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EMBEDDING RIEMANNIAN MANIFOLDS VIA THEIR

EIGENFUNCTIONS AND THEIR HEAT KERNEL

Hiba Abdallah

Abstract. In this paper, we give a generalization of the embeddings
of Riemannian manifolds via their heat kernel and via a finite number
of eigenfunctions. More precisely, we embed a family of Riemannian

manifolds endowed with a time-dependent metric analytic in time into a
Hilbert space via a finite number of eigenfunctions of the corresponding
Laplacian. If furthermore the volume form on the manifold is constant

with time, then we can construct an embedding with a complete eigen-
functions basis.

1. Introduction

Let (M, g) be a Riemannian manifold. The diffusion operator related to the
Laplacian is the heat operator, and it is an infinitely smoothing operator. It
admits a fundamental solution of class C∞ which is called the heat kernel. If we
denote this kernel by K(t, x, y), t > 0, x, y ∈ M , then it verifies the following
equation:

(1)

(
∆x − ∂

∂t

)
K(t, x, y) = 0

with initial data

lim
t→0

K(t, x, y)dx = δy(x)

for each y ∈M , e.g. for any continuous function f onM with compact support,
we have

lim
t→0

∫
M

K(t, x, y)f(x)dv(x) = f(y).

More precisely, let (M, g) be a compact Riemannian manifold without bound-
ary, ∆ the Laplace-Beltrami operator onM , and let λ0 < λ1 ≤ λ2 ≤ λ3 · · · ↗ ∞
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denote the eigenvalues of ∆, and {φi}i≥0 an orthonormal basis of real eigen-
functions of ∆. Then the heat kernel of M can be expressed as follows:

(2) K(t, x, y) =
∑
i∈N

e−λitφi(x)φi(y), t > 0, x, y ∈M.

The diffusion distance on (M, g) is defined by

(3) D2
t (x, y) =

∫
M

(K(t, x, z)−K(t, y, z))
2
dv(z).

Although the notions “diffusion distance” have been introduced by Coiffman
and Lafon, in 2004, in their paper [4], this notion was not really new. In fact,
in [3], P. Bérard, G. Besson, and S. Gallot, used the heat kernel to embed a
class of closed Riemannian manifolds in the same Hilbert space

l2 =

(aj)j≥1, aj ∈ R;
∑
j≥1

|aj |2 < +∞

 ,

and they interpret certain estimates on the heat kernel as giving a precompact-
ness theorem on the considered class. We have the following:

Theorem 1.1 (P. Bérard, G. Besson and S. Gallot [3]). Let (M, g) be an n-
dimensional closed Riemannian manifold (M, g) and λ0 < λ1 ≤ λ2 ≤ · · · ↗ ∞
the eigenvalues of the correspondent Laplacian ∆M . The map

ψa
t :M → l2

x 7→
√
2(4π)

n
4 t(n+2)/4{e−λjt/2φa

j (x)}j≥1

is an embedding for each t > 0, and each orthonormal basis a = {φa
i }{i≥0}

of real eigenfunctions of ∆M . Moreover, the pull-back metric (ψa
t )

∗can, where
“can” denote the Euclidian scalar product on l2, is asymptotic to the metric g
of M when t goes to zero. More precisely,

(ψa
t )

∗can = g +
t

3

(
1

2
Scalg.g −Ricg

)
+O(t2), when t→ 0+

where Scalg and Ricg are respectively the scalar curvature and the Ricci cur-
vature tensor of the metric g.

The map ψa
t can be called “diffusion map” (see [4]), and the distance in

l2 between the images ψa
t (x), ψ

a
t (y) of two points x, y ∈ M is equal to the

diffusion distance defined by the equation (3) (up to a constant that serves
here for normalization).

The proof of Theorem 1.1 lies on the fact that the heat kernel can be written
in terms of all the laplacian eigenfunctions and eigenvalues (see Equation 2).
However, we can also embed a Riemannian manifold via a finite number of
eigenfunctions. And we have the following theorem:
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Theorem 1.2 (P. Bérard [2]). The map

Φλ :M → RN(λ)+1

x 7→
(
φ0(x)

ν(x, λ)
, . . . ,

φN(λ)(x)

ν(x, λ)

)
is an embedding for λ large enough, and, Φλ(M) ⊂ SN(λ)(1) (sphere of radius
1 in RN(λ)+1), and for all V ∈ TM \ {0},

∥dΦλ(V )∥2RN(λ)+1 =
λ

n+ 2
[g0(V, V ) + b(V, λ)] ,

where b(V, λ) = o(1) uniformly in V in the unit tangent bundle UTM when λ
approaches to +∞.

The aim of this paper is to generalize the results above to the case where
M is endowed by a time-dependent metric. So we consider the flow (M, g(t))
where g(t) is analytic in t ∈ ]−T, T [. We prove the existence of a finite number
of eigenfunctions of ∆g(t), all analytic in t in a neighborhood of t = 0, and we
construct an embedding by these eigenfunctions. We have our first result that
is the following:

Theorem 1.3. Let (M, g(t)) be a family of Riemannian manifolds such that
g(t) is analytic in t ∈ ]− T, T [, T > 0.

i) There exist ε0 > 0, N0 ∈ N, such that, for all N ≥ N0, there exist
ϵN > 0, N + 1 eigenfunctions φi(t) of ∆g(t), i = 0, . . . , N , all analytic
in t for t ∈ ]− ϵN , ϵN [, such that the map

ΦN
t : (M, g(t)) → RN+1

x 7→
2(4π)

n
2 Γ

(
n
2 + 2

)
(λN (t))

n
2 +1

(φ0(t, x), . . . , φN (t, x))

is an embedding for all |t| < min{ε0, ϵN} (here Γ is the well-known
Gamma function).

ii) The pull-back metric of ΦN
t is asymptotic to the metric g(t) of (M, g(t))

when N goes to infinity. More precisely(
ΦN

t

)∗
Can = g(t)

(
1 +O

(
1

ln (λN (t))

))
, when N → ∞

where Can is the Euclidian metric of RN0+1.

In the third section, we see that if the volume form on (M, g(t)) is constant,
then there exists a complete orthonormal basis of eigenfunctions of ∆g(t), all
analytic in time, and we can embed the flow (M, g(t)) with the associated heat
kernel.
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2. Embedding a flow of Riemannian manifolds via a finite number
of eigenfunctions

Let (M, g(t)), t ∈ [−T, T ] a family of Riemannian manifolds where g(t) is
analytic in t ∈ ]− T, T [. In this section we prove Theorem 1.3, and for this
purpose, we need to prove the following lemma on perturbed operators.

Lemma 2.1. If λ0 ≤ λ1 ≤ · · · ≤ λk, are the k-th first eigenvalues of ∆0, there
exists ϵk > 0, and for all i = 1, . . . , k, there exist a scalar-valued function λi(t),
and a C∞(M)-valued function φi(t), all analytic in |t| < ϵk, such that

(i) ∆tφi(t) = λi(t)φi(t) for all |t| < ϵk,
(ii) λi(0) = λi,
(iii) {φi(t)}i≤k is an orthonormal system of L2(M,vt) for all |t| < ϵk.

Proof. Let ν1 < · · · < νp be the first p distinctive eigenvalues of ∆0 of multi-
plicity mi respectively, i = 1, . . . , p. Then, by P. Bérard [1] and F. Rellich [9],
there exist, for all i = 1, . . . , p, ϵi > 0, mi scalar-functions λil(t), l = 1, . . . ,mi,
and mi functions φil(t) with values in C∞(M) all analytic in |t| < ϵi, and
verifying

(1) ∆tφil(t) = λil(t)φil(t) for all |t| < ϵi,
(2) λil(0) = νi,
(3) {φil(t)}

mi

l=1, is an orthonormal system of L2(M,vt) for all |t| < ϵi.

Further, since M is compact, its spectrum is separated, and for all |t| < ϵi,
i = 1, . . . , p, the spectrum of ∆g(t) in the interval [νi, νi+1[ consists of the points
λil(t), l = 1, . . . ,mi.

We set ϵk = infpi=1{ϵi}, and we design by φ1, . . . , φm1 the φ1l , by φm1+1, . . . ,
φm1+m2 the φ2l , and so on. In such wise we obtain k functions ϕi(t) and k
functions λi(t), all analytic in t for |t| < ϵk such that

(i) ∆tφi(t) = λi(t)φi(t) for all |t| < ϵk,
(ii) λi(0) = λi,
(iii) If λi = λj , then by (2) of this proof ⟨ϕi(t), ϕj(t)⟩g(t) = δij .

If λi ̸= λj , then by (4), λi(t) ̸= λj(t), and ∆g(t) is autoadjoint,⟨
∆g(t)ϕi(t), ϕj(t)

⟩
g(t)

=
⟨
ϕi(t),∆g(t)ϕj(t)

⟩
g(t)

,

e.g.

⟨λi(t)φi(t), φj(t)⟩g(t) = ⟨φi(t), λj(t)φj(t)⟩g(t) ,
then ⟨φi(t), φj(t)⟩g(t) = 0, and

⟨φi(t), φj(t)⟩g(t) = δij , and ∥φi(t)∥g(t) = 1 for all i, j = 1, . . . , k. □

We also need the following lemma.

Lemma 2.2 (C. Morlet [8]). Let M and N be two differentiable manifolds
of class Cs (at least), where s is a positive integer and M is connected. Let
Homs(M,N) denote the set of maps of class Cs from M into N (0 ≤ s ≤ +∞).
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Then the set of embeddings of M into N is an open set in Homs(M,N) with
respect to the topology Cs (this set can be obviously empty).

Now we have the basic elements to prove Theorem 1.3.

Proof of Theorem 1.3. i) On the one hand, by Theorem 1.2, there existsN0 ∈ N
such that the map

Φ0 :M → RN0+1

x 7→
2(4π)

n
2 Γ

(
n
2 + 2

)
(λN0)

n
2 +1

(φ0(0, x), . . . , φN0(0, x)) ,

where φi(0), i = 0, . . . , N0, are the first N0 + 1 eigenfunctions ∆g(0), is an
embedding.

On the other hand, by Lemma 2.1, for all N ∈ N, there exists ϵN > 0, N +1
scalar functions λi(t) and N + 1 functions φi(t), all analytic in |t| < ϵ1, such
that

∆g(t)φi(t) = λi(t)φi(t) for all |t| < ϵN .

Furthermore, for all |t| < ϵN , {φi(t)}i≤N is an orthonormal system of
L2(M, vg(t)), so the map

ΦN
t : (M, g(t)) → RN+1

x 7→
2(4π)

n
2 Γ

(
n
2 + 2

)
(λN )

n
2 +1

(φ0(t, x), . . . , φN (t, x)) ,

is well defined for all |t| < ϵN .

Let Φt denote the map ΦN0
t . Now we prove that there exists ε0 > 0 such

that Φt is embedding for all t < ε0. More precisely, in the flavour of Lemma
2.2, we will prove that

lim
t→0

∥dxΦt(V )− dxΦ0(V )∥RN0+1 = 0 uniformly in V ∈ UTxM,

where UTxM = {V ∈ TxM, g(0)(V, V ) = 1}.
Yet, for all i = 0, . . . , N0, there exists γi > 0 such that the function φi(t) is

given by its Taylor expansion

(4) φi(t) =
∞∑
l=0

φ
(l)
i (t)

l!
tl, |t| < γi.

Thus, let us first prove that

(5) dxφi(t, V ) =
∞∑
l=0

dxφ
(l)
i (t, V )

l!
tl

for all V ∈ UTxM, and all i = 0, . . . , N0, |t| ≤ inf{γi, 1}.
For this purpose, we fix i ∈ {0, . . . , N0}, and denote by

expx : TxM ⊇ B(0,
ρ

2
) → B(x,

ρ

2
), where ρ = inf{inj(M, g(t)); t ∈ [0, γi]}
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the exponential map with respect to the metric g(0) (in fact, exp is a local
chart around x, see [5], Chapter 3). And for all l ∈ N, we denote by ψi,l the

function
φ

(l)
i (t)

l! . Then for all l ∈ N, we have

|ψi,l ◦ expx(ϑ)− ψi,l ◦ expx(0)− dxψi,l(ϑ)| = ol(|ϑ|),

where |ϑ| is the norm of the vector ϑ with respect to the metric g(0), and for
all l ∈ N, ol(|ϑ|) = o(|ϑ|). It follows that

(6) |dxψi,l(ϑ)| ≤ |ψi,l ◦ expx(ϑ)− ψi,l ◦ expx(0)|+ ol(|ϑ|).

Now, since for all l ∈ N,

lim
|ϑ|→0

|ψi,l ◦ expx(ϑ)− ψi,l ◦ expx(0)| = 0,

then there exist C0 > 0 and ξ0 > 0 such that for all l ∈ N and all ϑ ∈ TxM :

(7) |ϑ| ≤ ξ0 ⇒ |ψi,l ◦ expx(ϑ)− ψi,l ◦ expx(0)| ≤ C0.

Furthermore, there exist C1 > 0 and ξ1 > 0 such that for all l ∈ N,

(8) |ϑ| ≤ ξ1 ⇒ |ol(|ϑ|)| ≤ C1.

Let us define ξ2 = inf{ξ0, ξ1}. By the equations (6), (7), and (8), we have

tl |dxψi,l(ϑ)| ≤ tl(C + C1) for all l ∈ N, |ϑ| < ξ2.

Thus, for all |t| ≤ inf{γi, 1} (γi is given in the equation (4)), the series∑∞
l=0 t

l|dxψi,l| is normally convergent in the set

{ϑ ∈ TxM ; |ϑ| ≤ ξ2},

and

dxφi(t, ϑ) =

∞∑
l=0

tldxψi,l(ϑ)

for all ϑ ∈ TxM such that |ϑ| ≤ ξ2.
Since UTxM is compact and the functions dxφi(t), dxψi,l(t) are linear, we

have equation (5).
Finally,

lim
t→0

∥dxφi(t, V )− dxφi(0, V )∥ = lim
t→0

∥∥∥∥∥
∞∑
l=1

dxψi,l(V )tl

∥∥∥∥∥ = 0

uniformly in V ∈ UTxM .
Hence, according to Lemma 2.2, there exists ε0 > 0, such that for all |t| < ε0,

Φt = ΦN0
t is an embedding from (M, g(t)) into RN0+1. Consequently, for

all N ≥ N0, ϕ
N
t is an embedding from (M, g(t)) into RN+1 for all ≤ |t| <

min{ε0, ϵN}.
ii) To prove the pull-back metric, we let

0 = λ0(t) ≤ λ1(t) ≤ · · · → ∞
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be all the eigenvalues of the Laplacian ∆g(t), and {φi(t)}i≥0 the complete asso-
ciated eigenfunctions basis (we don’t pretend here that the φi(t) are continuous
in t). Then, for all t, we consider the heat kernel Kg(t)(s, ·, ·) of (M, g(t)), e.g.
the fundamental solution of the problem{ (

∆g(t) − ∂
∂s

)
Kg(t)(s, x, y) = 0

lim
s→0

Kg(t)(s, x, y) = δx(y).

We have the following expansion

Kg(t)(s, x, y) =
∑
j≥1

e−λj(t)sφ2
i (t, x).

Since for all t fixed

Kg(t)(s, x, y) =
1

(4πs)
n
2
(1 + a(s, t)),

where a(s, t) = O(s), and by the proof of Theorem 1.1 (see [3]), we have∑
j≥1

e−λj(t)s (dxφi(t, V ))
2
=

g(t)(V, V )

2(4π)
n
2 s

n
2 +1

(1 + b(t, s)) ,

where b(t, s) = O(s) for all t. Hence, using Karamata’s Theorem (see [7]), we
get ∑

i≤N

(dxφi(t, V ))
2
=

(λN (t))
n
2 +1g(t)(V, V )

2(4π)
n
2 Γ(n2 + 2)

(
1 + d

(
V,

1

lnλN (t)

))
,

where d
(
V, 1

lnλ(t)

)
= O

(
1

lnλ(t)

)
when N → ∞, uniformly in V ∈ UTxM ,

x ∈M. And

(Φt)
∗
Can = g(t)

(
1 +O

(
1

ln (λN (t))

))
when N → +∞.

□

3. Embedding a flow of Riemannian manifolds via a complete basis
of eigenfunctions

In this section, we embed a flow of Riemannian manifolds (M, g(t)) using a
complete orthonormal family of eigenfunctions. Given a smooth metric g(t),
t ∈ ]0, T ], the operator ∆g(t) depends smoothly on t. The main obstacle here
is that we are not sure of the existence of a complete orthonormal system of
eigenfunctions that depend smoothly on t. For this purpose, we consider the
particular case where g(t) is analytic in t ∈ ]0, T [ such that dvg(t) = dvg(0) for
all t ∈ ]0, T ].

Remark 3.1. The use of the interval ]0, T [ instead of the interval ] − T, T [ is
due to the fact that in Theorem 3.3, t must be positive.

We have the following:
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Definition 3.2 (T. Kato [6] page 375). Let X and Y be two vector spaces,
and let C(X,Y ) denote the set of all closed operators from M to N . A family
T (x) ∈ C(X,Y ) defined for x in a domain DC of the complex plane, is said to
be holomorphic of type (A) in the sense of Kato if

(i) D(T (x)) = DT is independent of x, and
(ii) T (x)u is holomorphic for x ∈ DC for every u ∈ DT .

Let g(t) be an analytic metric in t. Then it can be expressed as follows

g(t) =

∞∑
i=0

ait
i.

We expand g on C via the formula

g(z) =
∞∑
i=0

aiz
i.

We associate to g(z) the operator ∆g(z) of C
∞(M,C) defined by

∆g(z)f = gij(z)

[
∂2

∂xi∂xj
f − Γk

ij

∂

∂xk
f

]
,

where
(
gij(z)

)
i,j

= g(z)−1 and

Γk
ij(z) = gkl(z)

(
∂

∂xi
glj(z) +

∂

∂xj
gli −

∂

∂xl
gij(z)

)
.

Then by P. Bérard [1], the family ∆g(t) is an holomorphic family of type
(A).

By a theorem due to T. Kato ([6], Theorem 8.9, page 392), there exist a
sequence of scalar-valued functions λi(t) and a sequence of vector-valued func-
tions φi(t) all holomorphic in ]0, T [ such that the λi(t) represent all the eigen-
values of ∆g(t), and the φi(t) form a complete orthonormal basis of associated
eigenvectors of ∆g(t). Hence we can formulate the following statement.

Theorem 3.3. Let (M, g(t)) be a family of Riemannian manifolds such that
g(t) is analytic in t ∈ ]0, T [. And let {ϕi(t)}i≥0 be a complete orthonormal
eigenfunctions of ∆g(t), associated to the eigenfunctions {λi(t)}i≥0, all analytic
in t ∈ ]0, T [. Then the map

Φt : (M, g(t)) → l2, t ∈ ]0, T [

x 7→
√
2(4π)

n
4 t(n+2)/4

{
e−

λi(t)t

2 φi(t, x)
}
i≥1

is an embedding for all t ∈ ]0, T ], and

Φ∗
t (V, V ) = g(t)(V, V ) +

t

3

(
1

2
Scalg(t).g(t)−Ricg(t)

)
+O(t2) when t→ 0+

where Scalg(t) and Ricg(t) are respectively the scalar curvature and the Ricci
curvature tensor of the metric g(t).
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Proof. The proof of this theorem is analogous to the proof of Theorem 1.1 in
[3]. It is sufficient to consider the heat kernel ks of (M, g(s)) for s fixed :

ks(t, x, y) =
∑
i∈N

e−λi(s)tφi(s, x)φi(s, y), t > 0, x, y ∈M.

Then Φt is an embedding of (M, g(t)) in l2, continuous in t, and, for all t ∈ ]0, T [,
and all x ∈M ,

∥Φt(x)∥2l2 =
∑
i>0

e−λi(t)tφ2
i (t, x) = kt(t, x, x).
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