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Determination of Vertical Mode in a Three-layered Open Sea
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Abstract [0 The solution for wind drift current in a three-layered open sea region is derived using the
Galerkin-Eigentunction mothod. The presence of disconnnuities in the vertical eddy viscosity required a
definition of a scalar product which involves the summation of integrals defined over each layer. The
expansion of fourth-order B-spline functions is used in determining eigenvalues and corresponding
eigenfunctions. In a three-layered system a low value of eddy viscosity is prescribed within the pyc-
nocline to represent the suppression of turburent intensity at the thermocline level. A high concentra-
tion of knots within the pycnocline is important in determining eigenfunctions and the associated eigen-
values accurately. Due to the global property of eigenfunctions nonphysical oscillations appear in the
current profiles below the surface layer, particularly within the pycnocline.
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1. INTRODUCTION

The solution of the three-dimensional hydrody-
namic equations describing wind induced flows in a
layered sea has been developed in recent years using
the Galerkin-Eigenfunction method in the vertical
(Heaps (1983), Heaps and Jones (1983), Jung and
Noye (1988)). In the layered system modeled in all
this work internal discontinuities are present in the
prescribed eddy viscosity profile, and consequently a
layered eigenvalue problem is posed. The eigenfunc-
tions are defined continuously throughout the depth
but, due to the jump in values of density and eddy
viscosity at the interfaces, their first derivatives are
discontinuous.

The layered eigenvalue problem can be solved by
either analytic or numerical methods. In the analytic
approach (Heaps (1983), Heaps and Jones (1983))
eigenvalues and eigenfunctions are determined
through a mode matching technique, but its use is
restricted to a simple functional form of eddy viscos-
ty. To handle arbitrary variation of eddy viscosity in a
flexible manner, Jung and Noye (1988) devised a
numerical method of solving the two-layered Sturm-
Liouville boundary value problem with a strong dis-
continuity in the coefficient of the sccond-order dif-
ferential operator. The Galerkin method with expans-
ion of fourth-order B-spline functions are used to ap-
proximate the basis set of eigenfunctions along with
the use of a scalar product which involves the sum-
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mation of integrals defined over each layer.

In this paper Jung and Noye’s method is extended
to the three-layered system which consists of the sur-
face layer, the pycnocline and the bottom layer.
There have been extensive numerical experiments
conducted by Davies (1985za, b, 1986) and Davies and
Furnes (1986) which have led to a description of the
overall features of wind induced motion in both
homogeneous and stratified seas. Our discussion is
therefore centered on the accuracy of the method in
computing the eigenfunctions and the current pro-
files through the depth. Following Davies (1983) and
Furnes (1983), the limit conditions for the eigenfunc-
tions and eigenvalues are introduced in a generalised
separable form. Results from this study will serve as a
basis for realistic applications in the future.

2. HYDRODYNAMIC EQUATIONS FOR
THE THREE-LAYERED SYSTEM

The linear equations of motion in sigma coordin-
ates which govern the drift current in a three-layered
open sea are given by,

oy,
2 VN, w
oV,
E—HF}IU [Nja ] (2)

with =1, 2,3 and o= -2z/H.

In the above equations, t denotes time; x, y, z are
the Cartesian spatial coordinates, with z the depth
below the undisturbed surface which contains the x
and y axes. Also U; and V; are horizontal components
of currents in the x, y directions, respectively; N; are
vertical eddy viscosity coefficient, with the subscripts
j denoting values at the jth layer; H is the depth of
the sea floor below the undisturbed surface level and
g is the acceleration due to gravity; and 7 is the Cor-
iolis parameter given by 7=2w_sin ¢, where w, is the
circular frequency of the earth’s rotation and ¢, is
the latitude which is considered positive in the Nor-
thern Hemisphere and negative in the Southern
Hemisphere.

In order to solve the system of equations (1) and

(2) for U,
be given at the sea surface and at the sea bed, toge-
ther with interfacial conditions. Surface boundary
conditions at o= £,=0 are

Vi, =1,2,3 boundary conditions have to

L U Ly OV
_%[Nla : = Tsx, _%[Nla = Tsy,

(3)

where 7, and 7, denote the components of surface
wind stress. For tidal flow the surface stress goes to
Zero.

At the sea bed,

tion of the form

o= §;=1, a bottom stress condi-

aU

3 aV
= Tox, _% [Naga_zj = Toy,
(4)

is applied, where 7\, and 7, denote the x and y
components of bottom stress. In a linear model it is
appropriate to use a linear formulation of bottom st-
ress, thus

bx=p3KbUb' TbyzpaKbvb {5)

where K, is a constant coefficient of friction and U,,
V, are the components of current at the sea bed.

Conditions of continuity of velocity and stress at
the undisturbed level of interface, o= ¢, are given
by,

Ul =Uj +1, V_I =Vf+1, (6)
aUJ+l

Oy [NJ 1, (7)
v, oV, .,

0, [NJ ] =P+ [NJ+1 ] (8)

oo

3. GALERKIN SOLUTIONS USING THE
EXPANSION OF EIGENFUNCTIONS
OVER THE VERTICAL SPACE

In the three-layered system the scalar product 1s
defined in summation of integrals over each layer,
namely,

<¢,, ;> = 2 @ ¢jda (9)
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where ¢; and ¢; represent a pair of square integrable
functions defined at the jth layer. It is assumed that
the vertical variation of eddy viscosity is fixed, hav-
ing a functional form denoted by u« (¢ ), that is,

NJ (t. a')=a(t) T My (0) for fj—l—g—aéfj- (10

For this variation of eddy viscosity time-invariant
eigenfunctions and eigenvalues can be determined.
Solutions are sought with respect to the scalar pro-
duct (9) using the eigenfunctions defined through the
depth as follows:

f—f, for £, ,So<¢,. (1)

The r th eigenfunction at the jth layer is denoted n
the local form:

ff:f/'r for fj—léaéfj- (12

Expanding the two horizontal components of cur-
rent in terms of /1 eigenfunctions f;  and coefficients
A, (t) and B(1) give,

U o.t) =5 A1, (0),
V,(0,0=5 B,®)f,., (o)
for ¢, ,=0=<¢,, 13

Let A andf,k=1,...,
and eigenfunctions determined from

11 be a set of eigenvalues

atﬂ,a;#—/\f,-, i=1,23 (14

subject to separable limit conditions

[,ulg—fl] =81, at o=, (15
o

[#3 ] =g.f. at o=1, {16)

and interfacial conditions
fj =fj +1, 1Y)

e TN ’“][”—p’i—‘]. 19

Applying the Galerkin method to (1) (see Jung
(1989) for details) and using the orthogonal property
of eigenfunctions, namely,

<fprf> = gp‘ f, ofxdo=0
for r## 19
we obtain
oA
atk=7Bk Hz/\ Ak+ (Jx, k+KL k)
where
Tsx

-Iz, k“pl’ﬁka (0)

Tox
—pIka (1), 1)

Kax= sz AL (8.1 (0)f,(0)
_[&] £ (1
2188 (D1, (1), 2
¢k:<fj.k.fj,k>_], k=1,2,3 (23)
Similarly,
oB
atk= - 7Ax— Hz ABrt U xt Ky k) s (24
where
_Ts» _Ter
Joam 22560 0) 22541 (1), 23
Ky'k sz B [ﬂ f’f )

—[ﬁ]ﬂszu)f,(m. k=1,23.

26

The vertical modes in (20) and (24) are coupled
through the terms for the bottom friction J, ,m J
and the stressing terms K, ., K , which involve g,
and B,. A matrix inversion is required to solve for
the coefficients of the eigenfunction expansion. With
K, =0, the system of equations becomes uncoupled.

Consider the alternative expansion of the U, and
V, velocities used in a series of works by Heaps,
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namely,

U, (o,t)

VJ (o'.t)zrg; B.,.(t) ¢'rf/.r(a') for fj—lé

1

With the use of relations
A—A, D, Br_’BrQr,

(20) and (24) reduce to

oA, -

ot k=7Bk Hz" Ak+ (Jx‘k_’_Kx, k]

B .

atk= —7Ax— Hz’\ B + (Jy k+Ky K
where

Jax=2 570 (0) = 5 1),

Jy. k= ;T;_Ifk (0) - %yﬁfk (1) ,

Knk HZE A ¢r[ﬁf ) +(0)

[ 60 (D1 (1),

Ky.k sz B @T[ﬂf (0)

- %%]ﬂka(l)fr (1)]
b Izpsti]Ar¢rfr (1),

ty=n:KoZ B,0,5, (1), k=123,

:rz':A,(t) 0.1, (o) for ¢,,So=¢,.

@

o=¢§,

28)

{35

36

@37

4. NUMERICAL DETERMINATION OF
EIGENFUNCTIONS AND EIGENVALUES

To handle arbitrary variation of the vertical eddy

viscosity in a flexible manner, it is necessary to use a

numerical method of solving the layered eigenvalue
problem. Taking the scalar product (9) of (14) with fj
intergrating by parts, using limit conditions (21) (o
(23), yields

dfi,, df, k

£3
oL A AEIL W) )

<uy

A<ty f> k=123
(39

Following Davies (1981) and Jung and Noye
(1988), the r th eigenfunction is represented in terms
of a set of fourth-order B-spline functions M,, /=1,

., n, namely,

Ma

Lo M (o) for §,_|<0=§,

1

fJ.a (0') =

14

39

where j=1,2,3and q=1, ..., m
Substitution of the B-spline expansion (39) into
equation (38) yields the matrix equation

[L1:{D] [L]=[Q] [L)[C] [L.]. 0

In this equation: [L] is an n x» matrix with (r, k) the
element

Lr. k3 (41)

[L]7 is its transpose; [Q] is a matrix of eigenvalues,
that is, with (r, k)th elements

Qrr=Ax if 1=k, Q, =0 if r+£k; @2

[D] = [D+B] and [D] is a n x n matrix with (r, k)th ele-
ments

3;03 deMk

M do ; 43)

lele

[B] is a # x n matrix with (r, k) th elements

8:=8: CHE (D, (1); e

and [C] is a nx nmatrix with (r,k) th element

3 £
> 2" MM,do. @5
i=10, €1
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The matrices [C] and [D] are sparse because the
B-splines have restricted support. Once the coeffi-
cients L, are defined from (40), the eigenfunctions
are correspondingly defined by (39). An alternative
to using the Galerkin method with an expansion of
B-splines is using an iterative method described by
Furnes (1983), which may be advantageous over the
Galerkin method when the accuracy of the computed
eigenvalues and eigenfunctions has to be monitored
(Davies and furnes (1986)). It is apparent that use of
the Runge-Kutta-Merson method will be more effec-
tive if initial estimates of eigenvalues are made by
the Galerkin method.

5. THE ACCURACY OF NUMERICALLY
DETERMINED EIGENFUNCTIONS

Fig. 1 shows a schematic variation of density and
eddy viscosity considered in this study. The continu-
ous variation of density is approximated in terms of
three homogeneous layers consisting of the surface
layer, the transition layer, known as the pycnocline,
and the bottom layer. Although the models described
in Section 2 allow for an arbitrary variation of eddy
viscosity within each layer, in the interest of examin-
ing the accuracy of the method the depth variation of

eddy viscosity sketched in Fig. 1 (b} is used in most of
computations. To denote values in the surface, tran-
sition and bottom layers suffices T, P, B are used.

In order to examine the accuracy of numerically
determined eigenfunctions calculations are perform-
ed for a three-layered eddy viscosity profile with
N;=300, N, =10, Ny =100cm*™",4 ;=25, Ap,=15,
Ap =60 m and various distributions of knots (Table
1). The distributions K1 and K3 are composed ol 33
and 50 quasi-uniform interior knots through the ver-
tical, respectively, and the distributions K2, K4 and
K5 are composed of 33, 50 and 67 non-uniform in-
terior knot spacings with concentration of knots near
the interfaces and within the pycnocline (the number
of interior knot spacings is given by m=m—3). The
exact values of A, and @, were computed iteratively
from the transcendental equation derived analytically
(see Jung (1989)).

It is apparent from Table 1 that increasing the
number of B-spline functions gives an improved ac-
curacy in numerically determined eigenvalues and ei-
genfunctions. It has been revealed in a series of pre-
liminary computations that for a given number of
B-spline functions a high concentration of knots
within the pycnocline, particularly at the proximity
of the upper surface of the pycnocline, is important

Density p(gem)

Eddy viscosity (N)

s 1.?25 1.0[27
ea
surface Na By T
+ \PT """ N, Ar
B \_&\ Nl‘ A,
] P, Ny A, Ny o |4,
A
Sea
bed
¢ fa) (b) (c)

Fig. 1 A schematic variation of density and eddy viscosily through the vertical.
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Table 1. Eigenvalues computed using a three-layered eddy viscosity distribution shown in Fig. 1(¢), with A+=25, Ap=15,
Ap=60 m, Ny=300, Np=10 and N7=100 ¢ms ~ ! with a no-slip condition forarange of knot distributions

Disliibulion K1 K2 K3 K4 K5 Exact
= 33 33 50 50 67
r=1 1.076 1.011 1.052 1.008 . 1.008 1.008
2 6.639 6.359 6.523 6.349 6.349 6.345
3 34.116 30.041 32.613 29.893 29.892 29.819
4 57.120 51.649 54.447 51.542 51.541 51.482
5 117.117 109.123 114.605 108.737 108.734 108.538
10 " 478.733 415.227 429.679 412.568 412.563 412.389
15 1407.633 1180.577 1138.278 1079.181 1078.798 1076.924
20 2971.537 2283.083 2189.600 1819.600 1817.356 1816.038
25 5174.325 7386.768 3612.439 3045.295 3013.736 3003.123
30 8012.397 30799.402 6044.786 4350.115 4247.103 4228.482
35 9220.318 6478.395 5700.169 5699.498
40 ’ 13465.445 11119.358 7907.935 7645.858
in determining eigenfunctions and the associated ei- m »

genvalues accurately. When knot spacings are not
compressed near the interfaces, wiggles appear in the
numerically computed eigenfunctions particularly
near the bottom of the surface layer. If an insuffi-
cient number of B-splines are used along with a uni-
form distribution of knots, regions of high shear
(near the upper and lower surtaces of the pycnocline)
are smoothed out. If the knots of B-spline functions
are excessively concentrated within certain regions
without increasing the total number of knots involv-
ed in the calculation, the accuracy of higher eigenval-
ues and eigenfunctions is rapidly decreased. In order
to accurately compute up to thirty eigenfunctions,
distribution K5 has been required. In this study about
67 interior knot spacings, with a distribution similar
to K5 have been used.

6. FORM OF VERTICAL MODES

Fig. 2 displays the first five vertical modes
evaluated numerically with m =67 and 24, and with a
no-slip bottom boundary condition, g,=c, and
two linear slip bottom boundary conditions with
8,=0, B,= — K H/a , for a range of eddy viscosi-
ty profiles. The forms of vertical modes are primarily
affected by the vertical dependence of the coefficient

.
-8.0 -4.0 -2.0 0.0 2.0 4.0 8.0

~4.0 -2.0 b.0 2.0 4.0
b

) 1d)
! s

-4.0-2.0 0.0 2.0 4.0 -4.0 -2.0 6.0 2.0 4.0

/i

X~/

B
3{’
NS

Fig. 2 The first five vertical modes of the three-layered
system, obtained using the profile Fig. 1(c), com-
puted with: A1=25, A p=15, Ag== 60 m; Nt =300,
Np =100 cm?s’!; p1=1025.8. pp~ 1026.5,
pp=1027.2 ¢ em3; | =0; and (2} Np-50 cmZs!
with By=00; (b) Np cm?! with g,=00: (¢)
Np =50 em2s! with 8,=0; (d) Np=50, @ = 142.5
cm?s-! with @ 8,-KgH = — 0.2 cms-1.
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of the second-order viscosity operator and by limit
conditions used. Note that the domain-averaged
value of eddy viscosity, e 1is not involved in
determining the structure of vertical modes. The role
of density on the determination of vertical modes is
negligibly small because Ap/p=0 (107%. With a
very low value of N, the eigenfunctions show regions
of rapid shear at the upper and lower surfaces of the

pycnocline. This is due to the requirement p;
]

ofy 80=pis p,  of;,/ o at each of the

j+1
interfaces.

As a property of eigenfunctions, the rth vertical
mode has r-1 zero in the open interval (0, 1) for both
the slip and no-slip boundary conditions. The zeros
of the rth eigenfunction are placed between two
consecutive zeros of the (r-1)th eigenfunction. In
regions in whcih values of eddy viscosity are marked-
ly reduced, zeros are concentrated with respect to the
rest of the water column. This leads to a rapid change
of the modal structure within the pycnocline.

An important feature is that, as a consequence of
the homogeneous limit conditions, the first eigen-
value is A =0 and the corresponding eigenfunction
is f( ¢)=1. It should be noted that local variations
of eddy viscosity and density jump have no influence
on the first mode. With any other combination of
limit conditions at the domain boundary, for exam-
ple when a no-slip or stressing condition is enforced
at the sea bed, the first vertical mode is no longer
independent of vertical eddy viscosity and density.

Fig. 3 and Table 2 show how sensitive the modal
structure is to changes in the value of N and their
functional form within the pycnocline. It is evident

(a) ®)

’
-4.0 -2.0 0.0 2,0 4.0

;

-2.0 -6,0 -4.0 -2.0 0.0 2.0 4.0 ¢.0 6.0

ol
Lyt

T

3
N\

N\ N,
. )
.7
X

iR

(a)

.
-4.0 -2.0 0.0 2,0 4.0

Fig. 3. The first five vertical modes of the three-layered
system, obtained using the profile in fig. 1 (¢), com-
puted with: g 1=1025.8, pp=1026.5, pp=1027.2¢
cmrd; By =8,=0; and (@) A1=25. Ap=15, Ag=60
m; Nt = 1000, Np = 10, Ng = 100 cm?s-1; (b) A7=25,
Ap=15, Ag-60 m; Ny=1000, Np=50, Ng=100
cm2s—1 (¢) A =22.5, Ay=2.5, Ay=2.5, A,=10,
As=25, Ag=60 m; N,=1000, Ny=N.=/00,
Ng=10, N.=Ng=100 cm2s-1; (d) A,=25,
Ap=15, Ag=60 m; N1 =1000, Ng=100 cm2s 1,
and a linear decrease within the pycnocline with
Np=N.=Np, N.=Np.

that as Ny is increased, while keeping N and Ny con-
stant, the region of high shear within the pycnocline
is significantly reduced. Particularly, for the two la-

Table 2. Values of Ay and ¢y for the first seven vertical modes computed for the three-layered eddy viscosity

distribution (a), (b), (c) and (d) in Fig. 2.

(a) (b) (©) (d)
/\ r ¢ T A r /\ r ¢ T A T ¢ T
r=1 0.000 0.999 0.000 0.999 0.000 0.999 0.000 0.999
2 0.953 2.233 1.169 2.159 1.204 2.139 3.141 1.049
3 7.810 0.207 9.011 0.162 9.019 0.153 15.945 0.450
4 16.747 0.294 22.468 0.276 23.678 0.260 40.366 0.343
5 34.747 0.049 40.016 0.058 40.611 0.063 75.584 0.453
6 56.795 0.123 74.497 0.097 77.038 0.075 118.311 0.889
7 81.167 0.032 96.846 0.075 163.117 1.388

100.843 0.110
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yered eddy viscosity profile (with N, >Ng) the first
five vertical modes show no shear in the transitional
layer and their derivatives in the vertical no longer
change sign there (Fig. 3 (d)). When the values of
piecewise eddy viscosity are joined in a piecewise-
linear manner in the vicinity of interface levels, the
higher vertical modes tend to show a smooth varia-
tion at the interface (Fig. 3(c)).

Comparing Fig. 3(a) with (¢), it is evident that
with a small correction to the eddy viscosity profile
across the upper surface of the pycnocline
(4,= A;=2.5 m) the modal structure was not
significantly different from that of a step-like varia-
tion of eddy viscosity, although there is some
evidence that higher modes r=3 are affected.

7. CONVERGENCE OF EIGENFUNCTION
EXPANSION

To examine the structure of current profiles re-
produced by the expansion of eigenfunctions, steady
state and time dependent responses of an unbounded
sea subject to the impulsive onset of wind stress are
computed using a point model.

For steady state calculations the U and V solu-
tions are reformulated in complex form and resulting
modal equations are then inverted. As discussed by
Davies (1985b, 1986) and Jung and Noye (1989), cur-
rent profiles in stratified conditions are characterised
by the presence of high shear within the pycnocline
particularly in the proximity of the surface layer. It is
evidnt from Fig. 4 that, as a consequence of the
Gibbs phenomenon, nonphysical oscillations appear
in the U component of the current profile in which
wind stress is applied. We note that the discontinuity
of the eigenfunctions itself is not a source of the
Gibbs overshoots.

When Ny is increased from 50 to 1000 cm? ™', the
oscillations are significantly reduced except within
the pycnocline. Increasing /n from 10 to 20 is not
much helpful in suppressing the oscillations. A large
number of eigenfunctions have to be used to smooth
out the oscillations unless a cosmetic filter is applied.

The time dependent numerical solution of (30)
and (31) are generated from quiescent state of motion

U  (toms?) V.  (ems?)
—-4.0 ~2.0 0.0 2.0 4.0 -2.0 0.0 2.0 4.0 8.0
Pl
= oo
g’ <
o i~ B

i

Fig. 4. Steady velocity profiles of the U and V components
of wind drift current, obtained using the profile in
Fig. I{c), in a three-layered system compuled using a
basis set of eigenfunctions, with: At=25, Ap=40,
Ap=185m; Nr=150, Np =10 cm?~!; ky, =0.2 cm
s—1; pr=1025.8, pp=1026.5, pp=1027.2 g cin-3;
B 1= B2=0; and (a) Ng=50 cm3s~1; (b) Ng = 1000
em2s— 1,

described by a zero initial velocity field. The surface
wind stress 1 dyne cm? is suddenly applied at t=0,
Calculations are performed on a staggered finite dif-
ference grid with periodic boundary conditions.
Once again we note the presence of nonphysical os-
cillations in the computed current profiles, particul-
arly within the pycnocline (Fig. 5). As seen in the
steady state computation, current profiles in the bot-
tom layer are almost free of oscillations when
N =1000 cm’~! is used. However, in a series of
preliminary computations it has been found that,
despite the slow convergence near the sea surface and
the Gibbs overshoots particularly within the pycnoc-
line, the layer-mean values of current were computed
accurately even with only five vertical modes.

In regions where strong tidal currents are omni-
present, it is necessary to increase the vertical varia-
tion of the eddy viscosity at the bottom layer to a
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(a) (b)
Ug (ems!) Vi (ems!)
-2.0 0.0 2.0 4.0 6.0 -2. 0.0 0 4.0 6.0 8.0
T 7 T
]/ T
ol == , <
L& e,
<
K
1
4
4
—————— t= 14T, hrs t= 2/4T, hrs
+ t= S4T. hrs t= 64T, hrs
] t= 13/4 T, hrs t= 1414 T, hrs
- t= 214 T, hrs t= 224 T, hrs
(c) (d)
Ui (cms?) *
2.0 0.0 2.0 4.0 6.0 -2. 8.0
s . l'j 7 K >, e, —
7,...:!4“ -
< \‘.s) -,
1‘51!’
b
T
i
) t= 14T hrs i t= 14T, hrs
4 t= 54T, hrs n t= S/4T; hrs
t= 1314 T; hrs t= 13/14 T, hrs
1 t= 2114 T, hrs . —_— = 214 T, brs

Fig. 5. Velocity profiles of U and V components of wind drift current, obtained using the profile in Fig. 1 (¢), at various

time steps computed using a basis set of eigentunctions, with: A=25, Ap=40, Ag="185 m; Ny = 1000, Np=10
m2s-1; o1 =1025.8, pp=1026.5, o5 =1027.2g cm~3; k, =0.2 cm s~ 8, = f>=0; and (a), (b) Np=100 cm?s~!

with m=10; (d) Ng=1000 cm2s ! with m =20.

value comparable o that at the surface layer. Heaps
and Jones (1985) have chosen values N =300 cm’s ™
and Ng=1000 cm?~! in applying a three-layered
spectral model to a shelf with a depth ranging in the
cross-shelf direction from 50 to 300 m. Although it
was not explicitly mentioned in their paper, it is
conceivable that the reason behind this choice of ed-
dy viscosity was to take into account the tidally-
induced background turbulence and at the same time
to suppress the Gibbs overshoots.

8. CONCLUSION

In a three-layered system eigenfunctions oscillate
very rapidly within the pycnocline where a low value
of eddy viscosity is prescribed to represent the reduc-
ed wurbulent intensity. Concentrating the knois ol
B-spline functions across the interfaces is also of
importance in reproducing the rapid variation of
eigenfunctions within the pycnocline.

The rate of convergence of the spectral method
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depends upon whether nonphysical oscillations
arises as a consequence of the Gibbs phenomenon. It
is known that classical continuous functions such as
trigonometric functions, Chebyshev and Legendre
polynomials, are all susceptible to internal discontin-
uity (Gottlieb and Orszag (1977)). The eigenfunctions
determined here through a mode matching tech-
nique have a global support and hence Gibbs over-
shoots arise below the surface layer particularly with-
in the pycnocline. We note that the presence of high
level background turbulence activity of tidal origin at
the bottom layer is helpful in suppressing the Gibbs
phenomenon.

In follow-up researches the Galerkin spectral
method will be used mainly to gain physical insight
into stratified flows whenever a well-formed layered
system can be assumed and the vertical structure of
eddy viscosity is fixed.
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