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Abstract

We investigate a history of reseahches of a nonlinear elliptic equation with jumping
nonlinearity, under Dirichlet boundary condition. The investigation will be focussed on
the researches by topological methods. We also add recent researches, relations
between multiplicity of solutions and source terms of the equation when the

nonlinearity crosses two eigenvalues and the source term is generated by three
eigenfunctions.

0. Introduction

We investigate a history of researches of a nonlinear elliptic equation with jumping
nonlinearity, under Dirichlet boundary condition. The investigation will be focussed on

the researches by topological methods. We also add a recent research.

Let £ be a bounded domain in R” with smooth boundary 32 and let L denote the
differential operator

d d
L= 2> “a*xi(az‘/a_xj),

1<, 7<n

where a;=a; EC°°(_S§). We investigate multiplicity of solutions of the nonlinear elliptic

equation with Dirichlet boundary condition

* This work was supported by Inha University Research Grant.
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Lu+g(u)=f(x) in (0.1
=0 on 08, (0.2)

where the semilinear term g(#) = bu" —au™ and we assume that L is a second order
linear elliptic differential operator and a mapping from L%() into itself with compact

inverse, with eigenvalues —A,, each repeated according to its multiplicity,

D<A <A< A3< <A< —>00

Here the source term f is generated by the eigenfunctions of the second order elliptic

operator with Dirichlet boundary condition.

In [4, 5, 6, 7], the authors have investigated multiplicity of solutions of (1.1) when the

forcing term f is supposed to be a multiple of the first eigenfunction and the

nonlinearity — (bu” — au™) croses eigenvalues. In [3], the authors investigated a relation

hetween multiplicity of solutions and source terms of (0.1) when the forcing term f is
supposed to be spanned two eigenfunction ¢, ¢, and the nonlinearity — (bu*— au™)
croses two eigenvalues A, Ay .

Let ¢; be the eigenfunction corresponding to A;. Then the set of eigenfunctions {¢;}
is an orthogonal in L*(Q).

Let us denote an element u, in Hj, as u= Zhnqﬁn and we define a subspace H of

H, as
H={ueHy: 2|4, h% < o},

1
Then this is a complete normed space with a norm |lull = (23|A,14%) 2. If feHy and

a, b are not eigenvalues of L, then every solution in Hy of Lu+but—au =f

belongs to H (cf. [3]). Hence equation (0.1) with (0.2) and (0.3) is equivalent to

Lut+bu"—au =f in H. (0.4)

In Section 1, we state the beging researches of a nonlinear elliptic equation with
jumping nonlinearity, under Dirichlet boundary condition. In Section 2, we suppose that
the nonlinearity crosses two eigenvalues and the source term is generated by two
eigenfunctions and we investigate the properties of the reduced map ¢ (see equation

(2.6)). In Section 3, we reveal a relation between multiplicity of solutions and source
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terms in equation (0.4) when the source term belongs to the three dimensional space

spanned by ¢, ¢, and ¢3.

1. Beging Researches

In this section, we state the beging researches (cf. [4, 9]) of a nonlinear elliptic
equation with jumping nonlinearity, under Dirichlet boundary condition. In [4, 9], the

authors suppose that the forcing term is a multiple of the first eigenfunction.

Theorem 1.1. Let a<A;<b<Ay Let f=s¢;. Then we have the followings.

(i) If s>0, then equation (0.4) has a positive solution and a negative solution.
(ii) If s=0, then equation (0.4) has only the trivial solution.

(iii) f s<0, then equation (0.4) has no solution.

In [4], the authors showed multiplicity of solutions of the equation by the cotraction
mapping principle and basic topological methods when the nonlinearity crosses two
elgenvalues.

Theorem 1.2. Let a<A; <Ay <b<As. Let f=s¢;. Then we have the followings.

(i) If s>0, then equation (0.4) has a positive solution, a negative solution, and at
least two sign changing solutions.
(ii) If s=( then equation (0.4) has only the trivial solution

(iii) If s<0, then equation (0.4) has no solution.
Dancer showed the following by degree theory and critical point theory.

Theorem 1.3. Let Aj<a<Ay;<b<A; Let f=s¢;, Then there exists & >0 such
that if A;<a <Ay, <b<Ay— e then the followings hold.

(i) If s> 0, then equation (0.4) has a positive solution and at least two sign changing
solutions.
(i) If s=1( then equation (0.4) has only the trivial solution

(iii) If s <(, then equation (0.4) has a negative solution.
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2. Multiplicity for Source Terms in Two Dimensional Space

We suppose that the nonlinearity — (bu™— au~) crossing two eigenvalues A, and A,
le, a<A;<A;<b<A; We have a concern with a relation between multiplicity of
solutions and source terms of a nonlinear elliptic equation

Lutbu"—au"=f in LYQ). (2.1)
Here we suppose that f is generated by two eigenfunctions ¢; and ¢,.
Let V be the two dimensional subspace of L*(£2) spanned by {¢,, #2} and W be

the orthogonal complement of V in L%(Q). Let P be an orthogonal projection L3(Q)
onto V. Then every element u <H is expressed by
u=v+w,
where v= Pu, w=(I— P)u. Hence equation (2.1) is equivalent to a system
Lw+(I- PY(b(v+ w) " —alv+uw) ") =0, (2.2)
Lo+ P(b(v+w) " — alv+ w) ™) =516, + 205 (2.3)

Lemma 2.1. For fixed veV, (22) has a unique solution w= #(v). Furthermore,

A(v) is Lipschitz continuous (with respect to L? norm) in terms of v.

The proof of the lemma is similar to that of Lemma 2.1 of [3].
By Lemma 2.1, the study of multiplicity of solutions of (2.1) is reduced to that of an

equivalent problem
Lo+ P(b(v+60(0) T —alv+ 6(v)) ™) = 5161+ s963 (2.4)

defined on the two dimensional subspace V spanned by {¢;, ¢3).

We note that if v>0 or v<0 then 6(v)=0.
Since the subspace V is spanned by {@,, ¢} and ¢;(x)>0 in 2, there exists a

cone C; defined by
C1= {’U= C1¢>1+ C2¢2: C120, ‘02|—<—kcl}

for some %£>0 so that v=( for all v=C, and a cone Cj defined by
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Ci={v=1c1¢1+ c205: 1 <0, |yl <Elcyl}
so that v<0 for all veC(C;.
We define a map @:V—V given by
O(v)= Lo+ P(b(v+ 6(v)) " — alv+ 6(v))7), ve V. (2.5)
Then @ is continuous on V, since & is continuous on V and we have the following
lemma(cf. Lemma 2.2 of [3]).

Lemma 2.2. @(cv)=c®(v) for ¢=0 and veV.

Lemma 2.2 implies that @ maps a cone with vertex ( onto a cone with vertex 0.
We set he cones C,, C, as follows
Co={c1¢;+ c35: ¢, =0, 3= klcyl},
Ci={c191+ 2921 2 <0, ¢z < — klcyl).
Then the union of four cones C; (1 <7<4) is the space V.

The map @ maps C; onto the cone

b—2A
R1={d1¢1+d2¢2:d120, Id2|_<._k( ?

b4 )dl}'

The cone Ry is in the right half-plane of V and the restriction @|:C,—R; is
hijective.

The map @ maps the cone C; onto the cone

Ay—
Ry={d\¢\+ dyp;:d, 20, dzﬁk‘ Af .

—a

||}

The cone R; is in the right half-plane of V and the restriction @], : Cy—Rj is

hijective. We note that R, CR; since a <A1 <A, <b <A,

Theorein 2.1. If f belongs to R;, then equation (2.1) has a positive solution and a

negative solution.
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Lemma 2.2 means that the images ®(C;) and @(C,) are the cones in the plane V.

Before we investigate the images @(C,) and @(C,), we set

Ay—a Za—b

Ry= {d + dyty: dy 20, —k‘ e dlgdzsk} g |,
/1 —_ —_

R4={d1¢1+d2¢2:d120, —k _2__—b- a’ISa’sz M dl}
/11 b /11“‘61

We note that all the cones R, R; R, contain R;,. R; contain R;, R R,

To investigate a relation between multiplicity of solutions and source terms in the

nonlinear equation
Lu+bu"—au =f in H, (2.6)

we consider the restrictions @] ¢ (1<7<4) of @ to the cones C;. Let @;= 0|, ie,
Q,:C;—V.
For i=1, 3, the image of @; is R; and @,: C;—R; is bijective.

Lemma 2.3. For every v=c,$;+ C¢5, there exists a constant d >0 such that

(0(v), p)=dlcy.

For the proof see [3].
Let us find the image of C; under @, for =2, 4. Suppose that 7 is a simple path

in C, without meeting the origin, and end points (initial and terminal) of ¥ lie on the
houndary ray of C, and they are on each other boundary ray. Then the image of one
end point of 7 under @ is on the ray ¢, (b—ApD¢;+kci(b— )¢y, ¢1=0(a boundary
ray of R;) and the image of the other end point of 7 under @ is on the ray
—ci(—= A+ a)p+ kci(— A+ a)py, c;=0(a boundary ray of Rj3). Since @ s
continuous, @(y) is a path in V. By Lemma 22, @(y) does not meet the origin.
Hence the path @(7) meets all rays (starting from the origin) in Rs.

Therefore it follows from Lemma 2.3 that the image @(C,) of C, contains R,.
Similarly, we have that the image @(Cy) of C, contains Rj.

If a solution of (2.1) is in IntCj, then it is positive. If a solution of (2.1) is in IntCs,
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then it is negative. If it is in Int(C,UC,), then it has both signs. Therefore we have

the main theorem of this section.

Theorem 2.2. Let a<A;<A;<b<A; Let v=c¢;+ cy¢y. Then we have the

followings.

(i) If f=IntR,, then equation (2.1) has a positive solution, a negative solution, and

at least two solutions changing sign.

(ii) If f=dR,, then equation (2.1) has a positive solution, a negative solution, and at

least one solution changing sign.

(iii) If FfeInt(Ry\ R;), then equation (3.1) has a negative solution and at least one

sign changing solution.

(iv) If f=0dR;, then equation (2.1) has a negative solution.

3. Multiplicity for Source Terms in Three Dimensional Space

In this section, we suppose that A;<A;—1 and aea<A1<Ay,<b<A3—1. We

investigate a relation between multiplicity of solutions and the source terms of a

nonlinear equation when the source terms belong to the three dimensional space
spanned by ¢, ¢,, and ¢s.

First we consider
Lu+ bu™ — au” = s, ¢, + spdy+ €. (3.1)

Let V, W and P be the same as in section 2. Then equation (3.1) is equivalent to

a system

Lw+ (I— P)(b(v+w) ™ — alv+ w) 7) = s, (3.2)
Lo+ P(b(v+w) ™t — alv+ w) ") = 5,01 + s96b. (3.3)

Lemma 3.1 For fixed veV, (32) has a unique solution w= 6.(v). Furthermore,

6.(v) is Lipschitz continuous (with respect to L? norm) in terms of v.

By Lemma 3.1, the study of multiplicity of solutions of (3.1) is reduced to the study
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of multiplicity of solutions of an equivalent problem
Lo+ P(b(v+ 0.(v)) " — alv+ 6.(v)) )= S1P1 + sa¢y (3.4)

defined on the two dimensional subspace V.
Since the subspace V is spanned by {¢;, ¢;} and v>0 in Q for all ve=C,, there

exists a convex subset C;. of C; defined by
Cr={v=cip1+cr¢s: v+ ep3>0 in Q}
and a convex subset Cj. of C; defined by
Ci={v=c1¢1+ c202: v+ e¢3<0 in Q}.
We define a map J: RX V—V given by
Je,v)= Lo+ P(b(v+ 6 (0)) " —alv+ 6 .(v))7), ve V. (35)

Then for fixed &, J is continuous on V since #.(v) is continuous on V. Also, it is

easily proved that for fixed », J is continuous on V.
Lemma 3.2. For fixed vV, J is continuous on K.

Proof. It is enough to show that for fixed v, 6.(v) is a continuous function of &. We
use the cotraction mapping principle. Let 8= %(a +5). Let w;(i=1, 2) be the unique
solution of

(—L—8w={T—P)(b(v+w) " —alv+w)” v+ w) — e;¢3)
or equivalently

w=(~L— 8 '(I-P)g,(w)—e;43), (37)
where

glw)=blv+w) " — alv+ w) ~— §(v+ w).
Then we have, by Lemma 3.2,

[ 5l
Hw, — woll < yllw, — woll + A, ol le,— &yl,
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or equivalently,

(1=2Nw,— wgllé%ﬂi— le,— &l

which means that for fixed v, 6.(v) is a continuous function of &, where y<1.

We note that if » is in Cj., then 8. (v)= b—E/l ¢s. In fact, if v is in Cy., then
3

v+eds;>0 in @ and hence v+—_§——¢3>0 in Q. Hence 6.(v)=-"5+—¢,
b— A3 b— A3

satisfies  LO(v) +(I— P)(b(v+ 0. (v) T — alv+ 0.(v)) ") =eds. Also, if v is in Cje,

3
d_/lg

then v+e@y3<0 in @ and hence v+ $3<0 in Q. Hence 6. (v)= £ &3

a— A 3
satisfies the above equation.

We investigate the images of the convex sets Cj, and Cs. under J. First we
consider the image of the cone Ci.. f v=c¢;+ ¢3¢ is in Cy., then v+ 6.(v)>0 in

@ and hence we have

Ke,v)=L(0)+ P(6lv+ 8 ()" — alv+ 0 (v))7)
= 01/11¢1 + 02/12¢2+ b( Cl¢1 + C2¢2)
= C1(b+ /11)¢1+C2(b+/12)¢2.

Thus, for fixed &, the image of C,, under J, Je&, Cy.), is a convex subset of R;.
For fixed e, the restriction J| ¢, : Ci.—J(e, C.) is bijective.
We determine the image of the cone C;.. If v=c1¢;1+ 22 is in Cs, then

v+ 6. (v) <0 in @ and hence we have

Je, v)=L(v)+ P(b(v+ 8 ()" — alv+ 8 (v)) )
= Lv+ P(av)
= Cl(/ll + d)¢1+ C2(/12+ a)¢2.

Thus, for fixed &, the image of Cs. under J, J(e, Cy.), is a convex subset of Rj.

For fixed &, the restriction J| ¢, : Cs.—J (€, C3,.) is bijective.

Let €>0 be fixed. If v is in Cj., then 65(11)=bT€/13-¢3 and b—€/13(v+ $3)>0,
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b‘A:;"E

b— A, v>0 in . Hence we have the lemma.

Lemma 3.3. Let >0 be fixed. Then there are open sets C',, C'3. with

C.CCL.CC, C3.CC3CCy such that ﬁe(v)=b—_§7¢3 for all vel,,
3

.(v)= —a—_e—;g ¢3 for all v =3, Here the set Cj. is the closure of C.

Theorem 3.1. Let &> be fixed. Then we have:
(i) If f belongs to J(e, C,), then equation (3.1) has a positive solution and a

negative solution.

(ii) If f belongs to J(e, Cs.), then equation (3.1) has a negative solution.

If v+eps>0 in Q (veV), then vel, and if v+ed;<0 in 2 (veV), then
ve(Cy,. We set

U= {vteds: ve](e, C), e€R}, Us= {v+eps: vel(e, Cs), e =R}

U,= span{¢,, ¢,, ¢33\ (U,UU,)

With the above notations and facts, we have the following.

Theorem 3.2. Suppose that A;<A3—1 and a<A;<A;<b<A3—1. Let
f=51¢1+ 5,02+ €d3. Then we have the followings.
(1) If felIntU, then equation (3.1) has a positive solution, a negative solution, and

at least two sign changing solutions.

(i) If fe=aU, then equation (3.1) has a positive solution, a negative solution, and at

least one sign changing solution.

(iii) If feInt(U;\ U)), then equation (3.1) has a negative solution and at least one

sign changing solution.

(iv) If fe=0U,, then equation (3.1) has a negative solution.

(iv) If feU,, then equation (3.1) has no solution.
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