문집
    • /
    • 제12권2호
    • /
    • pp.325-332
    • /
    • 1997
  • Let $Z = X \times Y$ where X and Y are complex manifolds. We suppose that projection $\pi$ on the second factor is a Riemannian submersion, that TX is perpendicular to TY, and that the metrics on Z and on Y are Hermetian; we do not assume Z is a Riemannian product. We study when the pull-back of an eigenfunction of the complex Laplacian on Y is an eigenfunction of the complex Laplacian on Z.

  • PDF

ONE-DIMENSIONAL JUMPING PROBLEM INVOLVING p-LAPLACIAN

  • Jung, Tacksun;Choi, Q-Heing
    • Korean Journal of Mathematics
    • /
    • 제26권4호
    • /
    • pp.683-700
    • /
    • 2018
  • We get one theorem which shows existence of solutions for one-dimensional jumping problem involving p-Laplacian and Dirichlet boundary condition. This theorem is that there exists at least one solution when nonlinearities crossing finite number of eigenvalues, exactly one solutions and no solution depending on the source term. We obtain these results by the eigenvalues and the corresponding normalized eigenfunctions of the p-Laplacian eigenvalue problem when 1 < p < ${\infty}$, variational reduction method and Leray-Schauder degree theory when $2{\leq}$ p < ${\infty}$.